CN103033561A - 用于对锅炉中的管进行检测的设备和方法 - Google Patents
用于对锅炉中的管进行检测的设备和方法 Download PDFInfo
- Publication number
- CN103033561A CN103033561A CN201210448520XA CN201210448520A CN103033561A CN 103033561 A CN103033561 A CN 103033561A CN 201210448520X A CN201210448520X A CN 201210448520XA CN 201210448520 A CN201210448520 A CN 201210448520A CN 103033561 A CN103033561 A CN 103033561A
- Authority
- CN
- China
- Prior art keywords
- sensor
- equipment
- shell
- pipe
- guided wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/10—Water tubes; Accessories therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/38—Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0426—Bulk waves, e.g. quartz crystal microbalance, torsional waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2634—Surfaces cylindrical from outside
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
本发明披露了用于检测在锅炉中的管的方法和设备,该设备包括适于产生和探测导波的传感器、以及适于抵达管束内部并将传感器夹到用于检测的所选择的管上的机械装置。该机械装置包括适于包含所述传感器的外壳、和适于驱动所述外壳以使得外壳能夹到内部管上的气缸。
Description
相关申请
本申请主张了2011年5月24日提交的编号为No.61/489,507的临时申请的权益。
技术领域
本发明涉及一种对锅炉中管进行检测的方法和设备。更特定地,本发明涉及一种用于对锅炉中的再热器管进行导波检测的方法和设备。
背景技术
为了防止再热器管在装置运行期间出现故障,需要对再热器集箱(bank)中的管进行检测。如果确定了缺陷大到足以导致故障,那么需要在有计划的停机阶段对损坏部分进行更换。在再热器中,数百个管以弯曲/蜿蜒的方式、呈多个回路而布置。不仅需要检测的管的总长度长达数英里,而且由于再热器管集箱的密集堆积的配置方式导致了大多数管难以进入/触及进行检测。由于对它们进行全面检测将会耗费的成本和时间,热电生产工业主要依赖于对管束的周边上的抽样区域的有限检测和肉眼检查来进行维护决策。如果维护决策是基于更为全面的管状况数据而作出的话,那么锅炉再热器的可靠性将会改善。
远程导波技术是最近引入的从一个单独检测位置开始无需扫描的用于快速地对长距离管道或管进行缺陷调查的检测方法。现在该方法广泛用于检查工艺流程装置中的管线,这个技术提供了对长距离管线,通常是在单一方向上超过100英尺(30米)的管线的100%体积的检测---针对内表面和外表面的腐蚀/侵蚀缺陷以及圆周裂缝的检测。一般而言,导波能探测到2%到3%的腐蚀金属损失区域和圆周裂缝(这里的%指的是缺陷的圆周截面相对于整个管壁截面)和深的轴向裂缝(70%的壁深或更深)。相应地,这个技术作为一种工具用来编译关于再热器管的全面信息以用于维护决策,可能是有用的。
发明内容
通过本发明解决现有技术的这些和其它缺点。本发明提供了一种用于对于位于再热器管集箱内部深处的管从管的可进入侧进行导波检测的设备,而无需伸展管以获得进入通路。
根据本发明的一个方面,一种用于检测管的设备包括一种适于用于产生和探测导波的传感器、和一种适于用于达到管束内并将传感器夹到被选择用于检测的内部管道上的机械装置。该机械装置包括一种适于包含所述传感器的外壳、以及一种适于促动所述外壳以使得所述外壳能夹到内部管道上的气缸。
根据本发明的另一个方面,一种用于检测包含于锅炉管束内的锅炉管的设备包括一种传感器、和一种机械装置,所述传感器具有第一和第二导波探测器适于产生和探测导波,所述机械装置适于达到锅炉管束内并将传感器夹到所选择的用于检测的内部管道上。该机械装置包括一种适于用于容纳传感器的外壳、一种适于促动所述外壳以使得所述外壳能夹到内部管道上的气缸、以及一种把手,所述把手连接到气缸用于使得外壳和传感器可以到达所选择的用于检测的内部管。该外壳包括一种第一外壳部分,其适于将第一导波探测器牢固固定于其内部;以及一种第二外壳部分,其适于将第二导波探测器牢固固定于其内部。
根据本发明的另一个方面,一种用于检测包含于锅炉管束内的管的方法包括以下步骤:提供一种设备,其具有一种传感器和一种适于包含所述传感器的外壳,将所述设备延伸到管束内部直到抵达所需检测的管,并且旋转该装置直到所述传感器定位于待检测的管上方。该方法进一步包括以下步骤:将所述外壳绕待检测的管而夹住,由此将传感器绕所述管而夹住,将导波的脉冲传输到待检测的管、并且探测反射信号;以及从反射信号采集数据并判定管的状况。
附图说明
结合相应的附图标记参照下面描述可以最好地理解视作本发明的主题。附图中:
图1图示了根据本发明实施例的设备;和
图2A-2C图示了使用图1的设备的一系列测试。
具体实施方式
参照附图,图1中图示了根据本发明实施例用于锅炉管检测的示例性设备并且通常在附图标记10处示出,该设备10包括两个主要部件。第一部件是一种产生和探测导波的传感器11。第二部件是一种机械装置12,其能够达到管束内、并且将传感器11夹到用于传播和接受导波的内部管上。如图所示,所述机械装置12包括:一种导波探测器外壳13,用于包含所述传感器11并且夹到管上;一种气缸14,用于驱动所述外壳13;花键16;和花键套管17。图中省略了一种长把手,其由圆柱状管或棍制成、机械地紧固定到气缸14上,并且把电线引导到传感器11。
所述传感器11包括两个半圆导波探测器20和21。每个探测器20和21被放置并固定在外壳13上的相应部件22、23上。基于先前在美国专利号7,821,258和7,913,562中所披露的方法,使得所述半圆导波探测器20和21以扭转(T)波的方式,进行操作,这两专利都运用了磁致伸缩传感器(MsS)技术,并在这里通过援引而被包括。应预料到的是,也可以使得设备10以其它导波模式运行,例如纵波模式。然而,由于扭转模式具有的无分散的特性,以扭转导波模式运行所述设备10是优选的。
所述气缸14用于打开和关闭两个探测器外壳部件22和23。该气缸是使用气动压力来驱动的。所述外壳13紧固到花键16上以确保当导波设备10夹到管上时仅有线性移动和对齐/校直、而没有旋转和弯曲。如图2A-2C所示,该气缸14机械地接合到长把手24上以用于抵达管束内部。
参照附图2A-2C,当检测锅炉再热器管时,设备10延伸到管束内、到待检测的管上,且探测器外壳13打开。当设备10的外壳13的部分抵达了管集箱内适合深度时,设备10旋转90°并且所述半圆导波探测器20和21被放置在管上方。接着外壳13闭合以将导波探测器20和21夹到管上。运行该导波探测器20和21以发送导波的脉冲,并且探测出在脉冲-回波探测模式中的反射回的信号。当完成了从管采集信号时,设备10移动到另一个测试位置以进行另一个测量。
用于在管上放置设备10所需的最小间隙是用于再热器中的管的直径的大约90%(如,外径为两英寸的管,其近似于1.75英寸)。此外,当相对于再热器锅炉管描述了设备10时,应预料到的是,设备可以用于任何需要对管进行检测的应用,例如过热器管。
前面已描述了一种用于对锅炉中的管进行检测的装置和方法。尽管已经描述了本发明的具体实施例,本领域技术人员将会显而易见的是,可以在不离开本发明的精神和范围的情况下对其做出各种改进/变型。相应地,本发明的优选实施例和用于操作本发明的最优模式的前述说明仅是出于例解目的而提供的、而并非出于限制性目的。
Claims (15)
1.一种用于对管进行检测的设备,包括:
(a)适于产生和探测导波的传感器;
(b)适于抵达管束内部并将传感器夹到选择用于检测的内部管上的机械装置,所述机械装置包括:
(i)外壳,适于包含所述传感器;和
(ii)气缸,适于驱动所述外壳以使得外壳能夹到内部管上。
2.如权利要求1所述的设备,进一步包括花键,其中外壳连接到花键,所述花键提供外壳的校直、并使得外壳当传感器夹到内部管上时仅能在线性方向上移动。
3.如权利要求1所述的设备,进一步包括连接到气缸上的把手,所述把手具有的长度足以使得传感器抵达用于检测的所选内部管。
4.如权利要求1所述的设备,其中所述传感器包括两个半圆导波探测器,每个探测器固定在外壳的相应部分上。
5.如权利要求1所述的设备,其中传感器以扭转波(T)模式运行来提供无分散的特性。
6.一种用于对包含于锅炉管束内的锅炉管进行检测的设备,包括
(a)传感器,其具有适于产生和探测导波的第一和第二导波探测器;
(b)适于抵达管束内部并将传感器夹到选择用于检测的内部管上的机械装置,所述机械装置包括:
(i)外壳,适于包含所述传感器,所述外壳具有第一外壳部件和第二外壳部件,所述第一外壳部件适于固定所述第一导波传感器在其内,所述第二外壳部件适于固定所述第二导波传感器在其内;和
(ii)气缸,适于驱动外壳以使得外壳能夹到内部管上;和
(iii)把手,连接到气缸以用于使得外壳和传感器能到达用于检测的所选择内部管。
7.如权利要求6所述的设备,其中第一和第二外壳部件连接到花键上,所述花键适于校直第一和第二外壳部件、并确保外壳部件当传感器夹到内部管上时仅线性移动。
8.如权利要求6所述的设备,其中所述第一和第二导波探测器是半圆形的以与内部管相匹配。
9.如权利要求6所述的设备,其中传感器以扭转波(T)模式运行来提供无分散的特性。
10.一种对包含于管束中的管进行检测的方法,包括以下步骤:
(a)提供一种设备,其具有:
(i)传感器;和
(ii)适于包含所述传感器的外壳;
(b)将设备延伸到管束内部,直到抵达用于检测的所希望的管;
(c)旋转所述设备直到传感器定位于待检测的管上方;
(d)将外壳绕待检测的管夹紧,由此使得传感器绕所述管夹紧;
(e)向待检测的管内部发送导波的脉冲,并且检测反射的信号;以及
(f)从反射的信号采集数据并且判定所述管的状况。
11.如权利要求10所述的方法,其中所述外壳包括第一和第二部件以使得外壳能在开启和闭合位置之间变化。
12.如权利要求11所述的方法,其中所述设备延伸进入管束内部、且外壳处于开启位置。
13.如权利要求10所述的方法,其中所述设备被旋转近似90度(90°)以将传感器定位到待检测的管上方。
14.如权利要求10所述的方法,进一步包括将设备移动到待检测的另一管的步骤。
15.如权利要求14所述的方法,其中移动所述设备的步骤包括以下步骤:
(a)从绕所述管处分离所述外壳;和
(b)旋转所述设备,直到传感器从进行检测的管上分离。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161540922P | 2011-09-29 | 2011-09-29 | |
US61/540922 | 2011-09-29 | ||
US13/621923 | 2012-09-18 | ||
US13/621,923 US9146215B2 (en) | 2011-09-29 | 2012-09-18 | Apparatus and method for inspection of tubes in a boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103033561A true CN103033561A (zh) | 2013-04-10 |
Family
ID=47357872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210448520XA Pending CN103033561A (zh) | 2011-09-29 | 2012-09-29 | 用于对锅炉中的管进行检测的设备和方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9146215B2 (zh) |
EP (1) | EP2574917B1 (zh) |
CN (1) | CN103033561A (zh) |
ZA (1) | ZA201207191B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187745A (zh) * | 2018-09-11 | 2019-01-11 | 武汉三联特种技术股份有限公司 | 超声波无损检测管道装置 |
CN112303375A (zh) * | 2020-10-29 | 2021-02-02 | 张梅 | 一种管道检测机器人 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009036516A (ja) * | 2007-07-31 | 2009-02-19 | Hitachi-Ge Nuclear Energy Ltd | ガイド波を用いた非破壊検査装置及び非破壊検査方法 |
WO2016065256A2 (en) * | 2014-10-24 | 2016-04-28 | Hrst, Inc. | Tube spreading device and boiler cleaning system |
JP7147801B2 (ja) * | 2020-03-13 | 2022-10-05 | 横河電機株式会社 | 磁気探傷方法、磁界計測処理装置及び磁気探傷装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893512A (en) * | 1987-06-12 | 1990-01-16 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Swinging-type automatic examination apparatus for piping |
CN2733331Y (zh) * | 2004-08-13 | 2005-10-12 | 南京国泰电力技术有限公司 | 锅炉蒸汽管道状态检测及泄漏报警装置 |
CN201107299Y (zh) * | 2007-11-30 | 2008-08-27 | 北京工业大学 | 一种高性能管道超声导波检测传感器 |
US20100052670A1 (en) * | 2008-08-29 | 2010-03-04 | Southwest Research Institute | Magnetostrictive Sensor Probe for Guided-Wave Inspection and Monitoring of Wire Ropes/Cables and Anchor Rods |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3289468A (en) * | 1963-05-29 | 1966-12-06 | Southwest Res Inst | Ultrasonic transducer positioning apparatus |
US3561258A (en) * | 1967-03-01 | 1971-02-09 | Std Services Ltd | Apparatus for testing tubes or rods by ultrasonics |
US3555887A (en) * | 1967-09-19 | 1971-01-19 | American Mach & Foundry | Apparatus for electroacoustically inspecting tubular members for anomalies using the magnetostrictive effect and for measuring wall thickness |
USRE26537E (en) * | 1967-10-05 | 1969-03-04 | Mobile inspection device for testing metallic members for longitudinal and transverse discontinuities | |
JPS606757Y2 (ja) * | 1976-09-13 | 1985-03-05 | 株式会社ケツト科学研究所 | 走行式パイプ検査装置 |
US4312230A (en) * | 1980-02-15 | 1982-01-26 | Republic Steel Corporation | Method and apparatus for pipe inspection |
JPS59128448A (ja) * | 1983-01-14 | 1984-07-24 | Hitachi Ltd | 配管検査装置 |
JPH0434449Y2 (zh) * | 1985-10-09 | 1992-08-17 | ||
US4757258A (en) * | 1985-11-27 | 1988-07-12 | Westinghouse Electric Corp. | Probe carrier system for inspecting boiler tubes |
JPH086892B2 (ja) * | 1987-07-01 | 1996-01-29 | 関西電力株式会社 | 自動管周走査装置 |
JPH064003Y2 (ja) | 1987-12-04 | 1994-02-02 | スズキ株式会社 | 四サイクルエンジンの動弁装置 |
US5265129A (en) | 1992-04-08 | 1993-11-23 | R. Brooks Associates, Inc. | Support plate inspection device |
US5456113A (en) | 1992-11-06 | 1995-10-10 | Southwest Research Institute | Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
US5581037A (en) | 1992-11-06 | 1996-12-03 | Southwest Research Institute | Nondestructive evaluation of pipes and tubes using magnetostrictive sensors |
US5457994A (en) | 1992-11-06 | 1995-10-17 | Southwest Research Institute | Nondestructive evaluation of non-ferromagnetic materials using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
US6212944B1 (en) | 1994-04-13 | 2001-04-10 | Southwest Research Institute | Apparatus and method for monitoring engine conditions, using magnetostrictive sensors |
US5549004A (en) * | 1995-02-28 | 1996-08-27 | Nugent; Michael J. | Hand held tube wall thickness ultrasonic measurement probe and system |
US5767766A (en) | 1995-09-01 | 1998-06-16 | Southwest Research Institute | Apparatus and method for monitoring vehicular impacts using magnetostrictive sensors |
US5821430A (en) | 1997-02-28 | 1998-10-13 | Southwest Research Institute | Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes |
JP3334599B2 (ja) | 1998-03-12 | 2002-10-15 | ティーディーケイ株式会社 | 磁気抵抗効果素子の磁化方向測定方法及び装置 |
US6164137A (en) * | 1999-02-03 | 2000-12-26 | Mcdermott Technology, Inc. | Electromagnetic acoustic transducer (EMAT) inspection of tubes for surface defects |
US6429650B1 (en) | 1999-03-17 | 2002-08-06 | Southwest Research Institute | Method and apparatus generating and detecting torsional wave inspection of pipes or tubes |
US6396262B2 (en) | 1999-03-17 | 2002-05-28 | Southwest Research Institute | Method and apparatus for short term inspection or long term structural health monitoring |
US6404189B2 (en) | 1999-03-17 | 2002-06-11 | Southeast Research Institute | Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes |
US6380516B1 (en) * | 1999-08-11 | 2002-04-30 | Mitsubishi Heavy Industries, Ltd. | Connecting clamp, connecting apparatus and connecting method |
EP1474679B1 (en) * | 2002-01-14 | 2011-07-27 | R. Brooks Associates, Inc. | Device for remote inspection of steam generator tubes or removal of material from the exterior of, or between such tubes |
US7019520B2 (en) * | 2003-11-13 | 2006-03-28 | Southwest Research Institute | Method and system for torsional wave inspection of heat exchanger tubes |
CA2449477A1 (en) * | 2003-11-14 | 2005-05-14 | Eric Lavoie | Development of the metar family of feeder inspection tools |
RU2293312C1 (ru) * | 2005-07-19 | 2007-02-10 | Александр Максимилианович Попович | Устройство системы датчиков внутритрубного дефектоскопа (варианты) |
GB2437547B (en) * | 2006-04-28 | 2010-07-14 | Genesis Oil And Gas Consultant | Method and apparatus for inspecting pipes |
US7821258B2 (en) | 2008-01-07 | 2010-10-26 | Ihi Southwest Technologies, Inc. | Method and system for generating and receiving torsional guided waves in a structure |
US7913562B2 (en) | 2008-08-29 | 2011-03-29 | Southwest Research Institute | Flexible plate magnetostrictive sensor probe for guided-wave inspection of structures |
KR101073686B1 (ko) * | 2009-04-08 | 2011-10-14 | 서울대학교산학협력단 | 분절형 자기변형 패치 배열 트랜스듀서, 이를 구비한 구조 진단 장치 및 이 트랜스듀서의 작동 방법 |
KR101068350B1 (ko) * | 2009-07-03 | 2011-09-28 | (주)디지털초음파 | 접촉 sh-도파 자왜변환기 |
US8521453B1 (en) * | 2010-03-15 | 2013-08-27 | Berkeley Springs Instruments Llc | Wireless sensor and data management system and method for monitoring the integrity of mechanical structures |
US8301401B2 (en) * | 2010-08-31 | 2012-10-30 | Babcock & Wilcox Technical Services Group, Inc. | Low profile encircling ultrasonic probe for the inspection of in-situ piping in immersion mode |
US8907665B2 (en) * | 2010-11-17 | 2014-12-09 | Fbs, Inc. | Magnetostrictive sensor array for active or synthetic phased-array focusing of guided waves |
US9672187B2 (en) * | 2013-03-15 | 2017-06-06 | Electric Power Research Institute | System and method for directing guided waves through structures |
-
2012
- 2012-09-18 US US13/621,923 patent/US9146215B2/en active Active
- 2012-09-24 EP EP12185611.6A patent/EP2574917B1/en active Active
- 2012-09-26 ZA ZA2012/07191A patent/ZA201207191B/en unknown
- 2012-09-29 CN CN201210448520XA patent/CN103033561A/zh active Pending
-
2015
- 2015-06-18 US US14/743,228 patent/US10048225B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893512A (en) * | 1987-06-12 | 1990-01-16 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Swinging-type automatic examination apparatus for piping |
CN2733331Y (zh) * | 2004-08-13 | 2005-10-12 | 南京国泰电力技术有限公司 | 锅炉蒸汽管道状态检测及泄漏报警装置 |
CN201107299Y (zh) * | 2007-11-30 | 2008-08-27 | 北京工业大学 | 一种高性能管道超声导波检测传感器 |
US20100052670A1 (en) * | 2008-08-29 | 2010-03-04 | Southwest Research Institute | Magnetostrictive Sensor Probe for Guided-Wave Inspection and Monitoring of Wire Ropes/Cables and Anchor Rods |
Non-Patent Citations (1)
Title |
---|
李文彬: "连续油管无损检测技术及其应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 12, 15 December 2010 (2010-12-15), pages 022 - 1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187745A (zh) * | 2018-09-11 | 2019-01-11 | 武汉三联特种技术股份有限公司 | 超声波无损检测管道装置 |
CN112303375A (zh) * | 2020-10-29 | 2021-02-02 | 张梅 | 一种管道检测机器人 |
Also Published As
Publication number | Publication date |
---|---|
US20150285768A1 (en) | 2015-10-08 |
ZA201207191B (en) | 2015-10-28 |
EP2574917A1 (en) | 2013-04-03 |
US20130081486A1 (en) | 2013-04-04 |
EP2574917B1 (en) | 2018-07-04 |
US10048225B2 (en) | 2018-08-14 |
US9146215B2 (en) | 2015-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10890506B2 (en) | Connection end fitting of a flexible line, measurement device for measuring the integrity of the line, and method of measuring the integrity of the line with the measurement device | |
US8322219B2 (en) | Pseudorandom binary sequence apparatus and method for in-line inspection tool | |
CN1111738C (zh) | 利用磁致伸缩传感器的管道和管子无损检验 | |
CN103033561A (zh) | 用于对锅炉中的管进行检测的设备和方法 | |
EP3316004A1 (en) | Apparatus and method of propagation and spatial location analysis by acoustic array for down-hole applications | |
CN102537669B (zh) | 一种基于超声导波聚焦的管道缺陷检测方法和系统 | |
US10082017B2 (en) | System and method for a bonded differential magnetic sensor array using pulsed eddy current for cased-hole applications | |
CN102680569A (zh) | 脉冲涡流管线检测系统和方法 | |
MXPA00002316A (es) | Inspeccion de tuberia. | |
CN103364490A (zh) | 超声换能器装置 | |
CN107790363A (zh) | 阵列式多角度螺旋类sh导波电磁超声换能器 | |
EP3422052A1 (en) | Apparatus and method of azimuthal magnetic sensor array for down-hole applications | |
CN102411029B (zh) | 钢管缺陷超声干扰成像检测方法 | |
CN103512483A (zh) | 架空管道壁厚腐蚀扫查检测系统 | |
Wagner et al. | Guided wave testing performance studies: comparison with ultrasonic and magnetic flux leakage pigs | |
CN202152923U (zh) | 一种基于超声导波聚焦的管道缺陷检测系统 | |
CN204115684U (zh) | 一种弯头剩余壁厚检测装置 | |
Evans et al. | Permanently installed transducers for guided wave monitoring of pipelines | |
JP4363699B2 (ja) | 浸炭層の検出方法及びその厚さの測定方法 | |
JP2005106288A (ja) | 配管系統識別方法および配管系統識別システム | |
Chapman | Development of a Successful Internal Leak Detection and Pipeline Condition Assessment Technology for Large Diameter Pipes | |
CA3119266A1 (en) | System and method to detect an inline tool in a pipe | |
van Pol et al. | The Future of In-Line Inspection: Free-Floating Smart Sensors | |
Naeem et al. | Non-destructive pipeline monitoring using intelligent fiber-optic acoustic sensor system | |
US20230076535A1 (en) | Device For Inspecting A Pipe, In Particular With Regard To Clandestine Tapping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130410 |
|
RJ01 | Rejection of invention patent application after publication |