CN103022676B - 幅度校准的三维封装表面天线 - Google Patents
幅度校准的三维封装表面天线 Download PDFInfo
- Publication number
- CN103022676B CN103022676B CN201210563897.XA CN201210563897A CN103022676B CN 103022676 B CN103022676 B CN 103022676B CN 201210563897 A CN201210563897 A CN 201210563897A CN 103022676 B CN103022676 B CN 103022676B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- vias
- dielectric
- antenna
- metallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
幅度校准的三维封装表面天线涉及一种喇叭天线。该天线包括集成在一块介质基板(4)上的金属化垂直过孔馈线(1)、喇叭天线(2)和金属化过孔(3),介质基板(4)在三维封装(5)的最上面,金属化垂直过孔馈线(1)一端与内部电路(8)相连,喇叭天线(2)由底面金属平面(6)、顶面金属平面(9)和金属化过孔侧壁(11)组成,由金属化过孔(3)构成的中间金属化过孔阵列(17)、左边金属化过孔阵列(18)和右边金属化过孔阵列(19),在喇叭天线(2)中形成四个介质填充波导,天线中电磁波能等幅分布在天线口径面(12)。该天线可以提高天线的口径效率。
Description
技术领域
本发明涉及一种喇叭天线,尤其是一种幅度校准的三维封装表面天线。
背景技术
采用微组装技术,可以把一个射频系统放到一个封装内,为此也需要把天线集成在封装的表面。在封装表面集成贴片天线是一种很自然的方式,但贴片天线的辐射主向是表面的法向,而我们有时需要的辐射主向是沿着表面方向。如果在封装表面集成喇叭天线就可以实现沿表面方向的辐射。但是,通常喇叭天线是非平面的,与平面电路工艺的不兼容、具有的较大的几何尺寸,从而限制了其在封装结构上的应用。近年来,基于基片集成波导技术发展的基片集成波导喇叭天线具有尺寸小、重量轻、易于平面集成的特点,但传统的基片集成波导喇叭天线的增益相对比较低,其中一个原因在于口径面上电磁场的幅度很不均匀,中间大两边小,影响天线的辐射性能。目前已有采用介质加载、介质棱镜等方法,矫正喇叭口径面相位的不同步,但是这些方法都不能改善口径面上电磁场幅度分布的均匀性,而且这些相位校准结构增加了天线的整体结构尺寸,不适合集成到封装表面。
发明内容
技术问题:本发明的目的是提出一种幅度校准的三维封装表面天线,该喇叭天线可以改善天线口径面上电磁波幅度分布的均匀性,提高三维封装表面的天线的口径效率和增益。
技术方案:本发明的幅度校准的三维封装表面天线包括设置在介质基板上的金属化垂直过孔馈线、基片集成波导喇叭天线和内嵌金属化过孔,介质基板在三维封装的最上面;所述金属化垂直过孔馈线与三维封装的内部电路相连;基片集成波导喇叭天线由位于介质基板一面的底面金属平面、位于介质基板另一面的顶面金属平面和穿过介质基板连接底面金属平面顶面金属平面的金属化过孔喇叭侧壁组成;基片集成波导喇叭天线中内嵌的金属化过孔连接底面金属平面和顶面金属平面,并构成中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列;在喇叭天线中有第一介质填充波导、第二介质填充波导、第三介质填充波导和第四介质填充波导。
金属化垂直过孔馈线的一端穿过介质基板底面金属平面上的圆孔与三维封装的内部电路相连,其另一端顶端有个圆形焊盘,金属化垂直过孔馈线顶端圆形焊盘10在介质基板的顶面金属平面的圆孔中心,因此金属化垂直过孔馈线顶端圆形焊盘与介质基板的顶面金属平面没有直接的电接触。
基片集成波导喇叭天线由窄截面波导、喇叭形波导和宽截面波导串接构成;窄截面波导的一端是短路面,窄截面波导的另一端与喇叭形波导相连,喇叭形波导的一端与窄截面波导相连,喇叭形波导的另一端与宽截面波导相连,宽截面波导的另一端是天线口径面。
中间金属化过孔阵列位于基片集成波导喇叭天线的两个侧壁中间的位置,中间金属化过孔阵列的头端朝着喇叭天线窄截面波导的短路面方向,中间金属化过孔阵列的尾端在天线口径面上;中间金属化过孔阵列把基片集成波导喇叭天线分为左右对称的两部分,在中间的金属化过孔阵列的两侧,对称的有左边介质填充波导和右边介质填充波导。
左边金属化过孔阵列把左边介质填充波导分成第一介质填充波导和第二介质填充波导,右边金属化过孔阵列把右边的介质填充波导分成第三介质填充波导和第四介质填充波导。
左边金属化过孔阵列和右边金属化过孔阵列形状都是由头端直线段、多边形和尾端直线段三段相连构成,左边金属化过孔阵列和右边金属化过孔阵列的头端都朝着喇叭天线窄截面波导的短路面方向,左边金属化过孔阵列和右边金属化过孔阵列的尾端在天线口径面上。
中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列中的直线段的形状可以是直线、折线或指数线等,其长度可以是零或者是有限长度;左边金属化过孔阵列和右边金属化过孔阵列中的多边形可以是三角形、四边形、五边形或其它多边形,多边形的一条边或者多条边的形状可以是直线、弧线或其它曲线。
左边介质填充波导、右边介质填充波导、第一介质填充波导、第二介质填充波导、第三介质填充波导和第四介质填充波导的宽度均要保证其主模可以在左边介质填充波导、右边介质填充波导、第一介质填充波导、第二介质填充波导、第三介质填充波导和第四介质填充波导中传输而不被截止。
选择左边金属化过孔阵列中头端直线段或多边形在左边介质填充波导中的位置,使得通过第一介质填充波导和第二介质填充波导中传输的两路电磁波等幅到达天线的口径面上辐射。
选择右边金属化过孔阵列中头端直线段或多边形在右边介质填充波导中的位置,使得通过第三介质填充波导和第四介质填充波导中传输的两路电磁波等幅到达天线的口径面上辐射。
金属化过孔喇叭侧壁中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁能够等效为电壁;相邻的两个金属化过孔的间距要等于或者小于工作波长的十分之一,使得构成的中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列可以等效为电壁。
在介质填充波导中,电磁波主模(TE10模)的场强幅度分布规律与介质填充波导端口的宽度有关,如果多个介质填充波导的宽度都一样,其主模的的场强幅度分布规律就相同;而且如果这些介质填充波导输入的功率都是相同的话,则这些介质填充波导端口上的场强幅度大小及分布都相同。来自封装内部电路的电磁波信号从金属化垂直过孔馈线的一端通过天线的输入输出端口进入到基片集成波导喇叭天线,在向天线的口径面方向传播一段距离后,遇到中间的金属化过孔阵列,就分成功率相等的两路分别进入左右两个介质填充波导传输。左右两个介质填充波导完全对称,以左边的介质填充波导为例说明。当电磁波进入左边的介质填充波导传输后一段距离后,将遇到一个金属化过孔阵列,再被分成两路通过介质填充波导向口径面传输;调整左边的介质填充波导该金属化过孔阵列头端的位置以及金属化过孔阵列中多边形顶点的位置,可以使得通过这两个介质填充波导传输的电磁波的功率相等;电磁波在右边的介质填充波导中传输也是同样的情况。以上述方式就可以控制在天线口径面上电磁波的幅度分布,如果保持在天线口径面上四个介质填充波导的端口宽度相等,并调整金属化过孔阵列的头端及多边形顶点的位置使得通过这四个介质填充波导传输电磁波的同功率到达天线口径面,就可以使得在天线口径面上的场强幅度分布一致,这样就可以达到提高天线的口径效率和增益的目的。同理也可以按照需要在天线的口径面上实现特定的场强幅度分布。
有益效果:本发明幅度校准的三维封装表面天线的有益效果是,使得天线口径面上电磁波的幅度分布更均匀,从而提高了在三维封装的表面天线的口径效率和增益。
附图说明
图1为幅度校准的三维封装表面天线的三维封装整体结构图。
图2为幅度校准的三维封装表面天线正面结构示意图。
图3为幅度校准的三维封装表面天线反面结构示意图。
图中有:、金属化垂直过孔馈线1、基片集成波导喇叭天线2、内嵌金属化过孔3、介质基板4、三维封装5,底面金属平面6、底面金属平面圆孔7、内部电路8、顶面金属平面9、金属化垂直过孔馈线顶端圆形焊盘10、金属化过孔喇叭侧壁11、天线的口径面12、天线的窄截面波导13、天线的喇叭形波导14、天线的宽截面波导15、窄截面波导的短路面16、中间金属化过孔阵列17、左边金属化过孔阵列18、右边金属化过孔阵列19、左边介质填充波导20、右边介质填充波导21、第一介质填充波导22、第二介质填充波导23、第三介质填充波导24和第四介质填充波导25。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明所采用的实施方案是:幅度校准的三维封装表面天线由金属化垂直过孔馈线1、基片集成波导喇叭天线2和内嵌金属化过孔3三部分组成,这三部分都集成在同一块介质基板4上,介质基板4在三维封装5的最上面;金属化垂直过孔馈线1垂直贯通介质基板4,金属化垂直过孔馈线1的一端穿过介质基板4底面金属平面6上的圆孔7与三维封装5的内部电路8相连,是天线的输入输出端口,金属化垂直过孔馈线1的另一端的顶端有个圆形焊盘10,圆形焊盘10在介质基板4的顶面金属平面9的圆孔中心,因此金属化垂直过孔馈线顶端圆形焊盘10与介质基板的顶面金属平面9没有直接的电接触;基片集成波导喇叭天线2由底面金属平面7、顶面金属平面9和金属化过孔喇叭侧壁11组成,底面金属平面7和顶面金属平面9分别位于介质基板4的两面,金属化过孔侧壁11连接底面金属平面7和顶面金属平面9;喇叭天线2从天线的输入输出端口到天线的口径面12分为窄截面波导13,喇叭形波导14和宽截面波导15三部分;窄截面波导13的一端被金属化过孔侧壁11短路构成窄截面波导的短路面16,另一端与喇叭形波导14相接,金属化垂直过孔馈线1在窄截面波导13宽边的中心线上;在基片集成波导喇叭天线2中内嵌的金属化过孔3连接底面金属平面7和顶面金属平面9,这些内嵌的金属化过孔3构成中间金属化过孔阵列17、左边金属化过孔阵列18和右边金属化过孔阵列19;中间的金属化过孔阵列17位于喇叭天线两侧壁11中间的位置,在中间的金属化过孔阵列17的两侧,对称的有左边介质填充波导20和右边介质填充波导21;中间金属化过孔阵列17形状是一段直线段,中间金属化过孔阵列17的头端朝着喇叭天线的窄截面波导的短路面16的方向,中间金属化过孔阵列17的尾端伸到喇叭天线的口径面12;在喇叭天线2左边的介质填充波导20中有左边金属化过孔阵列18,把左边介质填充波导20分成第一介质填充波导22和第二介质填充波导23;在喇叭天线右边介质填充波导21中,有一个金属化过孔阵列19,把右边介质填充波导21分成第三介质填充波导24和第四介质填充波导25;左边金属化过孔阵列18和右边金属化过孔阵列19形状都是一段头端直线段接多边形再接一段尾端直线段,左边金属化过孔阵列18和右边金属化过孔阵列19的头端都朝着喇叭天线2的窄截面波导的短路面16的方向、左边金属化过孔阵列18和右边金属化过孔阵列19的尾端在喇叭天线2的口径面12上;中间金属化过孔阵列17、左边金属化过孔阵列18和右边金属化过孔阵列19在天线2的宽截面波导15中形成四个介质填充波导,即第一介质填充波导22、第二介质填充波导23、第三介质填充波导24和第四介质填充波导25。
在介质填充波导中,电磁波主模(TE10模)的场强幅度分布规律与介质填充波导端口的宽度有关,如果多个介质填充波导的宽度都一样,其主模的的场强幅度分布规律就相同;而且如果这些介质填充波导输入的功率都是相同的话,则这些介质填充波导端口上的场强幅度大小及分布都相同。来自内部电路8的电磁波信号从金属化垂直过孔馈线1的一端通过天线的输入输出端口进入到基片集成波导喇叭天线2,传播一段距离后,遇到中间金属化过孔阵列17,由于对称性,电磁波就分成功率相等的两路分别进入左边介质填充波导20和右边介质填充波导21传输。左边介质填充波导20和右边介质填充波导21完全对称,以左边的介质填充波导20为例说明,当电磁波进入左边介质填充波导20传输后一段距离后,将遇到左边金属化过孔阵列18,再被分成两路分别通过第一介质填充波导22和第二介质填充波导23向天线口径面12的方向传输,调整左边介质填充波导20中金属化过孔阵列18的头端的位置以及金属化过孔阵列18中多边形顶点的位置,可以保证通过第一介质填充波导22和第二介质填充波导23传输的电磁波的功率相等;电磁波在右边介质填充波导21中传输也是同样的情况。以上述方式就可以控制在天线口径面12上的电磁波的幅度分布,如果保持在天线口径面12上的第一介质填充波导22、第二介质填充波导23、第三介质填充波导24和第四介质填充波导25的端口宽度都相等,并调整左边金属化过孔阵列18和右边金属化过孔阵列19的头端及多边形顶点的位置使得通过第一介质填充波导22、第二介质填充波导23、第三介质填充波导24和第四介质填充波导25传输电磁波的同功率到达天线口径面12,就可以使得在天线口径面12上第一介质填充波导22、第二介质填充波导23、第三介质填充波导24和第四介质填充波导25的四个端口上的场强幅度分布均一致,这样就达到提高天线口径效率和增益的目的。同理也可以按照需要在天线的口径面12上实现特定的场强幅度分布。
在工艺上,幅度校准的三维封装表面天线既可以采用三维树脂封装工艺,也可以采用低温共烧陶瓷(LTCC)工艺实现。其中金属化过孔3和金属化过孔侧壁11可以是空心金属通孔也可以是实心金属孔,也可以是连续的金属化壁,金属通孔的形状可以是圆形,也可以是方形或者其他形状的。
在结构上,依据同样的原理,可以再加四条金属化过孔阵列把四个介质填充波导分成八个介质填充波导,并使得通过这八个介质填充波导电磁波同幅度到达天线口径面12,这样使得天线口径面12上的幅度分布更为均匀,而且增加天线口径面12上的介质填充波导的数量并不一定要求同时增加天线口径面12的宽度,只要保证介质填充波导能够传输主模就可以。天线左边金属化过孔阵列18和右边金属化过孔阵列19中的多边形可以是三角形、四边形、五边形或其它多边形,这些多边形的一条边或者多条边的形状可以是直线、弧线或其它曲线;中间金属化过孔阵列17、左边金属化过孔阵列18和右边金属化过孔阵列19中的直线段的形状可以是直线、折线、指数线等。
根据以上所述,便可实现本发明。
Claims (5)
1.一种幅度校准的三维封装表面天线,其特征在于该天线包括设置在介质基板(4)上的金属化垂直过孔馈线(1)、基片集成波导喇叭天线(2)和内嵌金属化过孔(3),介质基板(4)在三维封装(5)的最上面;所述金属化垂直过孔馈线(1)与三维封装(5)的内部电路(8)相连;基片集成波导喇叭天线(2)由位于介质基板(4)一面的底面金属平面(6)、位于介质基板(4)另一面的顶面金属平面(9)和穿过介质基板(4)连接底面金属平面(6)、顶面金属平面(9)的金属化过孔喇叭侧壁(11)组成;基片集成波导喇叭天线(2)由窄截面波导(13)、喇叭形波导(14)和宽截面波导(15)串接构成;窄截面波导(13)的一端是短路面(16),窄截面波导(13)的另一端与喇叭形波导(14)相连,喇叭形波导(14)的一端与窄截面波导(13)相连,喇叭形波导(14)的另一端与宽截面波导(15)相连,宽截面波导(15)的另一端是天线口径面(12);基片集成波导喇叭天线(2)中内嵌金属化过孔(3)连接底面金属平面(6)和顶面金属平面(9),并构成中间金属化过孔阵列(17)、左边金属化过孔阵列(18)和右边金属化过孔阵列(19);中间金属化过孔阵列(17)位于基片集成波导喇叭天线(2)的两个侧壁(11)中间的位置,中间金属化过孔阵列(17)的头端朝着喇叭天线窄截面波导的短路面(16)方向,中间金属化过孔阵列(17)的尾端在天线口径面(12)上;中间金属化过孔阵列(17)把基片集成波导喇叭天线(2)分为左右对称的左边介质填充波导(20)和右边介质填充波导(21);左边金属化过孔阵列(18)把左边介质填充波导(20)分成第一介质填充波导(22)和第二介质填充波导(23),右边金属化过孔阵列(19)把右边的介质填充波导(21)分成第三介质填充波导(24)和第四介质填充波导(25);
所述的左边金属化过孔阵列(18)和右边金属化过孔阵列(19)形状都是由头端部分、多边形和尾端部分三段相连构成,左边金属化过孔阵列(18)和右边金属化过孔阵列(19)的头端都朝着喇叭天线窄截面波导的短路面(16)方向,左边金属化过孔阵列(18)和右边金属化过孔阵列(19)的尾端在天线口径面(12)上;
所述的左边金属化过孔阵列(18)和右边金属化过孔阵列(19)中的头端部分和尾端部分的形状是直线、或折线或指数线;左边金属化过孔阵列(18)和右边金属化过孔阵列(19)中的多边形是三角形、或四边形、或五边形或其它边数大于五的多边形;
选择左边金属化过孔阵列(18)中头端部分或多边形在左边介质填充波导(20)中的位置,使得通过第一介质填充波导(22)和第二介质填充波导(23)中传输的两路电磁波等幅到达天线的口径面(12)上辐射;
选择右边金属化过孔阵列(19)中头端部分或多边形在右边介质填充波导(21)中的位置,使得通过第三介质填充波导(24)和第四介质填充波导(25)中传输的两路电磁波等幅到达天线的口径面(12)上辐射。
2.根据权利要求1所述的一种幅度校准的三维封装表面天线,其特征在于所述的金属化垂直过孔馈线(1)的一端穿过介质基板(4)底面金属平面(6)上的圆孔(7)与三维封装(5)的内部电路(8)相连,其另一端顶端有个圆形焊盘(10),金属化垂直过孔馈线顶端圆形焊盘(10)在介质基板(4)的顶面金属平面(9)的圆孔中心,因此金属化垂直过孔馈线顶端圆形焊盘(10)与介质基板(4)的顶面金属平面(9)没有直接的电接触。
3.根据权利要求1所述的一种幅度校准的三维封装表面天线,其特征在于所述的左边介质填充波导(20)和右边介质填充波导(21)的宽度均要保证其主模可 以在左边介质填充波导(20)和右边介质填充波导(21)中传输而不被截止。
4.根据权利要求1所述的一种幅度校准的三维封装表面天线,其特征在于所述的第一介质填充波导(22)、第二介质填充波导(23)、第三介质填充波导(24)和第四介质填充波导(25)的宽度均要保证其主模可以在第一介质填充波导(22)、第二介质填充波导(23)、第三介质填充波导(24)和第四介质填充波导(25)中传输而不被截止。
5.根据权利要求1所述的一种幅度校准的三维封装表面天线,其特征在于金属化过孔喇叭侧壁(11)、中间金属化过孔阵列(17)、左边金属化过孔阵列(18)和右边金属化过孔阵列(19)中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁(11)、中间金属化过孔阵列(17)、左边金属化过孔阵列(18)和右边金属化过孔阵列(19)能够等效为电壁。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210563897.XA CN103022676B (zh) | 2012-12-21 | 2012-12-21 | 幅度校准的三维封装表面天线 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210563897.XA CN103022676B (zh) | 2012-12-21 | 2012-12-21 | 幅度校准的三维封装表面天线 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103022676A CN103022676A (zh) | 2013-04-03 |
CN103022676B true CN103022676B (zh) | 2015-01-28 |
Family
ID=47970968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210563897.XA Expired - Fee Related CN103022676B (zh) | 2012-12-21 | 2012-12-21 | 幅度校准的三维封装表面天线 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103022676B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022670B (zh) * | 2012-12-21 | 2014-11-12 | 东南大学 | 内嵌金属化过孔幅度校准的三维封装表面天线 |
CN104716439A (zh) * | 2015-03-30 | 2015-06-17 | 东南大学 | 缝隙幅度校准的三维封装表面天线 |
KR101709074B1 (ko) * | 2015-11-13 | 2017-02-23 | 현대자동차주식회사 | 안테나 및 이를 포함하는 차량 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3573838A (en) * | 1968-10-28 | 1971-04-06 | Hughes Aircraft Co | Broadband multimode horn antenna |
-
2012
- 2012-12-21 CN CN201210563897.XA patent/CN103022676B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3573838A (en) * | 1968-10-28 | 1971-04-06 | Hughes Aircraft Co | Broadband multimode horn antenna |
Non-Patent Citations (1)
Title |
---|
Hao Wang等."Dielectric Loaded Substrate Integrated Waveguide (SIW) H-Plane Horn Antennas",Hao Wang等,《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》,第58卷第3期,第640-647页.《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》.2010,第58卷(第3期),第1-8栏,附图15-16. * |
Also Published As
Publication number | Publication date |
---|---|
CN103022676A (zh) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103022716B (zh) | 相位幅度校准的平面喇叭天线 | |
CN103022668B (zh) | 相位阻抗校准的封装夹层天线 | |
CN103022674B (zh) | 内嵌金属化过孔相位幅度校准的三维封装表面天线 | |
CN103022676B (zh) | 幅度校准的三维封装表面天线 | |
CN103022675B (zh) | 相位校准的三维封装表面天线 | |
CN103022718B (zh) | 相位幅度校准的三维封装表面天线 | |
CN103022681B (zh) | 内嵌金属化过孔幅度校准的基片集成波导天线 | |
CN103022671B (zh) | 幅度校准的封装夹层天线 | |
CN103022672B (zh) | 相位幅度校准的封装夹层天线 | |
CN103022714B (zh) | 幅度阻抗校准的平面喇叭天线 | |
CN103022712B (zh) | 内嵌金属化过孔相位幅度校准的封装夹层天线 | |
CN103022679B (zh) | 幅度阻抗校准的封装夹层天线 | |
CN103022706B (zh) | 内嵌金属化过孔相位幅度校准的基片集成波导天线 | |
CN103022670B (zh) | 内嵌金属化过孔幅度校准的三维封装表面天线 | |
CN103022710B (zh) | 内嵌金属化过孔幅度校准的封装夹层天线 | |
CN103022713B (zh) | 幅度阻抗校准的三维封装表面天线 | |
CN103022673B (zh) | 相位幅度阻抗校准的封装夹层天线 | |
CN103022677B (zh) | 相位幅度阻抗校准的三维封装表面天线 | |
CN103022680B (zh) | 内嵌金属化过孔相位校准的三维封装表面天线 | |
CN103022678B (zh) | 相位阻抗校准的三维封装表面天线 | |
CN104733867A (zh) | 缝隙相位幅度校准的三维封装表面天线 | |
CN103022711B (zh) | 相位校准的封装夹层天线 | |
CN104779445A (zh) | 缝隙内嵌相位幅度校准的三维封装表面天线 | |
CN104716439A (zh) | 缝隙幅度校准的三维封装表面天线 | |
CN104716438A (zh) | 缝隙内嵌幅度校准的三维封装表面天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150128 Termination date: 20171221 |