CN103054574B - Frequency identification method on basis of multivariate synchronous indexes - Google Patents

Frequency identification method on basis of multivariate synchronous indexes Download PDF

Info

Publication number
CN103054574B
CN103054574B CN201310003618.9A CN201310003618A CN103054574B CN 103054574 B CN103054574 B CN 103054574B CN 201310003618 A CN201310003618 A CN 201310003618A CN 103054574 B CN103054574 B CN 103054574B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310003618.9A
Other languages
Chinese (zh)
Other versions
CN103054574A (en
Inventor
张杨松
徐鹏
尧德中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310003618.9A priority Critical patent/CN103054574B/en
Publication of CN103054574A publication Critical patent/CN103054574A/en
Application granted granted Critical
Publication of CN103054574B publication Critical patent/CN103054574B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The invention discloses a frequency identification method on the basis of multivariate synchronous indexes. The frequency identification method particularly includes constructing a reference signal corresponding to each frequency according to a frequency of an SSVEP-BCI (steady state visual evoked potential-brain computer interface) system; respectively computing the synchronization indexes among multi-order brain electrical signals and the various reference signals; and finding out the reference signal with the maximum synchronization index with the brain electrical signals, and outputting the frequency corresponding to the reference signal as an identified frequency. The synchronous indexes among the brain electrical signals and the different reference signals constructed on the basis of stimulation on the system are computed, the reference signal with the maximum synchronization index with the brain electrical signals is found out according to magnitudes of the synchronization indexes, and the frequency of the reference signal is outputted as an identification result. Compared with a multi-order frequency detection method mainly used at preset, the frequency identification method is high in accuracy and optimal in performance under the conditions that electrode order number is low and data are short.

Description

Frequency identification method based on multivariate synchronous index
Technical Field
The invention belongs to the technical field of biomedical information, and particularly relates to a frequency identification method in a Brain-Computer Interface (BCI) system.
Background
The brain-computer interface can provide a direct online communication channel for human or animals and the external environment, and has important application value in nerve engineering and neuroscience because of not depending on the traditional peripheral nerve and muscle output channel.
When exposed to an external visual stimulus of constant frequency greater than 4Hz, the brain will produce a response equal to the frequency of the external stimulus or its harmonic frequencies, i.e., Regan D (1989) Human brain anatomical: exposed potentials and exposed magnetic fields in science and medicine: Elsevier. Since SSVEP is an endogenous response of the brain, such signals have high signal-to-noise ratio, strong robustness and less training, so that the SSVEP-based brain-computer interface (SSVEP-BCI) has high information transmission rate, and is an important direction for BCI online system research.
The SSVEP-BCI system comprises a signal acquisition module, a signal processing module, an application interface module and the like. The performance of the system depends mainly on the efficiency of the signal processing module. Therefore, fast and accurate signal processing methods are crucial. The amplitude, distribution, and available stimulation frequency of the SSVEPs of the different subjects vary greatly. When the current SSVEP-BCI system is used, parameter optimization such as electrode selection, data segment length and the like is required to obtain better performance, and particularly when the system uses a traditional signal processing method, the optimization processes are required.
In recent years, frequency identification methods based on multi-conductor signal detection have been proposed, which extract more useful information by combining and optimizing multi-conductor brain electrical signals, thereby improving identification accuracy and reducing optimization processes such as electrode selection. The Minimum Energy Combination (MEC) and the typical correlation analysis (CCA) are two frequency identification methods for detecting the multi-pilot signals used in the SSVEP-BCI system.
The detection method based on the minimum energy method is characterized in that the original multi-lead signals are projected by searching a spatial filter to obtain low-dimensional combined signals, so that noise signals and other artifact signals are weakened. The method can obtain high accuracy, does not need to carry out parameter optimization on pre-experimental data, and is successfully applied to an actual SSVEP-BCI system.
The canonical correlation analysis is a multivariate statistical method that maximizes the correlation between the multi-lead brain signal and the reference signal by finding a pair of linear projection vectors. The method has higher accuracy and robustness than the detection method based on the minimum energy method.
The algorithm with high speed and high accuracy is very important for the actual SSVEP-BCI system and is a core component for realizing a high-performance system. The multi-pilot detection algorithm has higher robustness on noise by optimally combining multi-pilot signals, so that the performance of the algorithm is improved; meanwhile, the algorithm almost does not need parameter optimization, thereby bringing more convenience in the actual implementation process. However, the SSVEP-BCI system with a high information transmission rate has a high requirement on the identification algorithm, and from the experimental result, the accuracy and performance obtained by the two methods (MEC and CCA) need to be further improved, so as to improve the performance of the SSVEP-BCI system.
Disclosure of Invention
The invention aims to solve the problems of the existing multi-derivative frequency detection method and provides a frequency identification method based on a multivariable synchronization index.
The technical scheme of the invention is as follows: a frequency identification method based on multivariate synchronous indexes specifically comprises the following steps:
step 1: according to the stimulation frequency f used by the SSVEP-BCI system1,f2,…,fKConstructing a reference signal R corresponding to each frequencyf1,Rf2,…,Rfk
Step 2: respectively calculating the synchronous index S between the multi-lead brain electrical signal and each reference signal1,S2,…,SK
And step 3: and finding out the reference signal with the maximum synchronous index with the electroencephalogram signal, and outputting the frequency corresponding to the reference signal as the identified frequency.
Further, the configuration in step 1 corresponds to the frequency fiThe reference signal of (c) can be calculated as follows:
<math> <mrow> <msub> <mi>R</mi> <mi>fi</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mfrac> <mn>2</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mfrac> <mi>M</mi> <mi>Fs</mi> </mfrac> </mrow> </math>
Fsfor the sampling rate, M is the number of samples.
Further, the specific process of calculating the synchronization index in step 2 is as follows:
and (3) setting the multi-lead brain electrical signal matrix as X and the reference signal as Y, calculating a joint correlation matrix of the X and the Y:
C = C 11 C 12 C 21 C 22
wherein,
C 11 = 1 M XX T
C 22 = 1 M YY T
C 12 = C 21 = 1 M XY T
the following linear transformation is performed:
U = C 11 - 1 2 0 0 C 2 2 - 1 2
obtaining:
<math> <mrow> <mi>R</mi> <mo>=</mo> <msup> <mi>UCU</mi> <mi>T</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mo>&times;</mo> <mi>N</mi> </mrow> </msub> </mtd> <mtd> <msup> <mrow> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>C</mi> <mn>12</mn> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mrow> <mi>C</mi> <mn>21</mn> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&times;</mo> <msub> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>h</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, IN×NIs an N-dimensional unit square matrix,is 2NhDimension unit matrix, N is number of electrodes, NhIs the number of reference signal harmonics.
Decomposing the matrix R into eigenvalues to obtain the eigenvalue lambda of the matrix R12,…,λPAnd carrying out standardization:
<math> <mrow> <msubsup> <mi>&lambda;</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mi>tr</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein, P is N +2Nh
Finally, the synchronization index between the multi-lead electroencephalogram signal and the reference signal can be calculated as:
the invention has the beneficial effects that: the invention provides a frequency identification method based on Multivariate Synchronization Index (MSI). in the method, the synchronization index of two multidimensional signals is used as a classification characteristic to carry out frequency identification on electroencephalogram signals in an SSVEP-BCI system. Compared with the existing main multi-pilot frequency detection method, the method has higher accuracy; and has the optimal performance under the conditions of less electrode derivative and shorter data length. The method of the invention can effectively accelerate the response speed of the SSVEP-BCI system and improve the performance of the system.
Drawings
Fig. 1 is a schematic flow diagram of a Multivariate Synchronization Index (MSI) based frequency identification method.
FIG. 2 is a schematic diagram showing the comparison result of the simulation experiment between the method of the present invention and the two conventional methods.
FIG. 3 is a schematic diagram showing the comparison result of the real electroencephalogram experiment between the method of the present invention and the two existing methods.
Detailed Description
The invention is further described with reference to the following figures and specific embodiments.
There are many methods for calculating signal synchronism, and the SSVEP-BCI system has a high requirement on the operation efficiency of the recognition algorithm (the algorithm must give the recognition result of the current electroencephalogram signal in less than 1 second). Therefore, in a Multivariate Synchronization Index (MSI) based frequency identification framework, an efficient frequency identification method is given as follows.
Suppose the EEG signal is X (NxM dimensional matrix) and the reference signal is Y (2N)hX M dimensional matrix). Here, N is the number of electrodes, M is the number of samples, NhIs the number of reference signal harmonics. Not in general, X and Y have been normalized to have zero mean unit variance. The implementation process of the frequency detection method based on the multivariate synchronous index is discussed in detail below:
first, a joint correlation matrix of X and Y is calculated
C = C 11 C 12 C 21 C 22 - - - ( 1 )
Wherein,
C 11 = 1 M XX T - - - ( 2 )
C 22 = 1 M YY T - - - ( 3 )
C 12 = C 21 = 1 M XY T - - - ( 4 )
c contains X, Y autocorrelation and X and Y cross-correlations, and in order to reduce the effect of autocorrelation on the synchronization index, a linear transformation is performed as follows:
U = C 11 - 1 2 0 0 C 2 2 - 1 2 - - - ( 5 )
then the following results are obtained:
<math> <mrow> <mi>R</mi> <mo>=</mo> <msup> <mi>UCU</mi> <mi>T</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mo>&times;</mo> <mi>N</mi> </mrow> </msub> </mtd> <mtd> <msup> <mrow> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>C</mi> <mn>12</mn> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mrow> <mi>C</mi> <mn>21</mn> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&times;</mo> <msub> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>h</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
IN×Nis an N-dimensional unit square matrix,
Figure BDA00002707373000047
is 2NhDimension unit square matrix.
Decomposing the matrix R into eigenvalues to obtain the eigenvalue lambda of the matrix R12,…,λPAnd is standardized
<math> <mrow> <msubsup> <mi>&lambda;</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mi>tr</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Here P = N +2Nh
Finally, the synchronization index between the electroencephalogram signal and the reference signal can be calculated as:
<math> <mrow> <mi>S</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msubsup> <mi>&lambda;</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mi>log</mi> <mrow> <mo>(</mo> <msubsup> <mi>&lambda;</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
suppose that the SSVEP-BCI system has K stimulation frequencies f1,f2,…,fKThen corresponds to the frequency fiThe reference signal of (c) can be calculated as follows:
<math> <mrow> <msub> <mi>R</mi> <mi>fi</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mfrac> <mn>2</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mfrac> <mi>M</mi> <mi>Fs</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
Fsis the sampling rate.
According to (1) - (9), the synchronization indexes of all reference signals and electroencephalogram signals can be calculated, and then K synchronization indexes S are obtained1,S2,…,SKThe final frequency identification is performed by the following formula:
<math> <mrow> <mi>T</mi> <mo>=</mo> <munder> <mi>max</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>K</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mtext>11</mtext> <mo>)</mo> </mrow> </mrow> </math>
namely, the frequency corresponding to the current electroencephalogram signal is the frequency of the reference signal with the maximum synchronization index with the electroencephalogram signal.
In order to more specifically explain the frequency identification method of the SSVEP-BCI system, the invention is further explained with reference to FIG. 1.
As shown in FIG. 1, the multi-lead brain electrical signal X is respectively associated with K reference signals Rf1,Rf2,…,RfkAs input to the method of the invention, K synchronization indexes S are obtained1,S2,…,SKThen, the maximum value of the K synchronization indexes is obtained. From this maximum value, the corresponding reference signal is found, the frequency used for the reference signal being the output result of the inventive method.
In order to verify the feasibility and the effect of the method, 3 groups of frequencies are adopted for simulation verification, and meanwhile, the method is compared with the existing minimum energy Method (MEC) based detection method and the typical correlation analysis (CCA) based method. The frequencies used were as follows:
A)27Hz,29Hz,31Hz,33Hz,35Hz,37Hz,39Hz,41Hz and43Hz;
B)8Hz,9Hz,10Hz,11Hz,12Hz,13Hz,14Hz,15Hz;
C)6.7Hz,7.5Hz,8.6Hz,10Hz,12Hz,15Hz;
4 sinusoidal signals at each frequency are generated to simulate 4 electroencephalogram signals, the length of the signals is 10s, and the sampling rate is 250 Hz. Adding Gaussian white noise to each lead signal according to a certain signal-to-noise ratio to simulate a real electroencephalogram signal polluted by noise; then, carrying out frequency identification on the signals under each group of frequencies to obtain identification accuracy, wherein the length of the signals for frequency identification is 1 s; and repeating the operation for 50 times for each group of frequency, and taking the average identification accuracy of 50 results as an algorithm performance evaluation index under the signal-to-noise ratio ranging from-7 db to-20 db.
The signal-to-noise ratio is defined as follows:
<math> <mrow> <mi>SNR</mi> <mo>=</mo> <mn>10</mn> <mi>log</mi> <mfrac> <msub> <mi>P</mi> <mi>signal</mi> </msub> <msub> <mi>P</mi> <mi>noise</mi> </msub> </mfrac> <mo>=</mo> <mn>10</mn> <mi>log</mi> <mfrac> <mrow> <mo>(</mo> <mi>A</mi> <mo>/</mo> <msqrt> <mn>2</mn> </msqrt> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
Psignalis the energy of the signal, PnoiseFor noise energy, A sine signal amplitude, σ2Is the noise variance.
The specific simulation results are shown in fig. 2, wherein (a) the frequencies used are 27Hz,29Hz,31Hz,33Hz,35Hz,37Hz,39Hz,41Hz and43 Hz; (b) the frequencies used are 8Hz,9Hz,10Hz,11Hz,12Hz,13Hz,14Hz,15 Hz; (c) the frequencies used were 6.7Hz,7.5Hz,8.6Hz,10Hz,12Hz,15 Hz.
Denotes significant difference in MSI and CCA + denotes significant difference in MSI and MEC under this condition, with p <0.05 using paired T test.
From the simulation results, the results of the inventive method are the best. For the first group of high-frequency sets and the second group of low-frequency sets, when the signal-to-noise ratio is greater than-12 db, the method provided by the invention has a significant difference compared with the two existing methods, and the method provided by the invention has stronger robustness on noise. In the third set of frequencies, all algorithms cannot achieve 100% accuracy because of the frequency components with harmonic relations, but the method of the present invention always remains significantly different from the two existing methods.
In addition, the validity of the algorithm is further verified by adopting the real electroencephalogram signals. In the experiment, an 8-lead electroencephalogram acquisition system with 4 frequencies of 7.5Hz,8.6Hz,10Hz and 12Hz is adopted to acquire the 30s electroencephalogram signals to be tested under each frequency. 11 subjects (21-28 years) were enrolled in the validation trial and the results are shown in FIG. 3. In the figure, (a) 4-lead brain, (b) 6-lead brain, and (c) 8-lead brain. Denotes significant difference in MSI and CCA + denotes significant difference in MSI and MEC under this condition, with p <0.05 using paired T test.
From the results, the method of the invention has better results than the two existing methods, and particularly under the condition that only 4 brain electrical signals are used and the signal length is 1s, the method of the invention has significant difference with the two existing methods. The electrode number is small, and more convenience can be brought to the application of the SSVEP-BCI system. More importantly, the shorter the signal length for frequency identification, the higher the accuracy of the algorithm can reduce the response time of the system and improve the response speed of the system, so that the method has greater potential to improve the performance of the SSVEP-BCI system.
In general, the simulation experiment and the real experiment result verify the effectiveness and feasibility of the scheme of the invention.
It will be appreciated by those of ordinary skill in the art that the embodiments described herein are intended to assist the reader in understanding the principles of the invention and are to be construed as being without limitation to such specifically recited embodiments and examples. Those skilled in the art can make various other specific changes and combinations based on the teachings of the present invention without departing from the spirit of the invention, and these changes and combinations are within the scope of the invention.

Claims (3)

1. A frequency identification method based on multivariate synchronous indexes specifically comprises the following steps:
step 1: according to the stimulation frequency f used by the SSVEP-BCI system1,f2,…,fKConstructing a reference signal R corresponding to each frequencyf1,Rf2,…,Rfk
Step 2: respectively calculating the synchronous index S between the multi-lead brain electrical signal and each reference signal1,S2,…,SK
And step 3: and finding out the reference signal with the maximum synchronous index with the electroencephalogram signal, and outputting the frequency corresponding to the reference signal as the identified frequency.
2. The frequency identification method according to claim 1, wherein the construction in step 1 corresponds to a frequency fiThe reference signal of (c) can be calculated as follows:
<math> <mrow> <msub> <mi>R</mi> <mi>fi</mi> </msub> <mo>=</mo> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>h</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mfrac> <mn>2</mn> <mi>Fs</mi> </mfrac> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mfrac> <mi>M</mi> <mi>Fs</mi> </mfrac> </mrow> </math>
Fsfor the sampling rate, M is the number of samples, NhIs the number of reference signal harmonics.
3. The frequency identification method according to claim 2, wherein the specific process of calculating the synchronization index in step 2 is as follows:
and (3) setting a multi-lead electroencephalogram signal matrix as X and a reference signal matrix as Y, and calculating a joint correlation matrix of the X and the Y:
C = C 11 C 12 C 21 C 22
wherein,
C 11 = 1 M XX T C 22 = 1 M YY T C 12 = C 21 = 1 M XY T
the following linear transformation is performed:
U = C 11 - 1 2 0 0 C 22 - 1 2
obtaining:
<math> <mrow> <mi>R</mi> <mo>=</mo> <msup> <mi>UCU</mi> <mi>T</mi> </msup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mo>&times;</mo> <mi>N</mi> </mrow> </msub> </mtd> <mtd> <msup> <mrow> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>C</mi> <mn>12</mn> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mi>C</mi> <mn>22</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>C</mi> <mn>21</mn> <msup> <mrow> <mi>C</mi> <mn>11</mn> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <msub> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>h</mi> </msub> <mo>&times;</mo> <msub> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>h</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
IN×Nis an N-dimensional square matrix and is characterized in that,
Figure FDA0000485360130000016
is 2NhDimensional matrix, N is number of electrodes;
decomposing the matrix R into eigenvalues to obtain the eigenvalue lambda of the matrix R12,…,λPAnd carrying out standardization:
<math> <mrow> <msubsup> <mi>&lambda;</mi> <mi>i</mi> <mo>'</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mi>tr</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein, P = N +2Nh
Finally, the synchronous index between the multi-lead electroencephalogram signal and the reference signal can be obtained:
CN201310003618.9A 2013-01-06 2013-01-06 Frequency identification method on basis of multivariate synchronous indexes Expired - Fee Related CN103054574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310003618.9A CN103054574B (en) 2013-01-06 2013-01-06 Frequency identification method on basis of multivariate synchronous indexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310003618.9A CN103054574B (en) 2013-01-06 2013-01-06 Frequency identification method on basis of multivariate synchronous indexes

Publications (2)

Publication Number Publication Date
CN103054574A CN103054574A (en) 2013-04-24
CN103054574B true CN103054574B (en) 2014-07-09

Family

ID=48097696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310003618.9A Expired - Fee Related CN103054574B (en) 2013-01-06 2013-01-06 Frequency identification method on basis of multivariate synchronous indexes

Country Status (1)

Country Link
CN (1) CN103054574B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956751A (en) * 2004-05-27 2007-05-02 于利奇研究中心有限公司 Method and device for decoupling and/or desynchronizing neural brain activity
CN101528121A (en) * 2006-06-06 2009-09-09 皮质动力学私人有限公司 Brain function monitoring and display system
CN102512164A (en) * 2011-11-23 2012-06-27 电子科技大学 Coding and identification method for multi-frequency arrangements of SSVEP-BCI (steady state visual evoked potential-brain computer interface) system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016722B2 (en) * 2000-11-20 2006-03-21 New York University System and method for fetal brain monitoring
GB2381586A (en) * 2001-11-01 2003-05-07 Oxford Biosignals Ltd Electro-Oculographic Sleep Monitoring
US8494625B2 (en) * 2002-02-04 2013-07-23 Cerephex Corporation Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance
US7089927B2 (en) * 2002-10-23 2006-08-15 New York University System and method for guidance of anesthesia, analgesia and amnesia
US20050203366A1 (en) * 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956751A (en) * 2004-05-27 2007-05-02 于利奇研究中心有限公司 Method and device for decoupling and/or desynchronizing neural brain activity
CN101528121A (en) * 2006-06-06 2009-09-09 皮质动力学私人有限公司 Brain function monitoring and display system
CN102512164A (en) * 2011-11-23 2012-06-27 电子科技大学 Coding and identification method for multi-frequency arrangements of SSVEP-BCI (steady state visual evoked potential-brain computer interface) system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
闫铮.基于左右视野双频率刺激的SSVEP脑-机接口.《清华大学学报(自然科学版)》.2009,第49卷(第12期),第2017-2020页. *

Also Published As

Publication number Publication date
CN103054574A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
CN107157477B (en) Electroencephalogram signal feature recognition system and method
CN109299751B (en) EMD data enhancement-based SSVEP electroencephalogram classification method of convolutional neural model
CN106709469B (en) Automatic sleep staging method based on electroencephalogram and myoelectricity multiple characteristics
Zhang et al. L1-regularized multiway canonical correlation analysis for SSVEP-based BCI
CN107361766B (en) Emotion electroencephalogram signal identification method based on EMD domain multi-dimensional information
Sharanreddy et al. EEG signal classification for epilepsy seizure detection using improved approximate entropy
CN110781945A (en) Electroencephalogram signal emotion recognition method and system integrating multiple features
CN107007278A (en) Sleep mode automatically based on multi-parameter Fusion Features method by stages
Mustafa et al. Comparison between KNN and ANN classification in brain balancing application via spectrogram image
CN109602417A (en) Sleep stage method and system based on random forest
He et al. Single channel blind source separation on the instantaneous mixed signal of multiple dynamic sources
CN110059564B (en) Feature extraction method based on power spectral density and cross-correlation entropy spectral density fusion
CN114533086A (en) Motor imagery electroencephalogram decoding method based on spatial domain characteristic time-frequency transformation
CN112137616B (en) Consciousness detection device for multi-sense brain-body combined stimulation
Dan et al. An identification system based on portable EEG acquisition equipment
CN112754502A (en) Automatic music switching method based on electroencephalogram signals
CN108470182B (en) Brain-computer interface method for enhancing and identifying asymmetric electroencephalogram characteristics
CN114343635A (en) Variable phase-splitting amplitude coupling-based emotion recognition method and device
CN115969392A (en) Cross-period brainprint recognition method based on tensor frequency space attention domain adaptive network
Jiang et al. Analytical comparison of two emotion classification models based on convolutional neural networks
Zhou et al. A smart universal single-channel blind source separation method and applications
CN103054574B (en) Frequency identification method on basis of multivariate synchronous indexes
Xie et al. Multi-domain feature extraction from surface EMG signals using nonnegative tensor factorization
CN106344011B (en) A kind of evoked brain potential method for extracting signal based on factorial analysis
Bo et al. Music-evoked emotion classification using EEG correlation-based information

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709

Termination date: 20160106

CF01 Termination of patent right due to non-payment of annual fee