CN103031460A - Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy - Google Patents
Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy Download PDFInfo
- Publication number
- CN103031460A CN103031460A CN 201210546004 CN201210546004A CN103031460A CN 103031460 A CN103031460 A CN 103031460A CN 201210546004 CN201210546004 CN 201210546004 CN 201210546004 A CN201210546004 A CN 201210546004A CN 103031460 A CN103031460 A CN 103031460A
- Authority
- CN
- China
- Prior art keywords
- cualni
- porous
- naalo
- shape memory
- memory alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 93
- 239000000956 alloy Substances 0.000 claims abstract description 93
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 238000005245 sintering Methods 0.000 claims abstract description 22
- 229910001388 sodium aluminate Inorganic materials 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 13
- 230000008018 melting Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000003825 pressing Methods 0.000 claims abstract description 10
- 239000005457 ice water Substances 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims abstract description 8
- 230000001681 protective effect Effects 0.000 claims abstract description 8
- 230000010355 oscillation Effects 0.000 claims abstract description 5
- 230000006698 induction Effects 0.000 claims abstract description 3
- 239000002131 composite material Substances 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000007772 electrode material Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 239000013078 crystal Substances 0.000 description 16
- 239000011148 porous material Substances 0.000 description 16
- 230000007704 transition Effects 0.000 description 9
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 6
- 229910018565 CuAl Inorganic materials 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000012669 compression test Methods 0.000 description 4
- 230000003446 memory effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 229910002535 CuZn Inorganic materials 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种超弹性多孔CuAlNi高温形状记忆合金的制备方法,包括以下步骤:采用电弧熔炼或感应熔炼法制备出CuAlNi合金锭;将NaAlO2粉压制成生坯,在空气氛围下进行烧结,得到NaAlO2块体;把NaAlO2块体放入可上下移动的管式炉底部,在NaAlO2块体上放入CuAlNi合金锭,在真空氛围保温;接着充入保护气体并保持,然后将管式炉向下移出加热区,冷却后浸入弱酸中超声振荡,之后放入真空炉中,在保护气氛下进行热处理,接着淬火到冰水中,得到超弹性多孔CuAlNi高温形状记忆合金。本发明的多孔CuAlNi形状记忆合金在高温下具有良好超弹性和力学性能,又展现出良好的循环稳定性。
The invention discloses a method for preparing a superelastic porous CuAlNi high-temperature shape memory alloy, which comprises the following steps: preparing a CuAlNi alloy ingot by arc melting or induction melting; pressing NaAlO2 powder into a green body, and sintering in an air atmosphere , to get the NaAlO 2 block; put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, put the CuAlNi alloy ingot on the NaAlO 2 block, and keep it warm in a vacuum atmosphere; then fill the protective gas and keep it, and then put the The tube furnace is moved downwards out of the heating zone, cooled and immersed in a weak acid for ultrasonic oscillation, then placed in a vacuum furnace for heat treatment under a protective atmosphere, and then quenched into ice water to obtain a superelastic porous CuAlNi high temperature shape memory alloy. The porous CuAlNi shape memory alloy of the present invention has good superelasticity and mechanical properties at high temperature, and also exhibits good cycle stability.
Description
技术领域 technical field
本发明涉及多孔CuAlNi高温形状记忆合金领域,特别涉及一种超弹性多孔CuAlNi高温形状记忆合金的制备方法及其应用。The invention relates to the field of porous CuAlNi high-temperature shape memory alloys, in particular to a preparation method and application of a superelastic porous CuAlNi high-temperature shape memory alloy.
背景技术 Background technique
多孔形状记忆合金能够展现出众多只有在形状记忆合金和多孔材料中才具备的优异性能,诸如独特的形状记忆效应和超弹性、质轻、可调控的力学性能、高比表面积和阻尼特性。因此,多孔形状记忆合金在许多领域有着巨大的应用前景,如硬组织替换、能量吸收器件和电池电极材料等。在已制备出的几种多孔形状记忆合金(包括NiTi基、Cu基和Fe基)中,多孔NiTi记忆合金被认为是最具应用价值的一种,这是因为它具有稳定的形状记忆效应和超弹性、良好的生物相容性和机械性能。这使得多孔NiTi记忆合金在生物医学领域,特别是硬组织修复和替换方面有着巨大应用前景。然而,它的价格偏高以及低的相变温度(-100~100°C),这限制了它在一些大规模生产或高的工作温度场合的应用。相反,多孔Cu基记忆合金由于其低成本和高的相变温度,使得它在汽车、制造和吸能减震工业有着巨大的优势。Porous shape memory alloys can exhibit many excellent properties that can only be found in shape memory alloys and porous materials, such as unique shape memory effect and superelasticity, light weight, adjustable mechanical properties, high specific surface area and damping characteristics. Therefore, porous shape memory alloys have great application prospects in many fields, such as hard tissue replacement, energy absorbing devices, and battery electrode materials. Among the several porous shape memory alloys that have been prepared (including NiTi-based, Cu-based and Fe-based), the porous NiTi memory alloy is considered to be the most valuable one because of its stable shape memory effect and Superelastic, good biocompatibility and mechanical properties. This makes porous NiTi memory alloys have great application prospects in the field of biomedicine, especially in hard tissue repair and replacement. However, its high price and low phase transition temperature (-100~100°C) limit its application in some mass production or high working temperature occasions. In contrast, porous Cu-based memory alloys have great advantages in the automotive, manufacturing, and energy-absorbing and shock-absorbing industries due to their low cost and high phase transition temperature.
除了NiTi记忆合金,Cu基记忆合金是目前应用最广泛的商用形状记忆合金。在Cu基记忆合金主要有两大类二元合金:CuZn和CuAl,其中CuAl二元记忆合金被认为是最有应用潜力的高温记忆合金,不仅是因为它展现出高的相变温度,还因为它比CuZn合金有着更为优异的微观结构稳定性。为了防止CuAl二元记忆合金中母相的分解,通常添加Ni元素形成CuAlNi三元合金。由于CuAlNi合金的本质粗晶粒特性,使得多晶CuAlNi记忆合金的形状记忆效应和机械性能要远远地低于多晶NiTi记忆合金。但是,单晶CuAlNi记忆合金却能展现出非常高的超弹性,甚至超过NiTi合金。例如,在CuAl14Ni4.2(wt.%)[001]单晶能够在205°C展现出高达17%的完全超弹性。多晶CuAlNi合金由于其大的晶粒尺寸(1mm)和晶界处析出的脆性γ相,使得它容易发生穿晶断裂,导致其形状记忆效应(小于1%)和韧性十分差。事实上,要制备出大的单晶样品非常困难,且成本高昂。为了提高CuAlNi合金的性能,最有效的方法就是添加一些细化晶粒元素,如Ti、Mn、V和B等,或者通过轧制方法形成定向织构,诸如CuAl12Ni4Mn4B0.04合金在150°C下形变5%,可以产生4.5%的可回复应变。In addition to NiTi memory alloys, Cu-based memory alloys are currently the most widely used commercial shape memory alloys. There are two main types of binary alloys in Cu-based memory alloys: CuZn and CuAl, among which CuAl binary memory alloy is considered to be the most potential high-temperature memory alloy, not only because it exhibits a high phase transition temperature, but also because It has more excellent microstructural stability than CuZn alloy. In order to prevent the decomposition of the parent phase in CuAl binary memory alloys, Ni is usually added to form CuAlNi ternary alloys. Due to the intrinsic coarse grain characteristics of CuAlNi alloy, the shape memory effect and mechanical properties of polycrystalline CuAlNi memory alloy are far lower than those of polycrystalline NiTi memory alloy. However, single crystal CuAlNi memory alloys can exhibit very high superelasticity, even surpassing NiTi alloys. For example, [001] single crystals in CuAl 14 Ni 4.2 (wt.%) can exhibit full superelasticity up to 17% at 205°C. The polycrystalline CuAlNi alloy is prone to transgranular fracture due to its large grain size (1 mm) and the brittle γ phase precipitated at the grain boundary, resulting in very poor shape memory effect (less than 1%) and toughness. In fact, it is very difficult and expensive to prepare large single-crystal samples. In order to improve the performance of CuAlNi alloy, the most effective way is to add some grain refinement elements, such as Ti, Mn, V and B, etc., or form a directional texture by rolling, such as CuAl 12 Ni 4 Mn 4 B 0.04 alloy
最近,有研究发现采用熔融拔丝法制备的微米尺度的多晶CuAlNi合金丝在室温下能够展现出高达6.6%的完全超弹性,这主要归因于形成类竹节晶(bamboo-like structure)结构,即整个合金晶丝像一根竹子,其中一个晶粒就像一节竹子,只有两端与另外一个晶粒相接触,其它面都是自由面。这种结构有助于释放马氏体转变所导致的应力,因此性能大幅度地提高,并接近单晶的性能。基于这种原理,有研究者采用渗入脱溶法制备出具有类竹节晶结构的多孔NiMnGa磁性记忆合金,每个晶粒左右只与一个晶粒相邻,其它面都与孔壁相接,这种多晶样品的磁记忆性能与单晶接近,然而这种多孔合金的孔隙率一般都要大于50%,这必定限制了其应用范围。因此,能否利用CuAlNi合金的晶粒易长大的特性,制备出在任何孔隙率下都具有完全类竹状晶结构的多孔CuAlNi记忆合金,且在高温下表现出较好的超弹性,这将是十分有意义的。Recently, it has been found that the micron-scale polycrystalline CuAlNi alloy wire prepared by the melting wire drawing method can exhibit a complete superelasticity of up to 6.6% at room temperature, which is mainly attributed to the formation of a bamboo-like structure. , that is, the whole alloy crystal wire is like a bamboo, one of the crystal grains is like a section of bamboo, only two ends are in contact with the other crystal grain, and the other surfaces are free surfaces. This structure helps to release the stress caused by martensitic transformation, so the performance is greatly improved, and it is close to the performance of single crystal. Based on this principle, some researchers have prepared a porous NiMnGa magnetic memory alloy with a bamboo-like crystal structure by infiltration and precipitation. Each grain is only adjacent to one grain, and the other surfaces are connected to the pore wall. The magnetic memory performance of this polycrystalline sample is close to that of single crystal, but the porosity of this porous alloy is generally greater than 50%, which must limit its application range. Therefore, whether the grains of CuAlNi alloys are easy to grow can be used to prepare porous CuAlNi memory alloys with a complete bamboo-like crystal structure at any porosity, and exhibit better superelasticity at high temperatures. will be very meaningful.
发明内容 Contents of the invention
为了克服现有技术的缺点与不足,本发明的目的在于提供一种超弹性多孔CuAlNi高温形状记忆合金的制备方法,在高温下(>200°C)展现出更好的力学性能和超弹性,以及良好的高温循环稳定性。本发明的另一目的在于提供上述方法得到的超弹性多孔CuAlNi高温形状记忆合金的应用。In order to overcome the shortcomings and deficiencies of the prior art, the object of the present invention is to provide a method for preparing a superelastic porous CuAlNi high temperature shape memory alloy, which exhibits better mechanical properties and superelasticity at high temperatures (>200°C), And good high temperature cycle stability. Another object of the present invention is to provide the application of the superelastic porous CuAlNi high temperature shape memory alloy obtained by the above method.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种超弹性多孔CuAlNi高温形状记忆合金的制备方法,包括以下步骤:A preparation method of superelastic porous CuAlNi high temperature shape memory alloy, comprising the following steps:
(1)采用电弧熔炼或感应熔炼法制备出CuAlNi合金锭;所述CuAlNi合金锭中各元素的质量比为Cu:Al:Ni=(100-x-y):x:y,其中x为13~15,y为3~5;(1) CuAlNi alloy ingot is prepared by arc melting or induction melting; the mass ratio of each element in the CuAlNi alloy ingot is Cu:Al:Ni=(100-x-y):x:y, where x is 13~15 , y is 3~5;
(2)将造孔剂NaAlO2粉压制成生坯,在空气氛围下进行烧结,得到NaAlO2块体;(2) Press the pore-forming agent NaAlO 2 powder into a green body, and sinter it in an air atmosphere to obtain a NaAlO 2 block;
(3)把步骤(2)所得NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入步骤(1)所得CuAlNi合金锭,在真空氛围,温度为1150℃~1250℃下保温0.5h~5h;接着充入压力为1.2×105Pa~2×105Pa的保护气体并保持1h~5h后,将管式炉向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO2 block obtained in step (2) into the bottom of the tube furnace that can move up and down, and then put the CuAlNi alloy ingot obtained in step (1) on the NaAlO2 block, in a vacuum atmosphere, the temperature is 1150 ° C Insulate at ~1250°C for 0.5h to 5h; then fill the protective gas with a pressure of 1.2×10 5 Pa~2×10 5 Pa and keep it for 1h to 5h, then move the tube furnace downward out of the heating zone, and obtain CuAlNi after cooling and NaAlO 2 composite materials;
(4)把步骤(3)所得的CuAlNi和NaAlO2的复合材料浸入弱酸中超声振荡,溶解去除NaAlO2,得到多孔CuAlNi合金;(4) immerse the composite material of CuAlNi and NaAlO 2 obtained in step (3) into a weak acid and oscillate ultrasonically to dissolve and remove NaAlO 2 to obtain a porous CuAlNi alloy;
(5)将步骤(4)所得多孔CuAlNi合金放入真空炉中,在保护气氛下进行热处理,接着淬火到冰水中,得到超弹性的多孔CuAlNi高温记忆合金。(5) Putting the porous CuAlNi alloy obtained in step (4) into a vacuum furnace, performing heat treatment under a protective atmosphere, and then quenching into ice water to obtain a superelastic porous CuAlNi high temperature memory alloy.
步骤(2)所述NaAlO2粉的颗粒尺寸为50~1500μm。The particle size of the NaAlO 2 powder in step (2) is 50-1500 μm.
步骤(2)所述烧结,具体条件为:温度为1350℃~1500℃,时间为10h~24h。The specific conditions for the sintering in step (2) are: the temperature is 1350° C. to 1500° C., and the time is 10 hours to 24 hours.
步骤(2)所述压制,具体条件为:压力为5~600MPa,温度为30~100℃,时间为5分钟~1小时。The specific conditions for the pressing in step (2) are: the pressure is 5-600 MPa, the temperature is 30-100°C, and the time is 5 minutes-1 hour.
步骤(3)所述真空氛围,真空度为1×10-2Pa~1×10-3Pa。The vacuum atmosphere in step (3) has a degree of vacuum of 1×10 -2 Pa to 1×10 -3 Pa.
所述保护气体为氩气或氮气。The protective gas is argon or nitrogen.
步骤(3)所述将管式炉向下移出加热区,具体为:As described in step (3), move the tube furnace downwards out of the heating zone, specifically:
以0.5mm/min~20mm/min的速率将管式炉向下移出加热区。Move the tube furnace down out of the heating zone at a rate of 0.5mm/min~20mm/min.
步骤(4)所述将步骤(3)所得的CuAlNi和NaAlO2的复合材料入弱酸中超声振荡,具体为:In the step (4), put the composite material of CuAlNi and NaAlO obtained in the step (3) into a weak acid and ultrasonically vibrate, specifically:
将步骤(3)所得的CuAlNi和NaAlO2的复合材料浸入溶度为5%~15%的HCl或H2SO4中超声振荡,超声振荡的时间为15h~30h,温度为30℃~80℃。Immerse the composite material of CuAlNi and NaAlO 2 obtained in step (3) into HCl or H 2 SO 4 with a solubility of 5% to 15% and vibrate ultrasonically. The time of ultrasonic oscillation is 15h~30h and the temperature is 30°C~80°C .
步骤(5)所述热处理,具体为:热处理温度为850℃~950℃,热处理时间为0.5h~5h。The heat treatment in step (5) specifically includes: the heat treatment temperature is 850° C. to 950° C., and the heat treatment time is 0.5h to 5h.
上述方法得到的弹性多孔CuAlNi高温形状记忆合金用于制备汽车、航天上的吸能和驱动器件,或作为电池的电极材料。The elastic porous CuAlNi high-temperature shape memory alloy obtained by the above method is used for preparing energy absorbing and driving devices in automobiles and aerospace, or as electrode materials for batteries.
本发明的原理是:用NaAlO2粉作为造孔剂,烧结成具有一定孔隙率的NaAlO2块体,然后将熔融的CuAlNi合金在高压气体的帮助下渗入NaAlO2颗粒之间的空隙中,得到NaAlO2和CuAlNi的复合材料;然后利用定向凝固,得到晶粒十分粗大的CuAlNi合金;利用NaAlO2在弱酸中溶解度很大,而CuAlNi合金则很小,可以去除NaAlO2,得到晶粒粗大的多孔CuAlNi合金;经过淬火热处理后使得它展现出高温的超弹性。而且,利用不同颗粒度和不同压制力可以控制NaAlO2块体的孔隙率和孔隙大小,从而可以调整多孔CuAlNi合金的孔隙率、孔隙大小和连通性。不同定向凝固速度可以控制不同大小的晶粒尺寸,从而可以在不同孔隙率获得完全类竹节结构。在弱酸中浸泡不同时间,还可以进一步调整多孔CuAlNi的孔隙率和孔隙大小。The principle of the present invention is: use NaAlO2 powder as a pore-forming agent, sinter it into a NaAlO2 block with a certain porosity, and then infiltrate the molten CuAlNi alloy into the gaps between the NaAlO2 particles with the help of high-pressure gas to obtain Composite materials of NaAlO 2 and CuAlNi; then use directional solidification to obtain CuAlNi alloy with very coarse grains; NaAlO 2 has a large solubility in weak acid, while CuAlNi alloy is very small, NaAlO 2 can be removed to obtain porous with coarse grains CuAlNi alloy; after quenching heat treatment, it exhibits high temperature superelasticity. Moreover, the porosity and pore size of the NaAlO bulk can be controlled by utilizing different particle sizes and different pressing forces, so that the porosity, pore size, and connectivity of the porous CuAlNi alloy can be tuned. Different directional solidification speeds can control different grain sizes, so that complete bamboo-like structures can be obtained at different porosities. The porosity and pore size of porous CuAlNi can be further adjusted by soaking in weak acid for different time.
与现有技术相比,本发明具有以下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明制备的超弹性多孔CuAlNi高温形状记忆合金具有类竹节晶结构的多孔CuAlNi形状记忆合金,不但在高孔隙率下能得到完全类竹节结构,且在低孔隙率(<10%)下也能获得类竹节晶结构的多孔CuAlNi高温形状记忆合金。(1) The superelastic porous CuAlNi high-temperature shape memory alloy prepared by the present invention has a porous CuAlNi shape memory alloy with a bamboo-like crystal structure, which can not only obtain a complete bamboo-like structure at a high porosity, but also at a low porosity (<10 %), the porous CuAlNi high-temperature shape memory alloy with bamboo-like crystal structure can also be obtained.
(2)发明多孔CuAlNi记忆合金在高温下(>200°C)展现出更好的力学性能和超弹性,以及良好的高温循环稳定性。(2) The invented porous CuAlNi memory alloy exhibits better mechanical properties and superelasticity at high temperature (>200°C), as well as good high temperature cycle stability.
(3)本发明可以通过不同定向凝固速度可以控制不同大小的晶粒尺寸,从而可以在不同孔隙率获得完全类竹节结构。还可以控制在弱酸中浸泡不同时间,进一步调整多孔CuAlNi的孔隙率和孔隙大小。(3) The present invention can control grain sizes of different sizes through different directional solidification speeds, so that complete bamboo-like structures can be obtained at different porosities. It is also possible to control the soaking time in weak acid to further adjust the porosity and pore size of porous CuAlNi.
附图说明 Description of drawings
图1是实施例1未去除NaAlO2的多孔CuAlNi合金的扫描电镜照片。Figure 1 is a scanning electron micrograph of the porous CuAlNi alloy without NaAlO2 removal in Example 1 .
图2是实施例1除去NaAlO2的多孔CuAlNi合金的扫描电镜照片。Fig. 2 is a scanning electron micrograph of the porous CuAlNi alloy with NaAlO 2 removed in Example 1.
图3是实施例1是腐蚀后的多孔CuAlNi合金的金相显微照片。Fig. 3 is a metallographic micrograph of the porous CuAlNi alloy after corrosion in Example 1.
图4是实施例1多孔CuAlNi合金加热和冷却的DSC曲线。Fig. 4 is the DSC curve of heating and cooling of the porous CuAlNi alloy in Example 1.
图5是实施例1多孔CuAlNi合金的压缩应力-应变曲线图(测试温度260°C,经6次压缩循环,预应变逐渐增加)。Fig. 5 is the compressive stress-strain curve of the porous CuAlNi alloy in Example 1 (the test temperature is 260°C, after 6 compression cycles, the pre-strain gradually increases).
图6是实施例1多孔CuAlNi合金的应力-应变曲线(测试温度为260°C)。Fig. 6 is the stress-strain curve of the porous CuAlNi alloy of Example 1 (the test temperature is 260°C).
图7是实施例1多孔CuAlNi合金的形状回复率随循环次数的变化曲线测试温度为260°C)。Fig. 7 is the variation curve of the shape recovery rate of the porous CuAlNi alloy in Example 1 with the number of cycles (the test temperature is 260°C).
图8是实施例2未去除NaAlO2的多孔CuAlNi合金的扫描电镜照片。Fig. 8 is a scanning electron micrograph of the porous CuAlNi alloy without removing NaAlO 2 in Example 2.
图9是实施例2去除NaAlO2的多孔CuAlNi合金的扫描电镜照片。Fig. 9 is a scanning electron micrograph of the porous CuAlNi alloy with NaAlO2 removed in Example 2 .
图10是实施例2腐蚀后的多孔CuAlNi合金的金相显微照片。FIG. 10 is a metallographic micrograph of the porous CuAlNi alloy corroded in Example 2.
图11是实施例2多孔CuAlNi合金加热和冷却的DSC曲线。Fig. 11 is the DSC curve of heating and cooling of the porous CuAlNi alloy in Example 2.
图12是实施例2多孔CuAlNi合金的压缩应力-应变曲线图(测试温度260°C,经3次压缩循环,预应变逐渐增加)。Fig. 12 is the compressive stress-strain curve of the porous CuAlNi alloy in Example 2 (the test temperature is 260°C, after 3 compression cycles, the pre-strain gradually increases).
图13是实施例3腐蚀后的CuAlNi合金的金相显微照片。Fig. 13 is a metallographic micrograph of the CuAlNi alloy corroded in Example 3.
图14是实施例3CuAlNi合金的压缩应力-应变曲线图(测试温度210°C,经9次压缩循环,预应变逐渐增加)。Fig. 14 is the compressive stress-strain curve of CuAlNi alloy in Example 3 (the test temperature is 210°C, after 9 compression cycles, the pre-strain gradually increases).
具体实施方式 Detailed ways
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
(1)采用电弧熔炼制备出Cu81.5Al14。5Ni4(wt.%)合金锭;(1) Cu 81.5 Al 14.5 Ni 4 (wt.%) alloy ingot was prepared by arc melting;
(2)将纯度99%,颗粒尺寸为350~510μm的NaAlO2粉压制成生坯,压制力为10MPa,温度为30℃,时间为10分钟;在空气氛围下进行烧结,烧结温度为1400℃,烧结时间为12小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 350-510 μm to form a green body, with a pressing force of 10 MPa, a temperature of 30°C, and a time of 10 minutes; sintering is carried out in an air atmosphere, and the sintering temperature is 1400°C , the sintering time is 12 hours, and the NaAlO2 bulk is obtained;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入Cu81.5Al14.5Ni4合金锭,在5×10-3Pa真空下,在1200℃下保温0.5h,接着充入1.2×105Pa的氩气并保持2h,跟着将管式炉以5mm/min的速度向下移出加热区,冷却后得到Cu81.5Al14.5Ni4和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the Cu 81.5 Al 14.5 Ni 4 alloy ingot on the NaAlO 2 block, under 5×10 -3 Pa vacuum, at 1200℃ Keep it warm for 0.5h, then fill it with argon gas of 1.2×10 5 Pa and keep it for 2h, then move the tube furnace down at a speed of 5mm/min out of the heating zone, and obtain Cu 81.5 Al 14.5 Ni 4 and NaAlO 2 after cooling composite materials;
将这个复合材料切开,发现CuAlNi合金已经完全渗入由NaAlO2颗粒之间的空隙中(如图1所示),且NaAlO2颗粒大小与烧结前的基本一致。The composite material was cut, and it was found that the CuAlNi alloy had completely infiltrated the gap between the NaAlO 2 particles (as shown in Figure 1), and the size of the NaAlO 2 particles was basically the same as that before sintering.
(4)所得复合材料浸入溶度为10%的弱HCl中,超声振荡20h,温度为60℃;溶解去除NaAlO2颗粒后,得到多孔Cu81.5Al14.5Ni4合金(如图2)。其孔隙都是相互连通,且孔隙大小为300~550μm,孔隙率为60%。(4) The obtained composite material was immersed in weak HCl with a solubility of 10%, ultrasonically oscillated for 20 hours, and the temperature was 60°C; after dissolving and removing NaAlO 2 particles, a porous Cu 81.5 Al 14.5 Ni 4 alloy was obtained (as shown in Figure 2). The pores are all interconnected, and the pore size is 300-550 μm, and the porosity is 60%.
(5)多孔Cu81.5Al14.5Ni4合金在氩气保护下,加热到900℃,保温0.5h后快速冷却到冰水中,得到高转变温度的多孔CuAlNi合金。(5) The porous Cu 81.5 Al 14.5 Ni 4 alloy was heated to 900 °C under the protection of argon, kept for 0.5 h and then rapidly cooled to ice water to obtain a porous CuAlNi alloy with a high transition temperature.
对热处理后的多孔Cu81.5Al14.5Ni4合金经腐蚀后的金相显微照片如图3所示,发现在整个样品中只观察到几个晶界,且晶界两端必与孔洞相连,形成完全的类竹节晶结构。整个样品中都是马氏体条。还对多孔Cu81.5Al14.5Ni4合金进行相变行为表征(如图4所示),发现加热和冷却时都有明显的吸热或放热峰,这表明样品发生了马氏体相变,并测出其Af温度(马氏体逆转变完成温度)为255℃。The metallographic micrograph of the porous Cu 81.5 Al 14.5 Ni 4 alloy after heat treatment after corrosion is shown in Figure 3. It is found that only a few grain boundaries are observed in the entire sample, and the two ends of the grain boundaries must be connected with holes, forming a complete bamboo-like crystal structure. There are martensitic bars throughout the sample. The phase transformation behavior of the porous Cu 81.5 Al 14.5 Ni 4 alloy was also characterized (as shown in Figure 4), and it was found that there were obvious endothermic or exothermic peaks during heating and cooling, which indicated that the sample had a martensitic transformation, And measured its A f temperature (martensitic reverse transformation completion temperature) is 255 ℃.
通过对多孔Cu81.5Al14.5Ni4合金在260℃进行压缩测试,发现其在小于2.5%的预应变下能完全回复,展现出完全超弹性。在3.9%的预应变下,还能保持80%形状回复率,如图5所示。它的压缩强度极限可达40MPa,弹性模量为2.8GPa。而且对其在260℃下进行压缩循环测试,预应变为2.6%,发现其展现出优良的高温循环稳定性,如图6所示。并且除了第一次循环的形状回复率为94%,之后都稳定在98%左右,如图7所示。Through the compression test of the porous Cu 81.5 Al 14.5 Ni 4 alloy at 260 °C, it was found that it can fully recover under a pre-strain of less than 2.5%, exhibiting complete superelasticity. Under 3.9% pre-strain, 80% shape recovery can be maintained, as shown in Figure 5. Its compressive strength limit can reach 40MPa, and its elastic modulus is 2.8GPa. Moreover, it was subjected to a compression cycle test at 260°C with a prestrain of 2.6%, and it was found that it exhibited excellent high-temperature cycle stability, as shown in Figure 6. And except for the shape recovery rate of 94% in the first cycle, it is stable at about 98% after that, as shown in Figure 7.
本实施例制备的弹性多孔CuAlNi高温形状记忆合金可用于制备汽车、航天上的吸能和驱动器件,或作为电池的电极材料。The elastic porous CuAlNi high-temperature shape memory alloy prepared in this embodiment can be used to prepare energy absorbing and driving devices for automobiles and aerospace, or as electrode materials for batteries.
实施例2Example 2
(1)采用电弧熔炼制备出Cu83Al13Ni4(wt.%)合金锭;(1) Cu 83 Al 13 Ni 4 (wt.%) alloy ingot was prepared by arc melting;
(2)将纯度99%,颗粒尺寸为300~450μm的NaAlO2粉压制成生坯,压制力为50MPa,温度为50℃,时间为5分钟;在空气氛围下进行烧结,烧结温度为1500℃,烧结时间为15小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 300-450 μm into a green body, with a pressing force of 50 MPa, a temperature of 50 °C, and a time of 5 minutes; sintering in an air atmosphere at a temperature of 1500 °C , the sintering time is 15 hours, and the NaAlO2 bulk is obtained;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入CuAlNi合金锭,在2×10-3Pa真空下,在1250℃下保温5h,接着充入2×105Pa的氩气并保持5h,跟着将管式炉以1mm/min的速度向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the CuAlNi alloy ingot on the NaAlO 2 block, keep it warm at 1250℃ for 5h under 2×10 -3 Pa vacuum, then Fill with argon gas of 2×10 5 Pa and keep it for 5 hours, then move the tube furnace downwards out of the heating zone at a speed of 1 mm/min, and obtain a composite material of CuAlNi and NaAlO 2 after cooling;
将这个复合材料切开,发现CuAlNi合金已经完全渗入由NaAlO2颗粒之间的空隙中(如图8所示),且NaAlO2颗粒大小与烧结前的基本一致。The composite material was cut, and it was found that the CuAlNi alloy had completely penetrated into the gaps between the NaAlO 2 particles (as shown in Figure 8), and the size of the NaAlO 2 particles was basically the same as that before sintering.
(4)所得复合材料浸入15%的弱H2SO4中,超声振荡30h,温度为80℃;溶解去除NaAlO2颗粒后,得到多孔CuAlNi合金(如图9所示)。其孔隙都是相互连通,且孔隙大小为300~450μm,孔隙率为50%。(4) The obtained composite material was immersed in 15% weak H 2 SO 4 , ultrasonically oscillated for 30 hours, and the temperature was 80°C; after dissolving and removing NaAlO 2 particles, a porous CuAlNi alloy was obtained (as shown in Figure 9). The pores are all interconnected, and the pore size is 300-450 μm, and the porosity is 50%.
(5)多孔CuAlNi合金在氮气保护下,加热到950℃,保温5h后快速冷却到冰水中,得到高的转变温度的多孔CuAlNi合金。(5) The porous CuAlNi alloy was heated to 950°C under the protection of nitrogen, kept for 5 hours and then rapidly cooled into ice water to obtain a porous CuAlNi alloy with a high transition temperature.
对热处理后的多孔CuAlNi合金经腐蚀后的金相显微照片如图10所示,发现在整个样品中只观察到几个晶界,且晶界两端必与孔洞相连,形成完全的类竹节晶结构。整个样品中都是马氏体条。还对多孔CuAlNi合金进行相变行为表征(如图11所示),并测出其Af温度为225℃。The metallographic micrograph of the porous CuAlNi alloy after heat treatment after corrosion is shown in Figure 10. It is found that only a few grain boundaries are observed in the entire sample, and the two ends of the grain boundaries must be connected with holes to form complete bamboo-like grains. structure. There are martensitic bars throughout the sample. The phase transformation behavior of the porous CuAlNi alloy was also characterized (as shown in Figure 11), and its Af temperature was measured to be 225 °C.
通过对多孔CuAlNi合金在260℃进行压缩测试,发现其在小于1%的预应变下能完全回复,展现出完全超弹性。在1.88%的预应变下,形状回复率为69%,如图12所示。它的压缩强度极限可达35MPa,弹性模量为3.2GPa。Through the compression test of the porous CuAlNi alloy at 260 °C, it is found that it can fully recover under the prestrain of less than 1%, exhibiting complete superelasticity. Under a pre-strain of 1.88%, the shape recovery rate is 69%, as shown in Fig. 12. Its compressive strength limit can reach 35MPa, and its elastic modulus is 3.2GPa.
实施例3Example 3
(1)采用电弧熔炼制备出Cu81.5Al14Ni4.5(wt.%)合金锭;(1) Cu 81.5 Al 14 Ni 4.5 (wt.%) alloy ingot was prepared by arc melting;
(2)将纯度99%,颗粒尺寸为50μm的NaAlO2粉压制成生坯,压制力为600MPa,温度为100℃,时间为1小时;在空气氛围下进行烧结,烧结温度为1500℃,烧结时间为24小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 50 μm into a green body, with a pressing force of 600 MPa, a temperature of 100 °C, and a time of 1 hour; sintering in an air atmosphere at a sintering temperature of 1500 °C, and sintering The time is 24 hours to obtain NaAlO block ;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入CuAlNi合金锭,在1×10-3Pa真空下,在1200℃下保温2h,接着充入2×105Pa的氩气并保持5h,跟着将管式炉以5mm/min的速度向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the CuAlNi alloy ingot on the NaAlO 2 block, keep it warm at 1200℃ for 2h under 1×10 -3 Pa vacuum, then Fill with argon gas of 2×10 5 Pa and keep it for 5 hours, then move the tube furnace downwards out of the heating zone at a speed of 5 mm/min, and obtain a composite material of CuAlNi and NaAlO 2 after cooling;
将这个复合材料切开,发现CuAlNi合金基本没有渗入NaAlO2颗粒之间的空隙中,NaAlO2块体与CuAlNi界线分明。Cutting this composite material, it was found that the CuAlNi alloy basically did not infiltrate into the gaps between the NaAlO 2 particles, and the NaAlO 2 block and CuAlNi had a clear boundary.
(4)所得复合材料浸入5%的弱HCl中,超声振荡15h,温度为60℃;溶解去除NaAlO2颗粒后,得到多孔CuAlNi合金,其孔隙率仅为1%。(4) The obtained composite material was immersed in 5% weak HCl, ultrasonically oscillated for 15 hours, and the temperature was 60 ° C; after dissolving and removing NaAlO 2 particles, a porous CuAlNi alloy was obtained, and its porosity was only 1%.
(5)多孔CuAlNi合金在氩气保护下,加热到950℃,保温0.5h后快速冷却到冰水中,得到高转变温度的多孔CuAlNi合金。(5) The porous CuAlNi alloy was heated to 950°C under the protection of argon, kept for 0.5h and then rapidly cooled into ice water to obtain a porous CuAlNi alloy with a high transition temperature.
对热处理后的多孔CuAlNi合金经腐蚀后的金相显微照片如图13所示,发现在整个样品中只观察到几个晶粒,晶粒尺寸为4-5mm,且每个晶粒基本只与1-2个晶粒相邻,形成类竹节晶结构。整个样品中都是马氏体条。还测出其Af温度为190℃。The corroded metallographic micrograph of the heat-treated porous CuAlNi alloy is shown in Figure 13. It was found that only a few grains were observed in the entire sample, the grain size was 4-5mm, and each grain was basically only 1 - Two adjacent crystal grains form a slub-like crystal structure. There are martensitic bars throughout the sample. Its Af temperature was also measured to be 190°C.
通过对这个CuAlNi合金在210℃进行压缩测试,发现其在小于6.64%的预应变下基本能完全回复,展现出完全超弹性。在7.7%的预应变下,形状回复率还能达到86%,如图14所示。它的压缩强度极限可达850MPa,弹性模量为17.2GPa。而且,在210℃下能够展现出非常好的循环稳定性。Through the compression test of this CuAlNi alloy at 210 °C, it is found that it can basically recover completely under the prestrain of less than 6.64%, showing complete superelasticity. Under the pre-strain of 7.7%, the shape recovery rate can reach 86%, as shown in Figure 14. Its compressive strength limit can reach 850MPa, and its elastic modulus is 17.2GPa. Moreover, it can exhibit very good cycle stability at 210 °C.
实施例4Example 4
(1)采用电弧熔炼制备出Cu81.5Al14Ni4.5(wt.%)合金锭;(1) Cu 81.5 Al 14 Ni 4.5 (wt.%) alloy ingot was prepared by arc melting;
(2)将纯度99%,颗粒尺寸为500~750μm的NaAlO2粉压制成生坯,压制力为5MPa,温度为30℃,时间为5分钟;在空气氛围下进行烧结,烧结温度为1400℃,烧结时间为24小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 500-750 μm into a green body, with a pressing force of 5 MPa, a temperature of 30°C, and a time of 5 minutes; sintering is carried out in an air atmosphere, and the sintering temperature is 1400°C , the sintering time is 24 hours, and the NaAlO2 bulk is obtained;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入CuAlNi合金锭,在6×10-3Pa真空下,在1200℃下保温3h,接着充入1.5×105Pa的氩气并保持3h,跟着将管式炉以10mm/min的速度向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the CuAlNi alloy ingot on the NaAlO 2 block, keep it warm at 1200℃ for 3h under the vacuum of 6×10 -3 Pa, then Fill with argon gas of 1.5×10 5 Pa and keep it for 3 hours, then move the tube furnace downwards out of the heating zone at a speed of 10 mm/min, and obtain a composite material of CuAlNi and NaAlO 2 after cooling;
将这个复合材料切开,发现CuAlNi合金已经完全渗入由NaAlO2颗粒之间的空隙中,且NaAlO2颗粒大小与烧结前的基本一致。The composite material was cut, and it was found that the CuAlNi alloy had completely infiltrated the gap between the NaAlO 2 particles, and the size of the NaAlO 2 particles was basically the same as that before sintering.
(4)所得复合材料浸入10%的弱H2SO4中,超声振荡18h,温度为60℃;溶解去除NaAlO2颗粒后,得到多孔CuAlNi合金。其孔隙都是相互连通,且孔隙大小为550~800μm,孔隙率为70%。(4) The obtained composite material was immersed in 10% weak H 2 SO 4 , ultrasonically oscillated for 18 hours at a temperature of 60°C; after dissolving and removing NaAlO 2 particles, a porous CuAlNi alloy was obtained. The pores are all interconnected, and the pore size is 550-800 μm, and the porosity is 70%.
(5)多孔CuAlNi合金在氮气保护下,加热到950℃,保温3h后快速冷却到冰水中,得到高转变温度的多孔CuAlNi合金。(5) The porous CuAlNi alloy was heated to 950°C under the protection of nitrogen, kept for 3 hours and then rapidly cooled into ice water to obtain a porous CuAlNi alloy with a high transition temperature.
发现在整个样品中只观察到几个晶界,且晶界两端必与孔洞相连,形成完全的类竹节晶结构,整个样品中都是马氏体条,并测出其Af温度为245℃。It was found that only a few grain boundaries were observed in the entire sample, and the two ends of the grain boundaries must be connected with holes to form a complete bamboo-like crystal structure. The entire sample is full of martensitic strips, and its A f temperature is measured as 245°C.
通过对多孔CuAlNi合金在260℃进行压缩测试,发现其在小于2%的预应变下能完全回复,展现出完全超弹性。Through the compression test of the porous CuAlNi alloy at 260 °C, it is found that it can fully recover under the prestrain of less than 2%, exhibiting complete superelasticity.
实施例5Example 5
(1)采用电弧熔炼制备出Cu82Al13Ni5(wt.%)合金锭;(1) Cu 82 Al 13 Ni 5 (wt.%) alloy ingots were prepared by arc melting;
(2)将纯度99%,颗粒尺寸为1000~1500μm的NaAlO2粉压制成生坯,压制力为50MPa,温度为30℃,时间为10分钟;在空气氛围下进行烧结,烧结温度为1400℃,烧结时间为20小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 1000-1500 μm into a green body, with a pressing force of 50 MPa, a temperature of 30 °C, and a time of 10 minutes; sintering in an air atmosphere at a temperature of 1400 °C , the sintering time is 20 hours, and the NaAlO2 bulk is obtained;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入CuAlNi合金锭,在4×10-3Pa真空下,在1150℃下保温3h,接着充入1.5×105Pa的氩气并保持2h,跟着将管式炉以4mm/min的速度向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the CuAlNi alloy ingot on the NaAlO 2 block, keep it warm at 1150℃ for 3h under 4×10 -3 Pa vacuum, then Fill with argon gas of 1.5×10 5 Pa and keep it for 2 hours, then move the tube furnace down out of the heating zone at a speed of 4 mm/min, and obtain a composite material of CuAlNi and NaAlO 2 after cooling;
将这个复合材料切开,发现CuAlNi合金已经完全渗入由NaAlO2颗粒之间的空隙中,且NaAlO2颗粒大小与烧结前的基本一致。The composite material was cut, and it was found that the CuAlNi alloy had completely infiltrated the gap between the NaAlO 2 particles, and the size of the NaAlO 2 particles was basically the same as that before sintering.
(4)所得复合材料浸入15%的弱HCl中,超声振荡24h,温度为40℃;溶解去除NaAlO2颗粒后,得到多孔CuAlNi合金。其孔隙都是相互连通,且孔隙大小为1000~1500μm,孔隙率为85%。(4) The obtained composite material was immersed in 15% weak HCl, ultrasonically oscillated for 24 hours, and the temperature was 40°C; after dissolving and removing NaAlO 2 particles, a porous CuAlNi alloy was obtained. The pores are all interconnected, and the pore size is 1000~1500μm, and the porosity is 85%.
(5)多孔CuAlNi合金在氩气保护下,加热到900℃,保温1h后快速冷却到冰水中,得到高的转变温度的多孔CuAlNi合金。(5) The porous CuAlNi alloy was heated to 900°C under the protection of argon, kept for 1 hour and then rapidly cooled into ice water to obtain a porous CuAlNi alloy with a high transition temperature.
实施例6Example 6
(1)采用电弧熔炼制备出Cu82Al15Ni3(wt.%)合金锭;(1) Cu 82 Al 15 Ni 3 (wt.%) alloy ingots were prepared by arc melting;
(2)将纯度99%,颗粒尺寸为550~750μm的NaAlO2粉压制成生坯,压制力为200MPa,温度为30℃,时间为30分钟;在空气氛围下进行烧结,烧结温度为1400℃,烧结时间为12小时,得到NaAlO2块体;(2) Press NaAlO 2 powder with a purity of 99% and a particle size of 550-750 μm into a green body, with a pressing force of 200 MPa, a temperature of 30 °C, and a time of 30 minutes; sintering in an air atmosphere at a temperature of 1400 °C , the sintering time is 12 hours, and the NaAlO2 bulk is obtained;
(3)把NaAlO2块体放入可上下移动的管式炉底部,接着在NaAlO2块体上放入CuAlNi合金锭,在7×10-3Pa真空下,在1200℃下保温1h,接着充入5×105Pa的氩气并保持2h,跟着将管式炉以6mm/min的速度向下移出加热区,冷却后得到CuAlNi和NaAlO2的复合材料;(3) Put the NaAlO 2 block into the bottom of the tube furnace that can move up and down, then put the CuAlNi alloy ingot on the NaAlO 2 block, and keep it at 1200℃ for 1h under the vacuum of 7×10 -3 Pa, then Fill with argon gas of 5×10 5 Pa and keep it for 2 hours, then move the tube furnace downwards out of the heating zone at a speed of 6 mm/min, and obtain a composite material of CuAlNi and NaAlO 2 after cooling;
(4)所得复合材料浸入12%的弱H2SO4中,超声振荡30h,温度为80℃;溶解去除NaAlO2颗粒后,得到多孔CuAlNi合金。其孔隙都是相互连通,且孔隙大小为600~800μm,孔隙率为65%。(4) The obtained composite material was immersed in 12% weak H 2 SO 4 , ultrasonically oscillated for 30 hours, and the temperature was 80°C; after dissolving and removing NaAlO 2 particles, a porous CuAlNi alloy was obtained. The pores are all interconnected, and the pore size is 600~800μm, and the porosity is 65%.
(5)多孔CuAlNi合金在氮气保护下,加热到950℃,保温0.5h后快速冷却到冰水中,得到高的转变温度的多孔CuAlNi合金。(5) The porous CuAlNi alloy was heated to 950°C under the protection of nitrogen, kept for 0.5h and then rapidly cooled into ice water to obtain a porous CuAlNi alloy with a high transition temperature.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the embodiment, and any other changes, modifications, substitutions and combinations made without departing from the spirit and principle of the present invention , simplification, all should be equivalent replacement methods, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210546004 CN103031460A (en) | 2012-12-15 | 2012-12-15 | Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210546004 CN103031460A (en) | 2012-12-15 | 2012-12-15 | Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103031460A true CN103031460A (en) | 2013-04-10 |
Family
ID=48018859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210546004 Withdrawn CN103031460A (en) | 2012-12-15 | 2012-12-15 | Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103031460A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103710570A (en) * | 2013-12-19 | 2014-04-09 | 长沙理工大学 | Cu-Ni-Al-Ce porous alloy and preparation method thereof |
CN103938009A (en) * | 2014-04-17 | 2014-07-23 | 南京大学 | Method of preparing porous foam alloy and removing pore forming material sodium metaaluminate |
CN103952587A (en) * | 2014-04-30 | 2014-07-30 | 北京科技大学 | Complex phase copper alloy material and preparation method thereof |
CN106099086A (en) * | 2015-12-18 | 2016-11-09 | 华南理工大学 | Micro-nano Porous Cu zinc-aluminum shape memory alloy composite and preparation method and application |
CN107008905A (en) * | 2017-02-25 | 2017-08-04 | 河北工业大学 | The preparation method of TiNiCu marmem based damping composite materials |
WO2018161742A1 (en) * | 2017-03-09 | 2018-09-13 | 华南理工大学 | Nanoporous copper-zinc-aluminum shape memory alloy and preparation method and application thereof |
CN109139766A (en) * | 2017-06-15 | 2019-01-04 | 湖南尚成新材料科技有限责任公司 | A kind of buffer structure of aerogel-congtg |
CN110252998A (en) * | 2019-05-06 | 2019-09-20 | 上海大学 | Preparation method of lightweight composite material in bamboo or bamboo-like form |
-
2012
- 2012-12-15 CN CN 201210546004 patent/CN103031460A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103710570A (en) * | 2013-12-19 | 2014-04-09 | 长沙理工大学 | Cu-Ni-Al-Ce porous alloy and preparation method thereof |
CN103710570B (en) * | 2013-12-19 | 2016-02-24 | 长沙理工大学 | Cu-Ni-Al-Ce porous alloy and preparation method thereof |
CN103938009A (en) * | 2014-04-17 | 2014-07-23 | 南京大学 | Method of preparing porous foam alloy and removing pore forming material sodium metaaluminate |
CN103938009B (en) * | 2014-04-17 | 2015-11-25 | 南京大学 | A kind of method preparing porous foam alloy removing pore-forming material sodium metaaluminate |
CN103952587A (en) * | 2014-04-30 | 2014-07-30 | 北京科技大学 | Complex phase copper alloy material and preparation method thereof |
CN103952587B (en) * | 2014-04-30 | 2016-02-03 | 北京科技大学 | A kind of complex phase Cu alloy material and preparation method thereof |
CN106099086A (en) * | 2015-12-18 | 2016-11-09 | 华南理工大学 | Micro-nano Porous Cu zinc-aluminum shape memory alloy composite and preparation method and application |
CN106099086B (en) * | 2015-12-18 | 2018-07-20 | 华南理工大学 | The porous copper-zinc-aluminum shape memory alloy composite material and preparation method of micro-nano and application |
CN107008905A (en) * | 2017-02-25 | 2017-08-04 | 河北工业大学 | The preparation method of TiNiCu marmem based damping composite materials |
CN107008905B (en) * | 2017-02-25 | 2018-08-17 | 河北工业大学 | The preparation method of TiNiCu marmem based damping composite materials |
WO2018161742A1 (en) * | 2017-03-09 | 2018-09-13 | 华南理工大学 | Nanoporous copper-zinc-aluminum shape memory alloy and preparation method and application thereof |
CN109139766A (en) * | 2017-06-15 | 2019-01-04 | 湖南尚成新材料科技有限责任公司 | A kind of buffer structure of aerogel-congtg |
CN110252998A (en) * | 2019-05-06 | 2019-09-20 | 上海大学 | Preparation method of lightweight composite material in bamboo or bamboo-like form |
CN110252998B (en) * | 2019-05-06 | 2021-12-03 | 上海大学 | Preparation method of bamboo joint or bamboo joint-like light composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103031460A (en) | Preparation method and application of hyperelastic porous CuAlNi high temperature shape memory alloy | |
Parvizi et al. | Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: A review | |
CN107250416B (en) | The manufacturing method of Ni base superalloy | |
CN102534275B (en) | TiNi alloy-based composite material with near-zero thermal expansion characteristic and preparation method thereof | |
CN107419154A (en) | One kind has hyperelastic TiZrHfNbAl high-entropy alloys and preparation method thereof | |
WO2015058534A1 (en) | Hot isostatic pressing process for high-temperature alloy powder | |
JP2008537763A (en) | Metal composite material and method of forming the same | |
Yuan et al. | Effect of directional solidification and porosity upon the superelasticity of Cu–Al–Ni shape-memory alloys | |
CN109112349B (en) | A kind of CuAlMn shape memory alloy and preparation method thereof | |
CN101619425A (en) | Zr-Cu-Ni-Al-Nb bulk amorphous alloy with high zirconium content | |
CN111534770A (en) | Near-equal atomic ratio nickel-rich nickel-titanium alloy two-way shape memory effect training method | |
CN112011745A (en) | Fe-Mn-Si-based shape memory alloy powder, preparation method and application thereof, 3D printing method and shape memory alloy | |
Lei et al. | The optimization of annealing and cold-drawing in the manufacture of the Ni–Ti shape memory alloy ultra-thin wire | |
CN113969369A (en) | Novel Ti-Zr-Hf-Ni-Co-Cu high-entropy shape memory alloy and preparation method thereof | |
CN104018055A (en) | Rare-earth magnetic material with high magnetocrystalline anisotropy and large magnetoelastic strain and preparation method thereof | |
CN103789597B (en) | High-damping shape memory alloy and preparation method for same | |
CN113215421B (en) | A low-stress-driven high-elasticity full-martensitic nickel-titanium alloy and preparation method | |
WO2024179296A1 (en) | Nickel-titanium alloy, and preparation method therefor and use thereof | |
CN109482880B (en) | A preparation method for simultaneously improving the mechanical properties and magnetocaloric properties of Ni-Mn-In alloys | |
CN111850327A (en) | A kind of preparation method and product of porous NiTi alloy based on selective dissolution | |
CN108179472B (en) | A kind of copper manganese gallium base single crystal alloy | |
Sugiyama et al. | Fabrication of lotus-type porous NiTi shape memory alloys using the continuous zone melting method and tensile property | |
CN115070052A (en) | Novel binary-structure nickel-titanium shape memory alloy and 4D printing preparation method and application thereof | |
CN109136806A (en) | NiTi monocrystalline cycle heat treatment preparation method under a kind of solid-state | |
CN107586999A (en) | Nickel-base alloy with high-elastic heat endurance and preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20130410 |