CN103022514A - 一种高密度鱼骨状碳纳米载体的制备方法 - Google Patents

一种高密度鱼骨状碳纳米载体的制备方法 Download PDF

Info

Publication number
CN103022514A
CN103022514A CN2012105195863A CN201210519586A CN103022514A CN 103022514 A CN103022514 A CN 103022514A CN 2012105195863 A CN2012105195863 A CN 2012105195863A CN 201210519586 A CN201210519586 A CN 201210519586A CN 103022514 A CN103022514 A CN 103022514A
Authority
CN
China
Prior art keywords
carrier
carbon nano
catalyst
herring
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105195863A
Other languages
English (en)
Other versions
CN103022514B (zh
Inventor
张呈旭
胡觉
孟月东
王祥科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plasma Physics of CAS
Original Assignee
Institute of Plasma Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plasma Physics of CAS filed Critical Institute of Plasma Physics of CAS
Priority to CN201210519586.3A priority Critical patent/CN103022514B/zh
Publication of CN103022514A publication Critical patent/CN103022514A/zh
Application granted granted Critical
Publication of CN103022514B publication Critical patent/CN103022514B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高密度鱼骨状碳纳米载体的制备方法,利用等离子体手段在燃料电池电极气体扩散层上直接生长鱼骨状碳纳米片层结构作为电极催化剂的载体,通过等离子体氛围中有效碳源浓度及速度的控制,制得高密度鱼骨状碳纳米载体。本发明方法高效、无毒、不污染环境,制得的高密度鱼骨状碳纳米载体能为燃料电池催化剂颗粒提供大量活性位点,提高催化剂纳米颗粒在载体上的分散性和结合度,是一种优良的燃料电池催化剂载体。本发明得到的鱼骨状碳纳米载体适用于燃料电池电极,特别适用于电解质膜燃料电池电极。

Description

一种高密度鱼骨状碳纳米载体的制备方法
技术领域
    本发明涉及一种高密度鱼骨状碳纳米载体的制备方法,所述鱼骨状碳纳米载体适用于燃料电池电极,特别适用于电解质膜燃料电池电极。
背景技术
   聚合物电解质膜燃料电池因其高效、清洁、低温的优点,被认为是最有前途、最有竞争力、最有可能实现产业化应用的燃料电池 [R. Borup,et al.,Chem. Rev. 107(2007)3904;R. Dillon,et al.,J. Power Sources 127(2004)112]。其中,直接醇类燃料电池具有效率高、污染小、燃料来源广等特点,是一种极具发展潜力和应用价值的燃料电池 [Y. Wang,et al.,Electrochem. Commun. 5(2003)662;M. Sevilla,et al.,Electrochim. Acta 54(2009)2234;E. Antolini,et al.,J. Power Sources 170(2007)1]。电极作为燃料电池的关键部件,其电催化性能的优劣直接影响燃料电池的整体性能。当前,直接醇类燃料电池电极主要存在以下几个方面的问题:⑴醇类的氧化反应过慢,从而造成Pt催化剂用量过高,利用率低,电池成本较高;⑵在电池的工作过程中,碳载体材料被严重腐蚀,造成Pt团聚失去活性;⑶碳载体受腐蚀以及醇类氧化过程中产生的类CO中间体,造成催化剂中毒 [H. Liu,et al.,J. Power Sources 155(2006)95;S.K. Kamarudin,et al.,J. Power Sources 163(2007)743]。可见,发展稳定的碳载体材料、优化Pt电催化性能、提高Pt利用率是解决上述问题的关键。
    鱼骨状碳纳米片层结构的碳载体表面是暴露的石墨断层,能为电极催化剂颗粒的结合提供大量活性位点,使Pt等催化剂纳米颗粒更易于与之结合,提高催化剂纳米颗粒在载体上的分散性和结合度,是一种优良的燃料电池催化剂载体。可见,高密度鱼骨状碳纳米载体的制备是提高催化剂的电催化性能和电极的稳定性的重要手段。
发明内容
本发明公开了一种高密度鱼骨状碳纳米载体的制备方法,利用等离子体手段在燃料电池电极气体扩散层上直接生长鱼骨状碳纳米片层结构作为电极催化剂的载体,通过等离子体氛围中,有效碳源浓度及速度的控制制得高密度鱼骨状碳纳米载体。
为实现上述目的本发明采用的技术方案如下:
一种高密度鱼骨状碳纳米载体的制备方法,其特征在于:具体步骤如下:
  (1)将电极气体扩散层置于基片台上,采用等离子体喷涂或等离子体溅射方法将金属催化剂负载到电极气体扩散层上,金属催化剂层厚度为2-7nm;
   (2)将步骤(1)反应结束后负载有催化剂的电极气体扩散层置于电感耦合等离子体反应装置中,采用氨气等离子体对电极气体扩散层上的催化剂进行处理,使催化剂呈颗粒状均匀分布,氨气等离子体放电功率为80-150W,电感耦合等离子体反应装置基片台温度保持在350-400℃,电感耦合等离子体反应装置的反应腔体内气体压强为10-20Pa;
   (3)步骤(2)中氨气等离子体处理完毕后,向电感耦合等离子体反应装置的腔体内通入氢气和甲烷混合气体,打开电源,开始等离子体放电,在电极气体扩散层上生长鱼骨状碳纳米载体,生长时间为30-60min,高密度碳纳米载体的获得需要增大有效碳源的浓度及沉积速率,为此,保持等离子体放电功率为200-250W,基片台偏压为–75V- –100V;
   (4)放电结束后,关闭放电电源,基台偏压电源,基片台加热电源,通入保护气体氩气逐渐冷却样品。
所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的金属催化剂选自304不锈钢、铁中的一种。
所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的电极气体扩散层采用碳纸或者负载有碳黑、碳纳米管、碳纳米纤维平整层的碳纸复合材料。
所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的氢气和甲烷混合气体比例为(2-4):1。
本发明实现了在较低温度下(350-400℃)和较短时间内(30-60min)生长高密度鱼骨状碳纳米载体;高密度鱼骨状碳纳米载体的制备方法包括催化剂的氨气处理步骤、碳载体生长过程中有效碳源浓度及速度的控制步骤,这两个步骤是实现低温、短时间生长高密度鱼骨状碳纳米载体的先决条件。
本发明的有益效果是:
本发明方法采用全等离子体手段,干式制备高密度鱼骨状碳纳米载体,高效、无毒、不污染环境;
在电极气体扩散层上直接生长高密度鱼骨状碳纳米载体,能减小碳载体与气体扩散层之间的接触电阻,有效保证电子传输路径通畅,并且避免膜电极制备过程中催化剂颗粒从气体扩散层上脱离、团聚;
本发明制得的鱼骨状碳纳米片层结构的碳载体表面是暴露的石墨断层,能为电极催化剂颗粒的结合提供大量活性位点,使Pt等催化剂纳米颗粒更易于与之结合,提高催化剂纳米颗粒在载体上的分散性和结合度,通过等离子体氛围中,有效碳源浓度及速度的控制提高鱼骨状碳纳米载体的密度,进一步提高催化剂的电催化性能和电极的稳定性,是一种优良的燃料电池催化剂载体。 
附图说明
    图1 鱼骨状碳纳米载体结构示意图。
    图2 鱼骨状碳纳米载体密度分别为4.0×109和8.0×109cm–2时负载Pt催化剂与商品化催化剂(HISPECTM 4000型Pt/C催化剂)的甲醇氧化性能比较示意图。
具体实施方式
实施例1:
将碳纸固定于磁控溅射装置基片台上,依次打开机械泵、分子泵,将反应腔体抽至本底真空(10–3 Pa量级),打开真空阀,向腔体内通入氦气,通过气体质量流量计控制反应气体流量,调节并保持反应腔体内气体压强为3Pa,采用高频等离子体磁控溅射方法将金属催化剂溅射到电极气体扩散层上,高频等离子体放电功率为100W,金属催化剂层厚度为6nm。将负载有催化剂的电极气体扩散层置于电感耦合等离子体反应装置中,采用氨气等离子体对气体扩散层上的催化剂进行处理,使催化剂呈颗粒状均匀分布,氨气等离子体放电功率为100W,基片台温度保持在380℃,腔体内气体压强为20Pa。氨气等离子体处理完毕后,向腔体内通入氢气和甲烷混合气体,氢气和甲烷比例为3.5:1,打开电源,开始等离子体放电,保持等离子体放电功率为250W,基片台偏压为–75V,在电极气体扩散层上生长碳纳米载体,生长时间60min,放电结束后,关闭放电电源,基台偏压电源,基片台加热电源,通入保护气体氩气逐渐冷却样品,即得高密度鱼骨状碳纳米载体。图1为鱼骨状碳纳米载体结构示意图,从图1可以看出本方法制备的鱼骨状碳纳米载体表面为暴露的石墨断层,能为电极催化剂颗粒的结合提供大量活性位点。图2为鱼骨状碳纳米载体密度分别为4.0×109和8.0×109cm–2时负载Pt催化剂与商品化催化剂(英国庄信万丰公司生产HISPECTM 4000型Pt/C催化剂)的甲醇氧化性能比较,通过图2可以看出鱼骨状碳纳米载体负载Pt催化剂的甲醇氧化性能优于商品化催化剂,并且,鱼骨状碳纳米载体密度较高时(8.0×109cm–2)负载Pt催化剂的甲醇氧化性能较优。

Claims (4)

1.一种高密度鱼骨状碳纳米载体的制备方法,其特征在于:具体步骤如下:
   (1)将电极气体扩散层置于基片台上,采用等离子体喷涂或等离子体溅射方法将金属催化剂负载到电极气体扩散层上,金属催化剂层厚度为2-7nm;
   (2)将步骤(1)反应结束后负载有催化剂的电极气体扩散层置于电感耦合等离子体反应装置中,采用氨气等离子体对电极气体扩散层上的催化剂进行处理,使催化剂呈颗粒状均匀分布,氨气等离子体放电功率为80-150W,电感耦合等离子体反应装置基片台温度保持在350-400℃,电感耦合等离子体反应装置的反应腔体内气体压强为10-20Pa;
   (3)步骤(2)中氨气等离子体处理完毕后,向电感耦合等离子体反应装置的腔体内通入氢气和甲烷混合气体,打开电源,开始等离子体放电,在电极气体扩散层上生长鱼骨状碳纳米载体,生长时间为30-60min,高密度碳纳米载体的获得需要增大有效碳源的浓度及沉积速率,为此,保持等离子体放电功率为200-250W,基片台偏压为–75V- –100V;
   (4)放电结束后,关闭放电电源,基台偏压电源,基片台加热电源,通入保护气体氩气逐渐冷却样品。
2.根据权利要求1所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的金属催化剂选自304不锈钢、铁中的一种。
3.根据权利要求1所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的电极气体扩散层采用碳纸或者负载有碳黑、碳纳米管、碳纳米纤维平整层的碳纸复合材料。
4.根据权利要求1所述的高密度鱼骨状碳纳米载体的制备方法,其特征在于:所述的氢气和甲烷混合气体比例为(2-4):1。
CN201210519586.3A 2012-12-06 2012-12-06 一种高密度鱼骨状碳纳米载体的制备方法 Expired - Fee Related CN103022514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210519586.3A CN103022514B (zh) 2012-12-06 2012-12-06 一种高密度鱼骨状碳纳米载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210519586.3A CN103022514B (zh) 2012-12-06 2012-12-06 一种高密度鱼骨状碳纳米载体的制备方法

Publications (2)

Publication Number Publication Date
CN103022514A true CN103022514A (zh) 2013-04-03
CN103022514B CN103022514B (zh) 2016-04-06

Family

ID=47970825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210519586.3A Expired - Fee Related CN103022514B (zh) 2012-12-06 2012-12-06 一种高密度鱼骨状碳纳米载体的制备方法

Country Status (1)

Country Link
CN (1) CN103022514B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277557A (zh) * 2018-03-17 2019-09-24 中国海洋大学 多元素掺杂、高比表面积、纤维状生物碳材料的制备方法与储钠性能

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944244A (zh) * 2006-08-11 2007-04-11 中国科学院等离子体物理研究所 利用大功率等离子体发生器制备碳纳米管的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944244A (zh) * 2006-08-11 2007-04-11 中国科学院等离子体物理研究所 利用大功率等离子体发生器制备碳纳米管的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENGXU ZHANG等: "High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation", 《CARBON》, vol. 50, no. 10, 5 April 2012 (2012-04-05), pages 3731 - 3738, XP028509411, DOI: 10.1016/j.carbon.2012.03.047 *
CHENGXU ZHANG等: "Magnetron sputtering of platinum nanoparticles onto vertically aligned carbon nanofibers for electrocatalytic oxidation of methanol", 《ELECTROCHIMICA ACTA》, vol. 56, no. 17, 3 May 2011 (2011-05-03), pages 6033 - 6040 *
CHEOL JIN LEE等: "Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition", 《CHEMICAL PHYSICS LETTERS》, vol. 341, no. 34, 22 June 2001 (2001-06-22), pages 245 - 249 *
J.H.YEN等: "Synthesis of well-aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition", 《APPLIED PHYSICS A》, vol. 80, no. 2, 10 March 2004 (2004-03-10), pages 415 - 421 *
Z.F.REN等: "Synthesis of large arrays of well-aligned carbon nanotubes on glass", 《SCIENCE》, vol. 282, 6 November 1998 (1998-11-06), pages 1105 - 1107 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277557A (zh) * 2018-03-17 2019-09-24 中国海洋大学 多元素掺杂、高比表面积、纤维状生物碳材料的制备方法与储钠性能

Also Published As

Publication number Publication date
CN103022514B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
Zhang et al. Single Fe atom on hierarchically porous S, N‐codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn‐air batteries
Chen et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs
Zhang et al. Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media
Cavarroc et al. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings
Wei et al. Oxygen reduction on non-noble metal electrocatalysts supported on N-doped carbon aerogel composites
Leimin et al. Investigation of a Novel Catalyst Coated Membrane Method to Prepare Low‐Platinum‐Loading Membrane Electrode Assemblies for PEMFCs
CN109713321A (zh) 一种孔隙结构可调的膜电极及其制备方法
CN102068983B (zh) 一种质子交换膜燃料电池催化剂的制备方法
CN103682384B (zh) 一种全钒液流电池用复合碳电极及其制备方法
Huang et al. Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells
Kwak et al. The effect of platinum loading in the self-humidifying polymer electrolyte membrane on water uptake
CN105032461A (zh) 杂原子掺杂表面带孔石墨烯材料及其制备与应用和装置
Wang et al. Electrooxidation of methanol, ethanol and 1-propanol on pd electrode in alkaline Medium
Shi et al. Study of magnetic field to promote oxygen transfer and its application in zinc–air fuel cells
Xu et al. Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell–effect of catalyst/bonding layer loading
Wang et al. Preparation and performance research of PtSn catalyst supported on carbon fiber for direct ethanol fuel cells
Wang et al. Performance evaluation of functionalized carbon aerogel as oxygen reduction reaction electrocatalyst in zinc-air cell
Park et al. Effects of porous and dense electrode structures of membrane electrode assembly on durability of direct methanol fuel cells
Caillard et al. Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system
Prasanna et al. Effects of platinum loading on performance of proton-exchange membrane fuel cells using surface-modified Nafion® membranes
Lai et al. Influence of methanol crossover on the fuel utilization of passive direct methanol fuel cell
CN103022514B (zh) 一种高密度鱼骨状碳纳米载体的制备方法
Yang et al. Tunable and convenient synthesis of highly dispersed Fe–N x catalysts from graphene-supported Zn–Fe-ZIF for efficient oxygen reduction in acidic media
Lan et al. Nickel-graphene nanocomposite with improved electrochemical performance for La0. 7Mg0. 3 (Ni0. 85Co0. 15) 3.5 electrode
Che et al. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20181206

CF01 Termination of patent right due to non-payment of annual fee