CN103052129A - 一种无线多跳中继网络中节能路由及功率分配方法 - Google Patents

一种无线多跳中继网络中节能路由及功率分配方法 Download PDF

Info

Publication number
CN103052129A
CN103052129A CN2013100080726A CN201310008072A CN103052129A CN 103052129 A CN103052129 A CN 103052129A CN 2013100080726 A CN2013100080726 A CN 2013100080726A CN 201310008072 A CN201310008072 A CN 201310008072A CN 103052129 A CN103052129 A CN 103052129A
Authority
CN
China
Prior art keywords
route
transmitting power
link
node
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100080726A
Other languages
English (en)
Other versions
CN103052129B (zh
Inventor
魏翼飞
王雅莉
宋梅
马跃
王英赫
刘宁宁
雷旭
满毅
张勇
王莉
滕颖蕾
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201310008072.6A priority Critical patent/CN103052129B/zh
Publication of CN103052129A publication Critical patent/CN103052129A/zh
Application granted granted Critical
Publication of CN103052129B publication Critical patent/CN103052129B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Abstract

本发明公开了网络通信技术领域中的一种无线多跳中继网络中节能路由及功率分配方法。首先随机建立初始化路由,对所述初始化路由建立过程中的信息素进行更新;其次,在此基础上通过设定方法建立路由,对路由中的信息素更新;根据路由中的信息素得到最优路由,更新设定方法的指定参数;重复上述步骤设定次;最后得到的最优路由就为最终的路由。本发明综合考虑了网络节点剩余能量、有限的节点发射功率、节点间干扰及链路传输速率,全面优化网络吞吐量及能量使用效率,使得该路由算法更能适应多变的无线多跳中继网络环境,同时达到网络节能的目的。

Description

一种无线多跳中继网络中节能路由及功率分配方法
技术领域
本发明涉及网络通信技术领域,特别涉及一种无线多跳中继网络中节能路由及功率分配方法。
背景技术
随着无线多跳中继网络的飞速发展,其应用范围越来越广。无线多跳中继网络所指的是一种特定的网络结构,它具有分布式控制、自组织、无中心的特点。并且由于无线多跳中继网络节点的传输范围有限,源节点在向目的节点发送数据时需要其他中继节点的辅助,一直以来,无线多跳中继网络研究的重点和难点主要存在于路由协议的设计上,也是无线多跳中继网络的设计重点。经过多年的研究,无线多跳中继网络路由协议得到了很大的发展,应用于各种特定场景的协议也在不断的被提出和改善。
当前,无线多跳中继网络的路由协议的主要设计目标是:满足应用需求的同时尽量降低网络开销,取得资源利用的整体有效性。此类问题属于NP难问题(多项式复杂程度的非确定性问题),传统的路由算法很难解决,可采用启发式算法来处理,而蚁群算法不依赖于具体问题的数学描述,具有很强的全局优化能力和本质上的并行性,是解决NP难问题的有效方法。
蚁群算法最初是通过对蚂蚁群落的观察,受蚁群行为特征启发而得出的。蚂蚁觅食过程通过个体之间的信息交流与相互协议最终找到从蚁穴到食物源的最短路径,与无线网络路由问题有着惊人的相似之处。因此,结合无线多跳中继网络环境进行引申,将蚂蚁觅食过程中的“蚁穴”和“食物源”当作网络中的源节点和目的节点,将蚂蚁的行为当作网络中的路由建立,蚁群算法中有一个蚂蚁决策表,它包括所有节点选择下一跳中继节点的转移概率和关于节点的本地信息,蚂蚁使用这个表来指导其搜索朝着搜索空间中最有吸引力的区域移动,这正是网络通信中路由表的形成过程。因此,蚁群算法能够应用于无线网络的路由,通过信息素的释放寻找并维护从源节点到达目的节点的最优路由,按照信息素的挥发算法不断对各中继节点的信息素值进行更新,以适应网络动态变化的需要。目前已有许多基于蚁群优化的路由算法被提出,如ARA,ARAMA,AntHocNet等。
目前,网络中出现的典型路由协议其传统的实现机制是在源和宿节点间选择一条固定的路径,在整个传输过程中均使用这条路径传输,直至此次传输完毕。在链路状况比较好的时候,传统的路由机制能够正常工作。但是,无线信道的不稳定性经常会导致节点传输范围的瞬间变化,并且节点的移动或是开关机也会导致下一跳节点不可达,就会导致频繁的MAC层的确认、重传现象,进而引起路由层路由维护过程或路由更新过程,在无线信道质量变差或者节点间相互距离正好处于临界覆盖范围的情况下这种现象更为严重。这种链路的不可靠性和不稳定性会导致很大的路由维护开销,还会造成上层业务出现很大的时延或大量的丢包现象。
此外,随着人们对蚁群算法等启发式算法的深入研究,蚁群算法应用于解决路由问题也越来越多。但是,现有基于蚁群算法的路由协议仍存在一些缺点:第一,当前使用蚁群算法进行路由的主要考虑因素仍是路由跳数,少数路由算法考虑节点剩余能量、节点发射功率、节点间传输干扰和链路传输速率;第二,现有蚁群算法自身存在收敛速度慢和易陷入局部最优解的缺点,降低了路由算法的性能;第三,由于网络层和MAC层是完全脱离的,网络层无法感知物理层链路的情况,不能在选路时候考虑利用链路的效率、能量及干扰等因素。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何提供一种路由方法,解决无线多跳中继网络存在的网络吞吐量低、功率动态分配和能量使用效率低的问题。
(二)技术方案
为解决上述技术问题,本发明提供了一种无线多跳中继网络中节能路由及功率分配方法,其特征是,该方法包括以下步骤:
S1:随机建立初始化路由,对所述初始化路由建立过程中的信息素进行更新,进入步骤S2;
S2:通过设定方法建立路由,对所述路由中的信息素更新;
S3:重复执行步骤S2第一设定次数后进入步骤S4;
S4:根据所述路由中的信息素得到最优路由,更新所述设定方法的指定参数;若指定参数的更新次数小于第二设定次数,返回步骤S2;否则,此时的最优路由就为最终的路由。
所述信息素通过节点发射功率、链路速率和路径信息求得。
对所述随机路由中的信息素进行更新具体为:
S11:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S12:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S13:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
所述步骤S2具体为:
S21:通过设定方法建立路由;
S22:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S23:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S24:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
根据所述路由中的信息素得到最优路由,更新所述设定方法的指定参数具体为:
S41:根据所述节点发射功率、链路速率和路径信息计算每条路径的适应度函数值,得到最大的适应度函数值对应的最优路由和该最优路由的节点发射功率和链路速率;
S42:通过粒子群算法更新所述设定方法的指定参数。
所述设定方法为蚁群算法。
(三)有益效果
本发明通过贪婪算法对所述节点发射功率和链路速率进行分配得到链路;通过发射功率门限和干扰门限条件对链路分配节点发射功率和链路速率;根据链路分配节点发射功率和链路速率对所述路径信息进行更新;根据节点发射功率、链路速率和路径信息计算每条路径的总传输速率,得到最大的总传输速率对应的最优路由。本发明综合考虑了网络节点剩余能量、有限的节点发射功率、节点间干扰及链路传输速率等因素,以最大化全局路由传输速率为优化目标,随着网络环境变化动态地建立路由和调整节点发射功率,从而提高了网络吞吐量与能量使用效率,使得该路由方法更能适应多变的无线多跳中继网路环境,同时达到网络节能的目的。
附图说明
图1是本发明流程图;
图2是网络拓扑结构图;
图3是本发明的实施例流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
为了解决无线多跳中继网络存在的网络吞吐量低、能量使用效率低的问题。本发明提出了一种路由建立与功率分配的联合优化方法。
图1是本发明的流程图,本发明方法包括以下步骤:
S1:随机建立初始化路由,对所述初始化路由建立过程中的信息素进行更新,进入步骤S2;信息素通过节点发射功率、链路速率和路径信息求得。
S11:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S12:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S13:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
S2:通过设定方法建立路由,对所述路由中的信息素更新;
S21:通过设定方法建立路由;
S22:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S23:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S24:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
S3:重复执行步骤S2第一设定次数后进入步骤S4;
S4:根据所述路由中的信息素得到最优路由,更新所述设定方法的指定参数;若指定参数的更新次数小于第二设定次数,返回步骤S2;否则,此时的最优路由就为最终的路由。
S41:根据所述节点发射功率、链路速率和路径信息计算每条路径的适应度函数值,得到最大的适应度函数值对应的最优路由和该最优路由的节点发射功率和链路速率;
S42:通过粒子群算法更新所述设定方法的指定参数。
以下通过一个实施例对本发明进行说明:
由于实际约束条件以及目标函数的限制,无线多跳中继网络路由和功率控制联合优化问题是组合优化问题,无法找到复杂度有效的最优解法。为此,本实施例使用混合蚁群优化算法以及贪婪算法联合求解这类路由建立和功率控制问题。该算法分为两大部分:第一部分,针对蚁群算法中影响算法性能的关键参数使用粒子群算法进行动态调整,通过混合蚁群算法实现网络路由;第二部分,路由搜索同时结合贪婪算法实现路径上各节点发射功率控制。
1.系统模型
本发明主要针对节点自身能量受限和节点间通信干扰约束的无线无线多跳中继网络路由与功率控制联合优化提出基于混合蚁群的优化算法,以达到优化网络吞吐量和提高能量使用效率的目的。网络拓扑结构如图2所示,在475m×400m范围内,随机分布N个节点,由邻居节点连接的可通信链路M条,形成一个网络拓扑结构。
本发明假设两两节点之间的信道符合平坦衰落模型,信道增益发射端可知。并考虑到无线网络环境中的多径衰落现象,设信道增益Gi,j满足瑞利分布。
设xi,j表示路径上两节点通信二进制标志,定义为:
基于混合蚁群优化的无线多跳中继网络路由及功率控制联合算法系统模型如下:
max = Σ i = 1 N Σ j = 1 j ≠ i N x i , j · log 2 ( 1 + SNR i , j ) - - - ( 2 )
s.t:
x i , j ∈ { 0,1 } , ∀ i , j ( i ≠ j ) - - - ( 3 )
Σ i = 1 N Σ j = 1 j ≠ i N x i , j · P i , j ≤ P th , ∀ i , j - - - ( 4 )
Σ i = 1 N Σ j = 1 j ≠ i N x i , j · I i , j ≤ I th , ∀ i , j - - - ( 5 )
SNR i , j ≥ SNR th , ∀ i , j ( i ≠ j ) - - - ( 6 )
其中:
Pth表示一条路径可以提供的最大总发射功率门限值;
Pi,j表示链路(i,j)上节点i向节点j发送数据包所用的发射功率;
SNRi,j是链路(i,j)上的信噪比;
SINRth表示可正确通信的最小信噪比门限值;
Ith表示某一条路径对其周围节点通信产生的总噪声功率门限值;
Ii,j表示链路(i,j)上节点i向节点j发送数据包所用的发射功率对周围节点通信产生的干扰。
链路(i,j)上的信噪比SNRi,j表示如下:
SNR i , j = G i , j P i , j ( N 0 + Σ u = 1 u ≠ i N G u , j P u , j ) ∀ i , j ( i ≠ j ) - - - ( 7 )
其中:
Pi,j为链路(i,j)上节点i的发射功率;
Pu,j为链路(u,j)上节点u的发射功率;
N0为加性高斯白噪声;
Gi,j为节点i与节点j之间的信道增益;
Gu,j为节点u与节点j之间的信道增益。
并假设分配给每条路径的总发射功率在0至Pth范围内,其中,Pth指系统可允许的最大路径总发射功率,Pth与初始时刻路径上各个节点发射功率总和成正比。
公式(3)所示的第一个约束条件表示路径上两节点通信二进制标志xi,j的取值范围;公式(4)所示的第二个约束条件表示一条路径可提供的最大总发射功率约束;公式(5)所示的第三个约束条件表示一条路径建立后对其周围节点通信产生的总噪声干扰功率约束;公式(6)所示的第四个约束条件表示每条收发链路上可正确接收时的最小信噪比约束。
2.基于混合蚁群优化的无线多跳中继网络路由及功率控制联合算法
(1)算法提出背景
可知蚁群算法擅长解决离散优化问题,而粒子群算法擅长连续问题的优化。贪婪算法(又称贪心算法)是指在对问题求解时,总是做出在当前看来是最好的选择。考虑蚁群算法中启发因子α、期望启发因子β、局部信息素挥发因子ρ和全局信息素挥发因子γ四个参数对蚁群算法求解系统最优解时在收敛速度及解的搜索范围等方面的影响程度;并且路由的性能和稳定性与节点剩余能量、节点发射功率、节点间通信干扰及网络拓扑结构有紧密的关系,因此将路由与参数调整、节点功率控制相结合提出基于混合蚁群优化的无线多跳中继网络路由及功率控制联合算法,使搜索到的路由满足网络约束条件。
(2)算法整体思想
基于混合蚁群优化的无线多跳中继网络路由及功率控制联合算法(Hybrid ant colony optimization algorithm,HACO)的基本思想:考虑节点剩余能量、节点传输干扰量、节点发射功率和链路传输速率四个因素采用粒子群优化算法来自适应地调整蚁群算法中的四个参数(α,β,ρ,γ),其中,α为启发因子、β为期望启发因子、ρ为局部信息素挥发因子、γ为全局信息素挥发因子。达到优化路由搜索算法的高效、快速和全面等性能;同时借鉴贪婪思想根据网络环境适当地对路径上的节点发射功率进行调整,功率控制的结果又反作用于路由的搜索,实现两者的均衡优化。
(3)算法具体实施方法
本发明考虑到基本蚁群算法的两点主要缺点:第一最初算法开始时,信息素的作用不明显,主要是因为各条路径上的信息素分配差异不明显,需经过较长的一段时间,较好路径上的信息素优势才会明显起来,从而最终收敛于较好解,但却使算法最初浪费了较长一段时间。第二,正反馈机制虽然能强化较好解,但却使算法容易出现停滞现象,即只取得了局部最优解就停止搜索,而未达到全局最优解。
因此,本发明主要围绕节点选择机制、信息素更新机制及参数调整三方面对基本蚁群算法进行改进,并且结合贪婪算法对节点发射功率进行控制,从而实现路由与功率控制的联合优化。
本发明中假设有K只蚂蚁,在选择模型中引入随机数q和动态参数q0,实现伪随机比率选择机制;在信息素更新机制中将原有的信息素更新方式分为局部信息素更新和全局信息素更新;在蚁群算法参数调节中采用粒子群算法根据节点剩余能量、节点传输干扰量、节点发射功率及链路传输速率实现参数调整。具体方案如下:
第一,改进型蚁群算法节点选择机制表示如下:
p i , j k ( t ) = [ τ i , j ( t ) ] α · [ η i , j ( t ) ] β Σ u ∈ A k [ τ i , u ( t ) ] α · [ η i , u ( t ) ] β , j ∈ A k 0 , others - - - ( 8 )
( i * , j * ) = arg max { [ τ i , j ( t ) ] α · [ η i , j ( t ) ] β , j ∈ A k } , q ≤ q 0 arg max { p i , j k ( t ) } , q > q 0 - - - ( 9 )
其中:
(i*,j*)为第k只蚂蚁在第i*个节点时选择下一跳为第j*个节点的通信组合;
Ak为蚂蚁k在第i个节点时可选择的下一跳节点集,为避免环路,将已经选作中间节点的节点从Ak集合中删除;
Figure BDA00002720609200103
为时刻t蚂蚁k在第i个节点时选择下一跳为第j个节点的概率;
α为信息素启发因子;
ηi,j(t)为时刻t任意收发节点间链路(i,j)上的期望启发函数,由它的定义可知:此参数与链路(i,j)上的传输速率Ri,j和节点j的剩余能量比率成正比;ηi,u(t)同理表示时刻t任意收发节点间链路(i,u)上的期望启发函数,其
中u∈Ak
τi,j(t)为时刻t任意收发节点间链路(i,j)上的信息素浓度,由它的定义可知:此参数与路径总的传输速率成正比,与路径消耗总的发射功率成反比;τi,u(t)同理表示时刻t任意收发节点间链路(i,u)上的信息素浓度,其中u∈Ak
β为期望启发式因子;
τ0为信息素初始值。
ηi,j(t)定义为:
ηi,j(t)=Q2·Ri,j+Q3·Erj    (10)
其中,Q2,Q3为正常数,
Figure BDA00002720609200111
Figure BDA00002720609200112
表示蚂蚁k在节点j处的剩余能量,表示节点j的初始最大能量;
Figure BDA00002720609200113
表示所有蚂蚁在节点j处的剩余能量
Figure BDA00002720609200114
归一化值之和;
Figure BDA00002720609200115
表示所有蚂蚁在通信链路(i,j)上的总比特数。可见Ri,j越大,Erj越大,则ηn,m越大,启发信息越大,适应度越高。
公式(9)中的参数q是一个在[0,1]区间满足均匀分布的随机数,q0是一个随着求解代数增加逐渐增大的动态参数,它的大小决定了利用先验知识与探索新组合之间的相对重要性。定义q0随迭代次数的增加而变化的公式为:
q0=E+(NC×F)NCmax    (11)
其中,NC为当前迭代次数,E,F为固定参数,根据试验经验,一般取E=0.2,F=0.7。此时,q0的取值范围是:[E,E+F]。通过这样的设置有利于消除参数q0对算法的影响。一般在开始阶段q0越小,则越有利于算法展开对新节点的探索,扩大算法的搜索空间,避免过早陷入局部最优。而在算法结束阶段q0越大,则有利于算法的全局收敛。因此,一般来说q0的变化范围越大,则算法的搜索范围越大。
第二,对基本蚁群算法的信息素更新机制进行改进。具体如下:
1)信息素局部更新。待蚂蚁k处于节点i并选择下一跳节点为j后,便对节点连接组合(i,j)上的信息素按如下公式进行局部更新:
τi,j(t)=(1-ρ)·τi,j(t)+ρ·τ0    (12)
其中:
ρ(0<ρ<1)为局部信息素蒸发系数;
τi,j(t)为时刻t收发链路(i,j)上的信息素浓度;
τ0为信息素初始值。
局部信息素更新机制可减少已生成的收发链路对其他蚂蚁的影响,从而增加对更多收发节点组合的探索。
2)信息素全局更新。待所有蚂蚁都完成了一次路径搜索后,在K只蚂蚁所代表的K种路由方案中选择使得系统信息传输速率最大的最优路由,并按照如下公式对最优解中的每个收发节点组合(i,j)上的信息素进行全局更新:
τi,j(t+1)=(1-γ)·τi,j(t)+γ·Δτi,j    (13)
其中,γ(0<γ<1)表示全局信息素蒸发系数;Δτi,j为构成最优解的各收发链路(i,j)上获得的信息素浓度增量,定义为:
&Delta;&tau; i , j = FIT best , if ( i , j ) &Element; G best 0 , ohters - - - ( 14 )
其中,Gbest表示全局最优收发节点组合(i,j)集合;FITbest表示找到最优解的蚂蚁所获得的适应度,定义为:
FIT best = max 1 &le; k &le; L fit ( k ) - - - ( 15 )
fit ( k ) = Q 4 &CenterDot; R sum k P sum k - - - ( 16 )
其中:
Q4为比例常数;
fit(k)表示蚂蚁k获得的适应度,它与蚂蚁k获得的总比特数 R sum k = &Sigma; i = 1 N &Sigma; j = 1 N x i , j &CenterDot; R i , j k 成正比;
表示第k条路径中链路(i,j)上的信息传输速率,与蚂蚁
k在路径上所耗发射功率成反比;
Figure BDA00002720609200136
表示第k条路径中链路(i,j)上节点i的发射功率。
可见蚂蚁所获得比特数越多,消耗的发射功率越少fit(k)的值越大,解的质量就越高。
第三,蚁群算法中参数调整的粒子群算法。具体如下:
在本发明中,定义蚁群算法中的启发因子α、期望启发因子β、局部信息素挥发因子ρ和全局信息素挥发因子γ为粒子i的位置集合xi的四个元素,如公式(17)所示。
xi={αiiii}    (17)
定义粒子群算法适应度函数为:
FIT _ PSO ( i ) = Q 1 &CenterDot; R sum i P sum i - - - ( 18 )
其中:
Q1为比例常数;
Figure BDA00002720609200141
为第i个粒子所代表的第i条从源节点到目的节点路径上各链路传输速率总和;
Figure BDA00002720609200142
为第i个粒子所代表的第i条从源节点到目的节点路径上所有中间节点发射功率总和。
蚁群算法中的四个参数调整通过个体极值
Figure BDA00002720609200143
全局极值和对应的速度实现,如公式(19)、(20)所示。
v id t + 1 = w v id t + c 1 r 1 ( pbest id t - x id t ) + c 2 r 2 ( gbest d t - x id t ) , &ForAll; d &Element; x i - - - ( 19 )
x id t + 1 = x id t + v id t + 1 - - - ( 20 )
其中:
w为惯性权重,用来描述粒子上一代速度对当前一代的影响;
c1为加速常量,用来调节粒子向自身最好位置方向飞行的步长;
c2为加速常量,用来调节粒子向全局最好位置方向飞行的步长;
r1、r2为符合均匀分布的两个相互独立的随机数。
第四,基于贪婪思想的功率控制算法。具体如下:
贪婪算法(又称贪心算法)是指在对问题求解时,总是做出在当前看来是最好的选择。
首先,由公式(2)和公式(7)可得:
P i , j k = ( 2 R i , j k - 1 ) &times; Noise j G i , j - - - ( 21 )
其中, Noise j = N 0 + &Sigma; u = 1 u &NotEqual; i N G u , j P u , j .
可以看出,每增加1比特,在收发链路(i,j)上的发送节点i的发射功率增加量按如下公式计算可得:
&Delta;P i , j k = [ ( 2 R i , j k + 1 - 1 ) - ( 2 R i , j k - 1 ) ] &times; Noise j G i , j = 2 R i , j k &times; Noise j G i , j - - - ( 22 )
于是,收发链路(i,j)上增加的发射功率对周围节点产生的噪声功率增加量为:
&Delta;I i , j k = &Sigma; r = 1 r &NotEqual; i N ( G i , r &CenterDot; &Delta;P i , j k ) - - - ( 23 )
其中:
Gi,r表示节点i与节点r之间的信道增益。
为了保证在每一次为收发链路分配比特数和发射功率时的选择是最佳的,并且满足无线多跳中继网络的资源分配约束条件,如公式(4)、公式(5)所示。在本发明的贪婪算法中定义了如下两类判决因子:
&alpha; i , j P = P th - P ~ &Delta;P i , j k , &ForAll; i , j
( 24 )
&alpha; i , j I = I th - I ~ &Delta;I i , j k , &ForAll; i , j
其中:
Figure BDA00002720609200156
为贪婪算法中定义的一个关于链路上节点通信发射功率代价的判决因子。其值越大,表明在链路(i,j)上增加传输相同大小的数据比其他链路所需的节点发射功率少,并且链路总的发射功率离功率约束值相差较大,说明此链路(i,j)性能较好,反之亦然。
Figure BDA00002720609200157
为贪婪算法中定义的一个关于链路上节点通信发射功率对周围节点产生干扰的代价判决因子。其值越大,表明在链路(i,j)上增加传输相同大小的数据比其他链路所需的节点发射功率少,即对周围节点通信产生干扰小,说明此链路(i,j)性能较好,反之亦然。
Figure BDA00002720609200161
表示已经分配给各个收发链路的发射功率总和,
Figure BDA00002720609200162
表示链路(i,j)上节点i现有的发射功率;
Figure BDA00002720609200163
表示已经分配给各个收发链路的发射功率对周围节点通信噪声干扰功率总和,
Figure BDA00002720609200164
表示链路(i,j)上节点i现有的发射功率对周围节点通信产生的干扰。
对于使用蚁群算法搜索到的路径,为了使系统的信息传输速率最大化,并且为了实现在增加相同比特数的情况下,选择发射功率增加量和噪声干扰最小值所在的链路。只要判断出每个收发链路(i,j)的
Figure BDA00002720609200165
Figure BDA00002720609200166
表示链路(i,j)上关于节点发射功率和链路节点发射功率对周围节点通信产生干扰两方面的判别因子中的较小者。说明选出某一条链路在节点发射功率和干扰两个方面特定较差的一个判决因子,用于后续算法的执行);然后求出所有收发链路中的最大者
Figure BDA00002720609200167
所对应的组合方式(i*,j*)即可,如公式(25)和公式(26)所示:
&alpha; i , j min = min ( &alpha; i , j P , &alpha; i , j I ) &ForAll; i , j - - - ( 25 )
( i * , j * ) = arg max ( &alpha; i , j min ) - - - ( 26 )
于是,假设为选出的组合(i*,j*)分配1比特,由公式(23)和公式(24)计算出当在选出的分配组合(i*,j*)中增加1比特时,发射功率增加量
Figure BDA00002720609200171
和噪声功率增加量ΔIi,j,并判断是否满足发射功率门限(Pth)和噪声功率门限(Ith)的约束条件,若满足则在此组合中分配1比特,继续执行下一次比特数分配与发射功率控制;否则不分配。
3.算法步骤
综上所述,基于混合蚁群算法的无线自组织网络功率可自适应分配的路由方法的步骤如下所述,算法流程图如图3所示。
(1)初始化
第一步:K只前向蚂蚁从源节点出发初始化随机选择当前所在节点的一个邻居中继节点作为其下一跳节点,在选择节点过程中前向蚂蚁记录经过中继节点的ID号和路径信息。前向蚂蚁到达目的节点后消失,从而建立K种初始化随机路由方案。
第二步:针对初始化随机路由方案,到达目的节点的前向蚂蚁立即消失,后向蚂蚁产生并携带着对应的前向蚂蚁的信息以及前向蚂蚁经过的所有中继节点的ID和路径信息。首先,后向蚂蚁使用贪婪算法根据记录的路径信息进行链路传输速率和发射功率分配,即按公式(22)和公式(23)计算每个分配方案中的每个链路每增加1比特,所增加的发射功率和对周围节点产生的噪声干扰。然后,按公式(24)、公式(25)和公式(26)找到最佳的(i*,j*)组合。并且判断是否满足发射功率门限和干扰门限等约束条件,若满足,则分配链路速率和功率;否则,不分配链路速率和功率。最后,待链路速率和发射功率分配结束,后向蚂蚁沿着对应于前向蚂蚁的路径反向返回,并根据记录的节点发射功率和链路传输速率对路径上各链路的信息素进行更新。
(2)主循环
第三步:对于每一代中的第k只前向蚂蚁,首先,使用混合蚁群算法进行路由建立,即按公式(8)和(9)选择下一跳中继节点,直到下一跳为目的节点,获得一种路由方案;然后,前向蚂蚁到达目的节点后立即消失,同时后向蚂蚁生成并携带着对应的前向蚂蚁的信息以及前向蚂蚁经过的所有中继节点的ID和路径信息,按照贪婪算法对路径上的每一条链路(i,j)进行比特数和发射功率分配;最后,后向蚂蚁沿着对应于前向蚂蚁的路径反向返回,并根据记录的节点发射功率和链路比特数对每个链路(i,j)上的信息素按照公式(13)进行局部更新。
第四步:循环执行第三步,直到K只前向和后向蚂蚁对都全部完成一次路由建立,即获得K种路由方案,然后执行第五步。
第五步:K只后向蚂蚁返回源节点后立即消失,决策蚂蚁产生并记录K只后向蚂蚁记录的节点发射功率和链路速率以及路径信息。首先,决策蚂蚁计算每一条路径上各链路总的传输速率
Figure BDA00002720609200181
并找出
Figure BDA00002720609200182
中的最大值Rmax,并记录Rmax对应的路由方案以及速率和发射功率的分配方案;然后,决策蚂蚁将当前速率最大值Rmax与前一代全局速率最优解Rbest比较,更新全局最优解。最后,决策蚂蚁使用粒子群算法按照公式(18)计算所有路由方案对应的粒子群算法适应度函数,并求出粒子的个体极值和全局极值;按照公式(19)和公式(20)对粒子的速度及位置进行更新,即对应于蚁群算法中的四个参数(α,β,ρ,γ)进行更新,以便下一代使用。
第六步:决策蚂蚁按记录的路径信息向目的节点运动,并按照公式(13)进行信息素的全局更新,完成启发信息(公式10)的更新以及其他参数的更新,以便下一代使用。到达目的节点后立即消失。
第七步:NC加1,进入下一代;跳转至第三步执行。
(3)结束
第八步:当NC>NCmax时,算法结束。
本发明通过贪婪算法对所述节点发射功率和链路速率进行分配得到链路;通过发射功率门限和干扰门限条件对链路分配节点发射功率和链路速率;根据链路分配节点发射功率和链路速率对所述路径信息进行更新;根据节点发射功率、链路速率和路径信息计算每条路径的总传输速率,得到最大的总传输速率对应的最优路由。本发明综合考虑了网络节点剩余能量、有限的节点发射功率、节点间干扰及链路传输速率,全面优化网络吞吐量及能量使用效率,使得该路由算法更能适应多变的无线多跳中继网络环境,同时达到网络节能的目的。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (6)

1.一种无线多跳中继网络中节能路由及功率分配方法,其特征是,该方法包括以下步骤:
S1:随机建立初始化路由,对所述初始化路由建立过程中的信息素进行更新,进入步骤S2;
S2:通过设定方法建立路由,对所述路由中的信息素更新;
S3:重复执行步骤S2第一设定次数后进入步骤S4;
S4:根据所述路由中的信息素得到最优路由,更新所述设定方法的指定参数;若指定参数的更新次数小于第二设定次数,返回步骤S2;否则,此时的最优路由就为最终的路由。
2.根据权利要求1所述的方法,其特征是,所述信息素通过节点发射功率、链路速率和路径信息求得。
3.根据权利要求2所述的方法,其特征是,对所述随机路由中的信息素进行更新具体为:
S11:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S12:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S13:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
4.根据权利要求3所述的方法,其特征是,所述步骤S2具体为:
S21:通过设定方法建立路由;
S22:通过贪婪算法对所述节点发射功率和链路速率进行分配;
S23:在所述节点发射功率和链路速率的基础上得到对应的链路;当所述链路满足发射功率门限和干扰门限时,对所述链路分配节点发射功率和链路速率;
S24:根据所述链路分配节点发射功率和链路速率对所述路径信息进行更新。
5.根据权利要求4所述的方法,其特征是,根据所述路由中的信息素得到最优路由,更新所述设定方法的指定参数具体为:
S41:根据所述节点发射功率、链路速率和路径信息计算每条路径的适应度函数值,得到最大的适应度函数值对应的最优路由和该最优路由的节点发射功率和链路速率;
S42:通过粒子群算法更新所述设定方法的指定参数。
6.根据权利要求1所述的方法,其特征是,所述设定方法为蚁群算法。
CN201310008072.6A 2013-01-09 2013-01-09 一种无线多跳中继网络中节能路由及功率分配方法 Expired - Fee Related CN103052129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310008072.6A CN103052129B (zh) 2013-01-09 2013-01-09 一种无线多跳中继网络中节能路由及功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310008072.6A CN103052129B (zh) 2013-01-09 2013-01-09 一种无线多跳中继网络中节能路由及功率分配方法

Publications (2)

Publication Number Publication Date
CN103052129A true CN103052129A (zh) 2013-04-17
CN103052129B CN103052129B (zh) 2015-04-08

Family

ID=48064596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310008072.6A Expired - Fee Related CN103052129B (zh) 2013-01-09 2013-01-09 一种无线多跳中继网络中节能路由及功率分配方法

Country Status (1)

Country Link
CN (1) CN103052129B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260206A (zh) * 2013-06-08 2013-08-21 南昌大学 一种基于影响度因子的混合动态无线路由有效搜索收敛方法
CN103647715A (zh) * 2013-11-21 2014-03-19 山东大学 基于网关信息素的MANET接入Internet自适应网关发现算法
CN104581864A (zh) * 2015-01-12 2015-04-29 西安交通大学 无线d2d网络中基于干扰感知的最小跳数的路由选择方法
CN104901886A (zh) * 2015-05-05 2015-09-09 三峡大学 考虑时延与流量均衡性的广域保护通信迂回通道重构算法
CN105979570A (zh) * 2016-06-30 2016-09-28 中国传媒大学 一种基于wlan的多跳桥接自动建链的方法
CN106101259A (zh) * 2016-07-11 2016-11-09 北京邮电大学 一种基于多跳通信的数据传输方法与装置
CN106304244A (zh) * 2016-08-15 2017-01-04 北京邮电大学 一种多跳蜂窝网络的低能耗传输方法与装置
CN106792972A (zh) * 2016-11-30 2017-05-31 暨南大学 一种满足实时数据带宽需求的时隙分配方法
CN107517467A (zh) * 2017-07-10 2017-12-26 清华大学 一种面向过程优化的多天线海域信息港协同资源调配方法
CN108124253A (zh) * 2017-11-14 2018-06-05 杭州电子科技大学 一种考虑安全的无线多跳网络路由选择和功率分配方法
CN108199873A (zh) * 2017-12-28 2018-06-22 中国联合网络通信集团有限公司 节点拓扑控制方法和节点拓扑控制系统
CN108769948A (zh) * 2018-05-11 2018-11-06 雷恩友力数据科技南京有限公司 一种异构车载网络的资源分配方法
CN109120523A (zh) * 2017-06-23 2019-01-01 阿里巴巴集团控股有限公司 多节点路径选择方法、装置、云平台资源调度方法及装置
CN109945881A (zh) * 2019-03-01 2019-06-28 北京航空航天大学 一种蚁群算法的移动机器人路径规划方法
CN112822098A (zh) * 2020-12-25 2021-05-18 河南卓正电子科技有限公司 物联网的路由选择方法、装置及存储介质
CN114615189A (zh) * 2022-03-10 2022-06-10 中国电子科技集团公司第十研究所 一种无线自组织网络分布式拓扑控制方法
US11528661B1 (en) 2021-05-28 2022-12-13 Qualcomm Incorporated Local re-routing in integrated access and backhaul deployments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969396A (zh) * 2010-09-02 2011-02-09 北京邮电大学 一种基于时延和带宽资源的中继选择方法
CN102223644A (zh) * 2011-05-05 2011-10-19 北京邮电大学 联合中继选择与功率分配的系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969396A (zh) * 2010-09-02 2011-02-09 北京邮电大学 一种基于时延和带宽资源的中继选择方法
CN102223644A (zh) * 2011-05-05 2011-10-19 北京邮电大学 联合中继选择与功率分配的系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIFEI WEI等: "Energy Saving Dynamic Relaying Scheme in Wireless Cooperative Networks Using Markov Decision Process", 《VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2012 IEEE 75TH》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260206A (zh) * 2013-06-08 2013-08-21 南昌大学 一种基于影响度因子的混合动态无线路由有效搜索收敛方法
CN103647715A (zh) * 2013-11-21 2014-03-19 山东大学 基于网关信息素的MANET接入Internet自适应网关发现算法
CN103647715B (zh) * 2013-11-21 2016-06-15 山东大学 基于网关信息素的MANET接入Internet自适应网关发现算法
CN104581864A (zh) * 2015-01-12 2015-04-29 西安交通大学 无线d2d网络中基于干扰感知的最小跳数的路由选择方法
CN104581864B (zh) * 2015-01-12 2017-08-15 西安交通大学 无线d2d网络中基于干扰感知的最小跳数的路由选择方法
CN104901886A (zh) * 2015-05-05 2015-09-09 三峡大学 考虑时延与流量均衡性的广域保护通信迂回通道重构算法
CN104901886B (zh) * 2015-05-05 2018-03-06 三峡大学 考虑时延与流量均衡性的广域保护通信迂回通道重构算法
CN105979570B (zh) * 2016-06-30 2019-02-15 中国传媒大学 一种基于wlan的多跳桥接自动建链的方法
CN105979570A (zh) * 2016-06-30 2016-09-28 中国传媒大学 一种基于wlan的多跳桥接自动建链的方法
CN106101259A (zh) * 2016-07-11 2016-11-09 北京邮电大学 一种基于多跳通信的数据传输方法与装置
CN106304244A (zh) * 2016-08-15 2017-01-04 北京邮电大学 一种多跳蜂窝网络的低能耗传输方法与装置
CN106304244B (zh) * 2016-08-15 2019-06-07 北京邮电大学 一种多跳蜂窝网络的低能耗传输方法与装置
CN106792972B (zh) * 2016-11-30 2019-06-18 暨南大学 一种满足实时数据带宽需求的时隙分配方法
CN106792972A (zh) * 2016-11-30 2017-05-31 暨南大学 一种满足实时数据带宽需求的时隙分配方法
CN109120523B (zh) * 2017-06-23 2021-12-14 阿里巴巴集团控股有限公司 多节点路径选择方法、装置、云平台资源调度方法及装置
CN109120523A (zh) * 2017-06-23 2019-01-01 阿里巴巴集团控股有限公司 多节点路径选择方法、装置、云平台资源调度方法及装置
CN107517467A (zh) * 2017-07-10 2017-12-26 清华大学 一种面向过程优化的多天线海域信息港协同资源调配方法
CN107517467B (zh) * 2017-07-10 2019-09-27 清华大学 一种面向过程优化的多天线海域信息港协同资源调配方法
CN108124253A (zh) * 2017-11-14 2018-06-05 杭州电子科技大学 一种考虑安全的无线多跳网络路由选择和功率分配方法
CN108199873A (zh) * 2017-12-28 2018-06-22 中国联合网络通信集团有限公司 节点拓扑控制方法和节点拓扑控制系统
CN108199873B (zh) * 2017-12-28 2020-02-11 中国联合网络通信集团有限公司 节点拓扑控制方法和节点拓扑控制系统
CN108769948A (zh) * 2018-05-11 2018-11-06 雷恩友力数据科技南京有限公司 一种异构车载网络的资源分配方法
CN109945881A (zh) * 2019-03-01 2019-06-28 北京航空航天大学 一种蚁群算法的移动机器人路径规划方法
CN112822098A (zh) * 2020-12-25 2021-05-18 河南卓正电子科技有限公司 物联网的路由选择方法、装置及存储介质
US11528661B1 (en) 2021-05-28 2022-12-13 Qualcomm Incorporated Local re-routing in integrated access and backhaul deployments
CN114615189A (zh) * 2022-03-10 2022-06-10 中国电子科技集团公司第十研究所 一种无线自组织网络分布式拓扑控制方法
CN114615189B (zh) * 2022-03-10 2023-05-02 中国电子科技集团公司第十研究所 一种无线自组织网络分布式拓扑控制方法

Also Published As

Publication number Publication date
CN103052129B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN103052129B (zh) 一种无线多跳中继网络中节能路由及功率分配方法
CN104168620B (zh) 无线多跳回传网络中的路由建立方法
CN1918858B (zh) 多跳网络中的成本确定
CN100481999C (zh) 跨层综合式无冲突路径路由选择
Zuo et al. Cross-layer aided energy-efficient opportunistic routing in ad hoc networks
CN102264114B (zh) 一种ZigBee传感网树路由低开销优化方法
CN103200643B (zh) 基于剩余能量感知的分布式容错拓扑控制方法
CN101635974B (zh) 自组织认知无线网络路由选择方法
CN104394569B (zh) 无线d2d网络中基于角度和干扰控制建立多播路由的方法
Rani et al. Energy efficient protocol for densely deployed homogeneous network
CN108124253A (zh) 一种考虑安全的无线多跳网络路由选择和功率分配方法
Jothi et al. Nelder mead-based spider monkey optimization for optimal power and channel allocation in MANET
Dutta et al. Energy aware modified PEGASIS through packet transmission in wireless sensor network
Rucco et al. A bird's eye view on reinforcement learning approaches for power management in WSNs
Bravos et al. MIMO-based and SISO multihop sensor networks: energy efficiency evaluation
Panigrahi et al. Energy-efficient greedy forwarding protocol for wireless sensor networks
CN104301983B (zh) 一种基于分步式信道状态估计的功率控制方法
Xiao et al. A novel energy entropy based on cluster head selection algorithm for wireless sensor networks
Harrag et al. Fuzzy-ZRP: An Adaptive MANET Radius Zone Routing Protocol
Alahmadi et al. A new annulus-based distribution algorithm for scalable IoT-driven lora networks
CN101394422A (zh) 时效性约束下无线传感网络生命期最大化的跨层优化方法
Soldati et al. An optimal and distributed cross-layer design with time-scale separation in MANETs
Pellenz et al. A power assignment method for multi-sink WSN with outage probability constraints
Li et al. Research on Power Line Carrier Communication Routing Adapted to the Internet of Things
Hu et al. A Two-level clustering chain energy heterogeneous routing protocol for WSN

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20220109