CN103061565B - 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法 - Google Patents

玻璃纤维与碳纤维混杂复合材料锥形管的制备方法 Download PDF

Info

Publication number
CN103061565B
CN103061565B CN201310029979.0A CN201310029979A CN103061565B CN 103061565 B CN103061565 B CN 103061565B CN 201310029979 A CN201310029979 A CN 201310029979A CN 103061565 B CN103061565 B CN 103061565B
Authority
CN
China
Prior art keywords
layer
carbon fiber
glass fiber
winding
hybrid composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310029979.0A
Other languages
English (en)
Other versions
CN103061565A (zh
Inventor
张春华
傅鑫
张文生
黄玉东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310029979.0A priority Critical patent/CN103061565B/zh
Publication of CN103061565A publication Critical patent/CN103061565A/zh
Application granted granted Critical
Publication of CN103061565B publication Critical patent/CN103061565B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,它涉及玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,它为了解决现有金属、水泥或钢筋混凝土电线杆的结构重量过大和反射电磁波以及单一玻璃纤维复合材料的拉伸模量低,单一碳纤维复合材料价格高的问题,本发明的锥形管的制备方法为内部通孔为圆柱形的三层复合结构锥形管,内层和外层为玻璃纤维层,中层为碳纤维层,内层采用变长度、变缠绕角的线型缠绕,中层和外层采用全长度、单一缠绕角的线型缠绕,所得玻璃纤维与碳纤维混杂复合材料锥形管的拉伸模量为16.5GPa~17.5GPa,相比单一玻璃纤维复合材料拉伸模量提高32%~40%,且成型工艺简便易操作,用于电线杆、灯杆领域。

Description

玻璃纤维与碳纤维混杂复合材料锥形管的制备方法
技术领域
本发明涉及玻璃纤维与碳纤维混杂复合材料锥形管的制备方法。 
背景技术
以往的电线杆、路灯杆主要由木材、水泥、钢筋混凝土或金属钢材料制作的。随着电力工业、路桥建设以及市政建设等的发展,对电线杆、灯杆的性能要求越来越高,从最初的木杆到当前的水泥、钢筋混凝土或金属钢杆,材料的强度、电线杆的尺度都越来越大。木杆虽然重量轻,移动和安装方面,但由于强度低、不耐环境腐蚀以及资源紧缺在新建线路不再采用了;金属、水泥和钢筋混凝土电线杆因其原料丰富,制作工艺简单,价格便宜而取代了木杆成为路面高架电线支撑杆的主要材料,但是对于在有电磁控制的重要军事武器区域、有重量要求的高架桥梁或山区安装架设的输电线路,金属、水泥和钢筋混凝土电线杆由于反射电磁波和重量太大移动困难而限制了使用。 
新一代结构材料纤维复合材料以其轻质高强、绝缘、透波、透磁等特性而广泛应用于电力、交通、市政建设等领域。其中玻璃纤维复合材料具有强度高、绝热、耐热、绝缘、耐辐射、耐腐蚀、透电磁波、耐低温等特性,且价格低而成为最广泛应用的一种复合材料,但是玻璃纤维的拉伸模量较低,为12GPa左右,一般用于低压电线杆、灯杆的制作,限制了应用范围,而碳纤维复合材料相比于玻璃纤维复合材料,具有更低的密度、更高的强度、模量、耐高温性、抗蠕变性、耐化学腐蚀性以及低电阻、高热导、热膨胀系数小等特性,缺点是碳纤维复合材料其断裂应变和冲击韧性较低,且价格相对较高,因此寻找一种综合性能优异的纤维复合材料是必要的。 
发明内容
本发明为了解决现有金属、水泥或钢筋混凝土电线杆的结构重量过大和反射电磁波以及单一玻璃纤维复合材料的拉伸模量低,单一碳纤维复合材料的价格高的问题,而提供一种玻璃纤维与碳纤维混杂复合材料锥形管的制备方法。 
本发明的所述的玻璃纤维与碳纤维混杂复合材料锥形管的管壁为三层复合结构,内层为第一玻璃纤维层,中层为碳纤维层,外层为第二玻璃纤维层,所述锥形管中部的通孔为圆柱形,通孔长度为7.0~15.0m,通孔直径为50~200mm,锥形管底端管壁厚度为19.0~32.0mm,顶端管壁厚度为9.0~17.0mm。 
本发明的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法按以下步骤进行: 
一、将玻璃纤维和碳纤维浸渍于树脂基体中,然后湿法缠绕在圆柱形模具的外表面, 圆柱形模具的长度为7.0~15.0m,圆柱形模具的外径为50~200mm;具体的缠绕步骤如下: 
A、内层采用玻璃纤维变长度、变缠绕角的线型缠绕方法,缠绕角依次为15.0°、17.0°、19.0°、20.0°、19.0°、17.0°和15.0°,螺旋向缠绕长度依次为锥形管长度的100%、90%、80%、70%、60%、50%和100%,每个缠绕层的厚度为2.0~3.0mm,得到内层第一玻璃纤维层; 
B、中层采用碳纤维,以每层的缠绕角为14.5°~20.0°,每层螺旋向缠绕的长度锥形管长度的100%,缠绕2~4层,每个缠绕层的厚度为1.5~2.0mm,得到中层碳纤维层; 
C、外层采用玻璃纤维,以缠绕角为15.0°~17.0°,螺旋向缠绕的长度为锥形管长度的100%,缠绕1层,缠绕层的厚度为2.0~3.0mm,得到外层第二玻璃纤维层,完成缠绕成型过程; 
二、将上述缠绕成型后的锥形管在温度为70~80℃的条件下,保温1~2h,然后升温至110~120℃,保温3~5h,完成固化,固化后自然冷却至室温,抽去模具,得到玻璃纤维与碳纤维混杂复合材料锥形管。 
本发明的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,根据锥形电线杆、灯杆的受力状态和玻璃纤维与碳纤维的力学特点,将具有高模量、低应变和良好结构刚度的碳纤维设计在杆体的内结构层,以赋予杆体结构刚性和形状尺寸稳定性,将具有优异拉伸性能和冲击韧性玻璃纤维设计在杆体的外结构层,以主要承载杆体所受的拉伸载荷和外部环境导致的冲击载荷,同时由于玻璃纤维具有良好的透磁性和光稳定性,而使锥形管结构层材料具有透电磁信号、防光老化的优点,这样既弥补了由单一碳纤维复合材料制作的电线杆、灯杆绝缘性能差和高价格的缺点,又弥补了由单一玻璃纤维的复合材料制作的电线杆、灯杆因材料较低的模量而导致产品的结构刚性低的缺点,因此,采用这两种纤维混杂复合材料制作的锥形电线杆、灯杆,使两种材料取长补短,充分发挥各自的性能优势,达到杆体结构性能、结构重量和价格优化的目的,本发明的玻璃纤维与碳纤维混杂复合材料锥形管的拉伸模量为16.5GPa~17.5GPa,相比单一玻璃纤维复合材料拉伸模量提高32%~40%,且本发明的玻璃纤维与碳纤维混杂复合材料锥形管结构形式优化、成型工艺简便易操作,制备的电线杆、灯杆与水泥杆和金属钢材杆相比,在结构性能相同的情况下结构重量可分别减少70~80%和50~60%,是一种轻质、高强、高模的易于移动安装、性能优异的新型电线杆、灯杆,特别适用于有重量和电磁波要求的线路如高架桥(路)、山区以及特殊的或重要的通讯区线路架设用的电线杆、灯杆。 
附图说明
图1是实施例1的玻璃纤维与碳纤维混杂复合材料锥形管的结构示意图,其中1为内层第一玻璃纤维层,2为中层碳纤维层,3为外层第二玻璃纤维层,4为通孔。 
具体实施方式
本发明的技术方案不局限于以下具体实施方式,还包括各具体实施方式间的任意组合。 
具体实施方式一:本实施方式的所述的玻璃纤维与碳纤维混杂复合材料锥形管的管壁为三层复合结构,内层为第一玻璃纤维层1,中层为碳纤维层2,外层为第二玻璃纤维层3,所述锥形管中部的通孔4为圆柱形,通孔4长度为7.0~15.0m,通孔4直径为50~200mm,锥形管底端管壁厚度为19.0~32.0mm,顶端管壁厚度为9.0~17.0mm。 
具体实施方式二:本实施方式与具体实施方式一不同的是:锥形管底端内层第一玻璃纤维层1厚度为14.0~21.0mm,锥形管顶端内层第一玻璃纤维层1厚度为4.0~6.0mm,锥形管中层碳纤维层2上下均厚,厚度为3.0~8.0mm,锥形管外层第二玻璃纤维层3上下均厚,厚度为2.0~3.0mm,其它步骤与参数与具体实施方式一相同。 
具体实施方式三:本实施方式与具体实施方式一或二不同的是:锥形管底端内层第一玻璃纤维层1厚度为16.0~19.0mm,锥形管顶端内层第一玻璃纤维层1厚度为5.0mm,锥形管中层碳纤维层2上下均厚,厚度为4.0~7.0mm,锥形管外层第二玻璃纤维层3上下均厚,厚度为2.5mm,其它步骤与参数与具体实施方式一或二相同。 
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:锥形管底端内层第一玻璃纤维层1厚度为17.0~18.0mm,锥形管中层碳纤维层2上下均厚,厚度为5.0~6.0mm,其它步骤与参数与具体实施方式一至三之一相同。 
具体实施方式五:本实施方式的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法按以下步骤进行: 
一、将玻璃纤维和碳纤维浸渍于树脂基体中,然后湿法缠绕在圆柱形模具的外表面,圆柱形模具的长度为7.0~15.0m,圆柱形模具的外径为50~200mm;具体的缠绕步骤如下: 
A、内层采用玻璃纤维变长度、变缠绕角的线型缠绕方法,缠绕角依次为15.0°、17.0°、19.0°、20.0°、19.0°、17.0°和15.0°,螺旋向缠绕长度依次为锥形管长度的100%、90%、80%、70%、60%、50%和100%,每个缠绕层的厚度为2.0~3.0mm,得到内层第一玻璃纤维层1; 
B、中层采用碳纤维,以每层的缠绕角为14.5°~20.0°,每层螺旋向缠绕的长度锥形管长度的100%,缠绕2~4层,每个缠绕层的厚度为1.5~2.0mm,得到中层碳纤维层2; 
C、外层采用玻璃纤维,以缠绕角为15.0°~17.0°,螺旋向缠绕的长度为锥形管长度的 100%,缠绕1层,缠绕层的厚度为2.0~3.0mm,得到外层第二玻璃纤维层3,完成缠绕成型过程; 
二、将上述缠绕成型后的锥形管在温度为70~80℃的条件下,保温1~2h,然后升温至110~120℃,保温3~5h,完成固化,固化后自然冷却至室温,抽去模具,得到玻璃纤维与碳纤维混杂复合材料锥形管。 
本实施方式的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,根据锥形电线杆、灯杆的受力状态和玻璃纤维与碳纤维的力学特点,将具有高模量、低应变和良好结构刚度的碳纤维设计在杆体的内结构层,以赋予杆体结构刚性和形状尺寸稳定性,将具有优异拉伸性能和冲击韧性玻璃纤维设计在杆体的外结构层,以主要承载杆体所受的拉伸载荷和外部环境导致的冲击载荷,同时由于玻璃纤维具有良好的透磁性和光稳定性,而使锥形管结构层材料具有透电磁信号、防光老化的优点,这样既弥补了由单一碳纤维复合材料制作的电线杆、灯杆绝缘性能差和高价格的缺点,又弥补了由单一玻璃纤维的复合材料制作的电线杆、灯杆因材料较低的模量而导致产品的结构刚性低的缺点,因此,采用这两种纤维混杂复合材料制作的锥形电线杆、灯杆,使两种材料取长补短,充分发挥各自的性能优势,达到杆体结构性能、结构重量和价格优化的目的,本实施方式的玻璃纤维与碳纤维混杂复合材料锥形管的拉伸模量为16.5GPa~17.5GPa,相比单一玻璃纤维复合材料拉伸模量提高32%~40%,且本实施方式的玻璃纤维与碳纤维混杂复合材料锥形管结构形式优化、成型工艺简便易操作,制备的电线杆、灯杆与水泥杆和金属钢材杆相比,在结构性能相同的情况下结构重量可分别减少70~80%和50~60%,是一种轻质、高强、高模的易于移动安装、性能优异的新型电线杆、灯杆,特别适用于有重量和电磁波要求的线路如高架桥(路)、山区以及特殊的或重要的通讯区线路架设用的电线杆、灯杆。 
具体实施方式六:本实施方式与具体实施方式五不同的是:步骤一中所述的碳纤维和玻璃纤维的树脂基体均为环氧树脂,其它步骤与参数与具体实施方式五相同。 
具体实施方式七:本实施方式与具体实施方式五或六不同的是:步骤一中的中层碳纤维层2采用两个缠绕角,每个缠绕角缠绕1~2层,其它步骤与参数与具体实施方式五或六相同。 
具体实施方式八:本实施方式与具体实施方式五至七之一之一不同的是:步骤二中先在温度为75℃的条件下保温1.5h,其它步骤与参数与具体实施方式五至七之一相同。 
具体实施方式九:本实施方式与具体实施方式五至八之一不同的是:步骤二中然后升温至115℃,保温4h,其它步骤与参数与具体实施方式五至八之一相同。 
用以下试验验证本发明的有益效果: 
实施例1、玻璃纤维与碳纤维混杂复合材料锥形管及其制备方法按以下步骤进行: 
一、将玻璃纤维和碳纤维浸渍于E51环氧树脂/酸酐体系中,然后湿法缠绕在圆柱形金属模具的外表面,圆柱形模具的长度为10m,圆柱形模具的直径为120mm;具体的缠绕步骤如下: 
A、内层采用玻璃纤维变长度、变缠绕角的线型缠绕方法,缠绕角依次为15.0°、17.0°、19.0°、20.0°、19.0°、17.0°和15.0°,螺旋向缠绕长度依次为10m、9m、8m、7m、6m、5m和10m,每个缠绕层的厚度为3.0mm,得到内层第一玻璃纤维层1; 
B、中层采用碳纤维,先以缠绕角为14.5°,螺旋向缠绕长度为10m缠绕2层,再以螺旋角为16.5°,螺旋向缠绕产度为10m缠绕2层,每个缠绕层的厚度为2.0mm,得到中层碳纤维层2; 
C、外层采用玻璃纤维,以缠绕角为16.0°,螺旋向缠绕的长度为10m,缠绕1层,缠绕层的厚度为3.0mm,得到外层第二玻璃纤维层3,完成缠绕成型过程; 
二、将上述缠绕成型后的杆体先在温度为75℃的条件下,保温1.5h,然后升温至115℃,保温4h,完成固化,固化后自然冷却至室温,抽去模具,得到玻璃纤维与碳纤维混杂复合材料锥形管。 
试验一、对实施例1的玻璃纤维与碳纤维混杂复合材料锥形管进行拉伸模量检测: 
根据GB/T1447-2005纤维增强塑料拉伸性能试验方法,采用INSTRON材料试验机,对实施例1的玻璃纤维与碳纤维混杂复合材料锥形管进行拉伸模量检测,得出实施例1的玻璃纤维与碳纤维混杂复合材料锥形管的拉伸模量为16.5GPa~17.5GPa,而玻璃纤维/环氧树脂复合材料的拉伸模量仅为12.5GPa,实施例1的玻璃纤维与碳纤维混杂复合材料锥形管相比单一玻璃纤维复合材料拉伸模量提高32%~40%。 

Claims (5)

1.玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,其特征在于,该制备方法按以下步骤进行: 
一、将玻璃纤维和碳纤维浸渍于树脂基体中,然后湿法缠绕在圆柱形模具的外表面,圆柱形模具的长度为7.0~15.0m,圆柱形模具的外径为50~200mm;具体的缠绕步骤如下: 
A、内层采用玻璃纤维变长度、变缠绕角的线型缠绕方法,缠绕角依次为15.0°、17.0°、19.0°、20.0°、19.0°、17.0°和15.0°,螺旋向缠绕长度依次为锥形管长度的100%、90%、80%、70%、60%、50%和100%,每个缠绕层的厚度为2.0~3.0mm,得到内层第一玻璃纤维层(1); 
B、中层采用碳纤维,以每层的缠绕角为14.5°~20.0°,每层螺旋向缠绕的长度锥形管长度的100%,缠绕2~4层,每个缠绕层的厚度为1.5~2.0mm,得到中层碳纤维层(2); 
C、外层采用玻璃纤维,以缠绕角为15.0°~17.0°,螺旋向缠绕的长度为锥形管长度的100%,缠绕1层,缠绕层的厚度为2.0~3.0mm,得到外层第二玻璃纤维层(3),完成缠绕成型过程; 
二、将上述缠绕成型后的锥形管在温度为70~80℃的条件下,保温1~2h,然后升温至110~120℃,保温3~5h,完成固化,固化后自然冷却至室温,抽去模具,得到玻璃纤维与碳纤维混杂复合材料锥形管。 
2.根据权利要求1所述的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,其特征在于步骤一中所述的碳纤维和玻璃纤维的树脂基体均为环氧树脂。 
3.根据权利要求1或2所述的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,其特征在于步骤一中的中层碳纤维层采用两个缠绕角,每个缠绕角缠绕1~2层。 
4.根据权利要求3所述的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,其特征在于步骤二中先在温度为75℃的条件下保温1.5h。 
5.根据权利要求3所述的玻璃纤维与碳纤维混杂复合材料锥形管的制备方法,其特征在于步骤二中然后升温至115℃,保温4h。 
CN201310029979.0A 2013-01-25 2013-01-25 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法 Expired - Fee Related CN103061565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310029979.0A CN103061565B (zh) 2013-01-25 2013-01-25 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310029979.0A CN103061565B (zh) 2013-01-25 2013-01-25 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法

Publications (2)

Publication Number Publication Date
CN103061565A CN103061565A (zh) 2013-04-24
CN103061565B true CN103061565B (zh) 2014-10-29

Family

ID=48104427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310029979.0A Expired - Fee Related CN103061565B (zh) 2013-01-25 2013-01-25 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法

Country Status (1)

Country Link
CN (1) CN103061565B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552251B (zh) * 2013-11-22 2015-08-19 哈尔滨工业大学 一种玻璃纤维复合材料电机护环的制备方法
CN104265049B (zh) * 2014-10-21 2016-08-24 合肥海银杆塔有限公司 玻璃纤维缠绕复合材料锥形电杆的制备方法
CN104265047B (zh) * 2014-10-21 2016-07-06 合肥海银杆塔有限公司 玻璃纤维缠绕增强聚氨酯树脂锥形电杆的制备方法
JP6438832B2 (ja) * 2015-04-22 2018-12-19 Jxtgエネルギー株式会社 パイプ成形体
CN105696836A (zh) * 2016-01-26 2016-06-22 云浮市欣粤电力器材有限公司 超高强度复合材料电杆
CN106194928A (zh) * 2016-08-11 2016-12-07 宁波健信核磁技术有限公司 一种连接机构
CN106285159B (zh) * 2016-08-30 2019-03-12 北京玻钢院复合材料有限公司 复合材料电杆及其制备方法
CN107916820B (zh) * 2017-10-27 2020-03-27 北京国网富达科技发展有限责任公司 一种输电线路用复合材料杆塔及其制备方法
CN108036123A (zh) * 2018-01-03 2018-05-15 江苏澳盛复合材料科技有限公司 一种碳纤维玻璃纤维混杂复合管及其制备方法
CN113073893A (zh) * 2020-03-19 2021-07-06 国网浙江省电力有限公司宁波供电公司 一种碳纤维复合材料抢修电杆及其制备方法
CN111537321B (zh) * 2020-04-24 2023-01-06 哈尔滨工业大学 制作定向纤维增强复合材料测试试样的模具及使用方法
CN112721130A (zh) * 2020-12-07 2021-04-30 宁波市电力设计院有限公司 轻型复合材料杆塔的制造工艺、芯模及轻型复合材料杆塔
CN112564351B (zh) * 2020-12-11 2023-12-05 陕西航空电气有限责任公司 一种高速电机用复合材料套筒及其制备方法
CN112727223A (zh) * 2021-01-05 2021-04-30 王茂良 一种易于拼装的复合材料锥形管
CN114953514A (zh) * 2021-02-19 2022-08-30 河北雷萨重型工程机械有限责任公司 起重机及其副起重臂、副起重臂的臂筒及其制作方法
CN113250517B (zh) * 2021-06-30 2022-08-16 国网河南省电力公司内乡县供电公司 电力杆塔复合结构及其制备方法
CN113954386A (zh) * 2021-10-14 2022-01-21 亨弗劳恩(江苏)复合材料研发有限公司 一种复合材料部件及其制备装置和方法

Also Published As

Publication number Publication date
CN103061565A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN103061565B (zh) 玻璃纤维与碳纤维混杂复合材料锥形管的制备方法
CN201142240Y (zh) 复合加强芯架空导线
CN101707077B (zh) 制造架空输电铝绞线用智能复合芯
CN203559612U (zh) 一种复合材料输电杆塔
CN101727998A (zh) 增强电缆芯及其制造方法
CN104278875B (zh) 一种竹节仿生形复合材料输电杆塔
CN201348902Y (zh) 复合芯及复合芯导线
CN113250517A (zh) 电力杆塔复合结构及其制备方法
CN104005317A (zh) 一种可用于路面融雪化冰的导电加热复合筋及其制备方法
CN104517667A (zh) 一种能实时测温的铝基碳纤维复合材料芯导线
CN205645376U (zh) 一种高性能碳纤维复合加强芯铝型线架空电缆
CN201036070Y (zh) 复合材料型线架空导线
CN203260334U (zh) 一种复合芯圆铝绞线架空绝缘电缆
CN103015789B (zh) 复合横担内绝缘管的铺层结构
CN104900320B (zh) 一种智慧能源用超柔性绞合型碳纤维复合芯及其制作方法
CN103390459A (zh) 一种三角形碳纤维复合芯光电复合架空导线
CN101814338A (zh) 复合材料加强导线及其制造方法
CN203260386U (zh) 一种绳索式复合芯
CN201348903Y (zh) 复合芯及导线
CN210245123U (zh) 碳纤维复合芯软型铝绞线
CN202615883U (zh) 一种碳纤维复合芯电缆
CN203260364U (zh) 花形碳纤维复合芯光电复合导线
CN204760087U (zh) 一种智慧能源用超柔性绞合型碳纤维复合芯
CN103390461A (zh) 一种低舞动碳纤维复合芯光电复合架空导线
CN107342124A (zh) 一种轻质高强环保电缆及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20210125

CF01 Termination of patent right due to non-payment of annual fee