CN103018821B - Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber - Google Patents

Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber Download PDF

Info

Publication number
CN103018821B
CN103018821B CN201210544757.8A CN201210544757A CN103018821B CN 103018821 B CN103018821 B CN 103018821B CN 201210544757 A CN201210544757 A CN 201210544757A CN 103018821 B CN103018821 B CN 103018821B
Authority
CN
China
Prior art keywords
polarization maintaining
stress
maintaining optical
optical fibre
quartzy covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210544757.8A
Other languages
Chinese (zh)
Other versions
CN103018821A (en
Inventor
罗文勇
李诗愈
陈伟
柯一礼
胡福明
莫琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruiguang Telecommunication Technologies Co ltd
Original Assignee
WUHAN WAR SHARP LIGHT TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN WAR SHARP LIGHT TECHNOLOGY Co Ltd filed Critical WUHAN WAR SHARP LIGHT TECHNOLOGY Co Ltd
Priority to CN201210544757.8A priority Critical patent/CN103018821B/en
Publication of CN103018821A publication Critical patent/CN103018821A/en
Application granted granted Critical
Publication of CN103018821B publication Critical patent/CN103018821B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02709Polarisation maintaining fibres, e.g. PM, PANDA, bi-refringent optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

The invention discloses a polarization maintaining optical fiber with a small bending radius and a manufacture method of the polarization maintaining optical fiber and relates to the field of optical fiber manufacture. The polarization maintaining optical fiber comprises a silica cladding, a core layer, a second silica cladding ring, a third fluorine-doped silica cladding ring and two stress cat eyes are sequentially arranged in the silica cladding from inside to outside, and the two stress cat eyes are in central symmetry with the core layer. By means of the manufacture method, the bending radius of the manufactured polarization maintaining optical fiber is smaller than 5mm, operating wavelength of the polarization maintaining optical fiber is 1550nm, and supplementary deterioration of the polarization maintaining optical fiber is under 0.4dB/km. According to the polarization maintaining optical fiber, under the condition that the bending radius is small, low-loss information transmission of the polarization maintaining optical fiber is achieved, low supplementary deterioration and good crosstalk characteristics of the polarization maintaining optical fiber are guaranteed, fiber optic sensors with small sizes can be manufactured by means of the polarization maintaining optical fiber, and requirements of users are satisfied.

Description

A kind of small-bend radius polarization maintaining optical fibre and manufacture method thereof
Technical field
The present invention relates to fiber manufacturing field, relate in particular to a kind of small-bend radius polarization maintaining optical fibre and manufacture method thereof.
Background technology
PMF(Polarization Maintaining Optical Fiber, polarization-maintaining fiber) be called for short polarization maintaining optical fibre, along with the deep development of optical communication field, polarization maintaining optical fibre is widely applied with its good birefringence effect and linear polarization hold facility.
At present, comparatively common polarization maintaining optical fibre comprises covering, the stress appendix that its inside is provided with fibre core and is oppositely arranged along fiber core radius direction.The refractive index contrast of fibre core and covering is 0.3%~0.5%, between the stress appendix being oppositely arranged, is spaced apart 6 μ m~17 μ m, and the diameter of each stress appendix is 21 μ m~32 μ m.This polarization maintaining optical fibre not only has good polarization retention performance, and has lower junction loss.
For example, along with fiber optic sensing device (optical fibre gyro) is gradually to miniaturization development, fiber optic sensing device is had higher requirement to the bending radius of polarization maintaining optical fibre.But above-mentioned polarization maintaining optical fibre is in the situation that guaranteeing additional attenuation, its minimum bending radius is greater than 7.5mm.In the time that the bending radius of polarization maintaining optical fibre is below 7.5mm, the additional attenuation of polarization maintaining optical fibre not only can reach 1dB/km(decibel/km) more than, additional attenuation is higher, and be greater than-20dB/km of the cross-talk of polarization maintaining optical fibre, cross talk characteristic is lower, and the changing value of polarization maintaining optical fibre cross-talk is greater than 5dB.
Because above-mentioned polarization maintaining optical fibre is difficult to guarantee its performance when bending radius is less, therefore above-mentioned polarization maintaining optical fibre is difficult to produce the fiber optic sensing device that size is less, and fiber optic sensing device is difficult to, to miniaturization development, cannot meet people's demand.
Summary of the invention
For the defect existing in prior art, the object of the present invention is to provide a kind of small-bend radius polarization maintaining optical fibre and manufacture method thereof.The polarization maintaining optical fibre producing by method of the present invention can be in the situation that bending radius be less, realize the low-loss communication of polarization maintaining optical fibre, polarization maintaining optical fibre not only can guarantee that its additional attenuation is lower, and cross talk characteristic is better, can produce the fiber optic sensing device that size is less, meet people's demand.
For reaching above object, small-bend radius polarization maintaining optical fibre provided by the invention: comprise the 3rd quartzy covering ring of mixing fluorine, also comprise quartzy covering, mix the stress opal of sandwich layer, the second quartzy covering ring and two boron-dopings of germanium; In described quartzy covering, be provided with successively from the inside to the outside sandwich layer, the second quartzy covering ring, the 3rd quartzy covering ring and stress opal, described stress opal arranges along sandwich layer Central Symmetry, and the bending radius of described polarization maintaining optical fibre is less than 5mm; The operation wavelength of described polarization maintaining optical fibre is 1310nm, and its additional attenuation is below 0.6dB/km; The operation wavelength of described polarization maintaining optical fibre is 1550nm, and its additional attenuation is below 0.4dB/km.
On the basis of technique scheme, the refractive index of described the second quartzy covering ring and quartzy covering is identical.
On the basis of technique scheme, the radius ratio of described the second quartzy covering ring and sandwich layer is 1.5~1.0, the radius ratio of described the 3rd quartzy covering ring and sandwich layer is 1.5~3.0, between two stress opals, the half of bee-line and the ratio of sandwich layer radius are 2.0~4.0, and the radius ratio of described stress opal and sandwich layer is 2.0~8.0.
On the basis of technique scheme, the refractive index contrast of described sandwich layer and quartzy covering is 0.32%~1.5%, the refractive index contrast of described the 3rd quartzy covering ring and quartzy covering is-1.5%~-0.3%, and the refractive index contrast of described stress opal and quartzy covering is-1.0%~-0.3%.
On the basis of technique scheme, the radius of described quartzy covering is 20um, 40um or 62.5um.
The manufacture method of polarization maintaining optical fibre provided by the invention, comprises the following steps:
A, put sleeve pipe in plug outside, form solid bar, described sleeve pipe forms quartzy covering; Described plug comprises sandwich layer, the second quartzy covering ring and the 3rd quartzy covering ring; B, on solid bar, axially offer two stress through holes, described stress through hole arranges along sandwich layer Central Symmetry; Respectively the stress rods of two boron-dopings is combined with a stress through hole and forms stress opal; C, at the temperature of 2000 ℃~2300 ℃, will after described solid bar melting, be drawn into bare fibre, draw rate is 50m/min~350m/min, draw tension is 50g~180g; In pulling process, control air pressure in described stress opal identical, keeping air pressure in stress opal and the pressure difference of ambient pressure is 0.0001Mpa~0.01Mpa;
D, at the temperature of 1200 ℃~1800 ℃, by bare fibre stress relieving by annealing, bare fibre outside from the inside to the outside successively apply in coating and outer layer coating, formation polarization maintaining optical fibre; The bending radius of described polarization maintaining optical fibre is less than 5mm, and the operation wavelength of described polarization maintaining optical fibre is 1310nm, and its additional attenuation is below 0.6dB/km; The operation wavelength of described polarization maintaining optical fibre is 1550nm, and its additional attenuation is below 0.4dB/km.
On the basis of technique scheme, the using plasma of plug described in steps A chemical vapour deposition technique is made in conjunction with sleeve pipe method.
On the basis of technique scheme, the boron-doping in silicon dioxide of the using plasma of stress rods described in step B method is made.
On the basis of technique scheme, the identical process of air pressure of controlling described in step C in described stress opal comprises: by two stress through holes tail pipe that continues respectively, every tail pipe is respectively by a voltage indicating device control air pressure, and all voltage indicating device control is all coordinated to control by a pressure controller.
On the basis of technique scheme, described in step D, the Young modulus of interior coating is 0.1Mpa~50Mpa, and the Young modulus of described outer layer coating is 0.3Gpa~1.0Gpa.
Beneficial effect of the present invention is:
(1) polarization maintaining optical fibre of the present invention is provided with the 3rd quartzy covering ring of mixing fluorine between sandwich layer and stress opal, the 3rd quartzy covering ring not only can effectively promote the counter-bending ability of polarization maintaining optical fibre, and other stress that reduced outside the de-stress opal that polarization maintaining optical fibre is subject to disturb, alleviated because of extraneous factor change bring the disturbance of polarization maintaining optical fibre cross-talk, effectively promoted the cross-talk stability of polarization maintaining optical fibre.
(2) polarization maintaining optical fibre of the present invention is in manufacture process, and two stress opals are connected with two voltage indicating devices respectively, and two voltage indicating devices are all by a pressure controller control.Be drawn in the process of bare fibre at solid bar, each voltage indicating device is independently controlled the air pressure in stress opal, once the air pressure difference in two stress opals can be adjusted two voltage indicating devices by pressure controller.Therefore polarization maintaining optical fibre can guarantee that two air pressure in stress opal are identical during fabrication the moment, not only can realize the in the same size of two stress opals, and the size of two stress opals is all remained in rational scope.In sum, polarization maintaining optical fibre of the present invention not only cross talk characteristic is better, and the stability of the cross-talk of polarization maintaining optical fibre in the time of bending and temperature variation is better.
(3) polarization maintaining optical fibre of the present invention is in manufacture process, and at the temperature of 1200 ℃~1800 ℃, by other interference stress outside the opal that eliminates stress after bare fibre annealing, most stress that the sandwich layer of polarization maintaining optical fibre is subject to come from stress opal; And can become passivation after the annealing of stress opal, it is stable that stress opal not only can keep in the time of end surface grinding, can not burst.
(4) the bend-insensitive characteristic of polarization maintaining optical fibre of the present invention and cross-talk stability characteristic (quality) are better, and the bending radius of polarization maintaining optical fibre minimum is below 5mm.In the time that the operation wavelength of polarization maintaining optical fibre is 1310nm, its added losses are below 0.6dB, and compared with cross-talk when cross-talk when its bending radius is 5mm is 60mm with bending radius, cross-talk when bending radius is 5mm changes below 3dB/km; In the time that the operation wavelength of polarization maintaining optical fibre is 1550nm, its added losses are below 0.4dB, and compared with cross-talk when cross-talk when its bending radius is 5mm is 60mm with bending radius, cross-talk when bending radius is 5mm changes below 3dB/km.
Accompanying drawing explanation
Fig. 1 is the structural representation of polarization maintaining optical fibre of the present invention;
Fig. 2 is the waveguiding structure schematic diagram of polarization maintaining optical fibre of the present invention;
Fig. 3 is the structural representation that polarization maintaining optical fibre of the present invention draws moulding;
Fig. 4 is the schematic diagram of the operation wavelength of polarization maintaining optical fibre of the present invention while being 1310nm;
Fig. 5 is the schematic diagram of the operation wavelength of polarization maintaining optical fibre of the present invention while being 1550nm.
In figure: 1-quartz covering, 2-sandwich layer, the quartzy covering ring of 3-second, 4-stress opal, the quartzy covering ring of 5-the 3rd, 6-solid bar, 7-stress rods, 8-tail pipe, 9-bores end, 10-voltage indicating device, 11-pressure controller, 12-bare fibre, 13-attemperator, 14-tester, 15-coating unit, 16-solidification equipment, 17-deflecting roller, 18-tensiometer, 19-traction wheel, 20-leads tow wheel, 21-locating wheel, 22-receives wire tray tool, 23-heating arrangement.
Embodiment
Below in conjunction with drawings and Examples, the present invention is described in further detail.
First the computing method of refractive index contrast are described.
Refractive index contrast adopts formula to be: Δ=(n1-n2)/(n1+n2) * 100%
In above-mentioned formula, Δ represents refractive index contrast, and n2 represents the refractive index of quartzy covering 1; When calculate between sandwich layer 2 and quartzy covering 1 refractive index contrast time, the n1 in above-mentioned formula represents the refractive index of sandwich layer 2; When calculate between the 3rd quartzy covering ring 5 and quartzy covering 1 refractive index contrast time, the n1 in above-mentioned formula represents the refractive index of the 3rd quartzy covering ring 5; In the time of refractive index contrast between calculated stress opal 4 and quartzy covering 1, the n1 in above-mentioned formula represents the refractive index of stress opal 4.
Shown in Figure 1, the polarization maintaining optical fibre in the embodiment of the present invention comprises quartzy covering 1, and quartzy covering 1 inside is provided with sandwich layer 2, the second quartzy covering ring 3, the 3rd quartzy covering ring 5 of mixing fluorine and the stress opal 4 of boron-doping of mixing germanium from the inside to the outside successively; Stress opal 4 is two, and two stress opals 4 are along sandwich layer 2 Central Symmetry settings.The bending radius of polarization maintaining optical fibre is less than 5mm; The operation wavelength of polarization maintaining optical fibre is 1310nm, and its additional attenuation is below 0.6dB/km; The operation wavelength of polarization maintaining optical fibre is 1550nm, and its additional attenuation is below 0.4dB/km.
Shown in Fig. 1, Fig. 2, the radius of sandwich layer 2 is that r1, its refractive index are n1; The radius of the second quartzy covering ring 3 is that r2, its refractive index are n2; The radius of the 3rd quartzy covering ring 5 is that r3, its refractive index are n3; Between two stress opals 4, the half of bee-line is that r4, its refractive index are n4; The radius of stress opal 4 is that r5, its refractive index are n5; The radius of quartz covering 1 is that r6, its refractive index are n6; Wherein the refractive index of n2, n4 and n6 is identical.
The radius of quartz covering 1 is 20um, 40um or 62.5um; In order to realize the bend-insensitive characteristic of polarization maintaining optical fibre waveguide and good cross-talk and the long performance of bat, the second quartzy covering ring 3 is 1.5~1.0 with the radius ratio of sandwich layer 2, the 3rd quartzy covering ring 5 is 1.5~3.0 with the radius ratio of sandwich layer 2, between two stress opals 4, the ratio of the half of bee-line and sandwich layer 2 radiuses is 2.0~4.0, and stress opal 4 is 2.0~8.0 with the radius ratio of sandwich layer 2.In order to realize mode field diameter, cutoff wavelength, the cross-talk performance that polarization maintaining optical fibre is good and to clap the property such as long, the second quartzy covering ring 3 is identical with the refractive index of quartzy covering 1; Refractive index contrast between sandwich layer 2 and quartzy covering 1 is 0.32%~1.5%, refractive index contrast between the 3rd quartzy covering ring 5 and quartzy covering 1 is-1.5%~-0.3%, and the refractive index contrast between stress opal 4 and quartzy covering 1 is-1.0%~-0.3%.
Shown in Fig. 1, Fig. 3, the manufacture method of polarization maintaining optical fibre in the embodiment of the present invention, comprises the following steps:
S101: using plasma chemical vapour deposition technique is made plug in conjunction with sleeve pipe legal system, plug comprises sandwich layer 2, the second quartzy covering ring 3 and the 3rd quartzy covering ring 5, puts sleeve pipe in plug outside, forms solid bar 6, sleeve pipe forms quartzy covering 1.
S102: axially offer two stress through holes on solid bar 6, described stress through hole is along sandwich layer 2 Central Symmetry settings, adopts diamond head, and in conjunction with machinery location, infrared induction location and electronic-controlled while offering stress through hole.
S103: the stress rods 7 of two boron-dopings is made in the boron-doping in silicon dioxide of using plasma method, the homogeneity of the stress rods 7 that using plasma method is made is better.The surface of stress rods 7 is processed, make the external diameter of stress rods 7 be less than the aperture 0.1 mm~0.2mm of stress through hole, each stress rods 7 is combined with a stress through hole and forms stress opal 4.
S104: by the top of each stress through hole on solid bar 6 or the bottom tail pipe 8 that continues, tail pipe 8 is made up of quartz; Solid bar 6 and tail pipe 8 meltings are integrated.
S105: do not have one end of tail pipe 8 to be drawn into cone end 9 on lathe solid bar 6, to draw polarization maintaining optical fibre.
S106: every tail pipe 8 is connected with a voltage indicating device 10, and all voltage indicating devices 10 are all connected with a pressure controller 11, forms polarization-preserving fiber preform.
S107: polarization-preserving fiber preform is placed on wire-drawer-tower, draws after high-temperature fusion and form bare fibre 12 at the temperature of 2000 ℃~2300 ℃ through heating arrangement 23; In pulling process, in the time that the radius of quartzy covering 1 is 62.5um, draw rate is 50m/min~300m/min, and draw tension is 60g~180g; In the time that the radius of quartzy covering 1 is 40um, draw rate is 50m/min~350m/min, and draw tension is 50g~150g; In the time that the radius of quartzy covering 1 is 20um, draw rate is 50m/min, and draw tension is 50g.
In pulling process, control the air pressure of tail pipe 8 and the stress opal 4 corresponding with tail pipe 8 by voltage indicating device 10, keep the air pressure of two stress opals 4 and the pressure difference of ambient pressure to be 0.0001Mpa~0.01Mpa, so that the diameter of two stress opals 4 of good control.Air pressure difference in pulling process as in two stress opals 4 of discovery, can regulate voltage indicating device 10 by pressure controller 11, identical to guarantee two air pressure in stress opal 4.
S108: be the attemperator 13 of 1200 ℃~1800 ℃ through excess temperature by bare fibre 12, bare fibre 12 is annealed and eliminated stress in attemperator 13, to make the stress that only has stress opal 4 to produce in bare fibre 12.
S109: by bare fibre 12 after tested instrument 14 after testing, successively bare fibre 12 is applied from the inside to the outside through 15, two coating units 15 of two coating units successively in coating and outer layer coating; While applying interior coating and outer layer coating, the coating processes of employing is wet humidification coating processes or dry humidification coating processes, and the curing mode of employing is ultra-violet curing mode or heat curing mode.Be coated with the bare fibre 12 of interior coating and outer layer coating after solidification equipment 16 solidifies, form polarization maintaining optical fibre; The bending radius of polarization maintaining optical fibre is less than 5mm, and when the operation wavelength of polarization maintaining optical fibre is 1310nm, its additional attenuation is below 0.6dB/km; When the operation wavelength of polarization maintaining optical fibre is 1550nm, its additional attenuation is below 0.4dB/km.Polarization maintaining optical fibre is successively through deflecting roller 17, tensiometer 18, traction wheel 19 with lead after tow wheel 20, presses preset sequence receive silk and receiving on wire tray tool 22 by locating wheel 21.
The Young modulus of interior coating is 0.1Mpa~50Mpa, and the Young modulus of interior coating is lower, can cushion the extraneous stress that polarization maintaining optical fibre is subject to.Outer coating material, according to different demands, can be the coating material of normal temperature work, can be also high temperature resistant work coating material; The Young modulus of outer layer coating is 0.3Gpa~1.0Gpa, and the Young modulus of outer layer coating is higher, can form rigid structure, and then bears the extraneous stress producing, and reduces polarization maintaining optical fibre and is subject to extraneous interference.
Below by three specific embodiments, the present invention is specifically described.
Embodiment 1: the radius of quartzy covering 1 is 40um.
Using plasma chemical vapour deposition technique is made plug in conjunction with sleeve pipe legal system, and plug comprises sandwich layer 2, the second quartzy covering ring 3 and the 3rd quartzy covering ring 5; Put sleeve pipe in plug outside, form solid bar 6, sleeve pipe forms quartzy covering 1.On solid bar 6, axially offer two stress through holes, described stress through hole is along sandwich layer 2 Central Symmetry settings, adopts diamond head, and in conjunction with machinery location, infrared induction location and electronic-controlled while offering stress through hole.
The stress rods 7 of two boron-dopings is made in the boron-doping in silicon dioxide of using plasma method, and the homogeneity of the stress rods 7 that using plasma method is made is better.The surface of stress rods 7 is processed, make the external diameter of stress rods 7 be less than aperture 0.1 mm of stress through hole, each stress rods 7 is combined with a stress through hole and forms stress opal 4.By the top (head end) of each stress through hole on solid bar 6 tail pipe 8 that continues, tail pipe 8 is made up of quartz; Solid bar 6 and tail pipe 8 meltings are integrated.Solid bar 6 bottoms (tail end) are drawn into cone end 9 on lathe, to draw polarization maintaining optical fibre.
Every tail pipe 8 is connected with a voltage indicating device 10, and all voltage indicating devices 10 are all connected with a pressure controller 11, form polarization-preserving fiber preform.Polarization-preserving fiber preform is placed on wire-drawer-tower, draws and form bare fibre 12 at the temperature of 2000 ℃~2300 ℃ through heating arrangement 23 after high-temperature fusion, draw rate is 50m/min~350m/min, and draw tension is 50g~150g.In pulling process, control the be-0.01Mpa of air pressure in tail pipe 8 and stress opal 4 by voltage indicating device 10; After a stress through hole shrinks, be less than another stress through hole as found, while causing sandwich layer 2 to be out of shape, regulate the voltage indicating device 10 corresponding with less stress through hole by pressure controller 11, the pressure that this voltage indicating device 10 is exported is turned down.
Air pressure difference in pulling process as in two stress opals 4 of discovery, can regulate voltage indicating device 10 by pressure controller 11, identical to guarantee two air pressure in stress opal 4.While drawing the tail end of polarization-preserving fiber preform, the air pressure in two tail pipes 8 need to reduce, and now controlled pressure controller 11 makes the minimum that two tail pipe 8 internal gas pressures reduce be-0.001Mpa.
By bare fibre 12, through attemperator 13, attemperator 13 is 1800 ℃ near the temperature of top, is 1500 ℃ near the temperature of below, and bare fibre 12 is annealed and eliminated stress in attemperator 13; Coating and outer layer coating in bare fibre 12 is applied from the inside to the outside, the Young modulus of interior coating is 0.1Mpa~50Mpa, the Young modulus of outer layer coating is 0.3Gpa~1.0Gpa.Be coated with the bare fibre 12 of interior coating and outer layer coating after solidification equipment 16 solidifies, form polarization maintaining optical fibre; Polarization maintaining optical fibre is successively through deflecting roller 17, tensiometer 18, traction wheel 19 with lead after tow wheel 20, presses preset sequence receive silk and receiving on wire tray tool 22 by locating wheel 21.
Now adopt said method to make five polarization maintaining optical fibres, its parameter is shown in Table 1, and its additional attenuation and added losses are referring to (in Fig. 4 and Fig. 5, along slope coordinate represents additional attenuation, and lateral coordinates represents added losses) shown in Fig. 4, Fig. 5.Known referring to table 1, Fig. 4 and Fig. 5, for operation wavelength, for the optical fiber 1 and optical fiber 5 of 1310nm, the additional attenuation of optical fiber 1 and optical fiber 5 is respectively 0.53dB/km and 0.43dB/km, is all less than 0.6dB/km.Under the condition that is 5mm in bending radius, the added losses of optical fiber 1 and optical fiber 5 are respectively 0.71dB and 0.75dB, are less than 0.8dB; The absolute value variable quantity that optical fiber 1 and the cross-talk of optical fiber 5 in the time that bending radius is 5mm are 60mm with respect to bending radius is respectively 2.78dB/km and 2.75dB/km, is all less than 3.0dB/km.For operation wavelength, for optical fiber 2, optical fiber 3 and the optical fiber 4 of 1550nm, the additional attenuation of optical fiber 2, optical fiber 3 and optical fiber 4 is respectively 0.35dB/km, 0.39dB/km and 0.38dB/km, is all less than 0.4dB/km.Under the condition that is 5mm in bending radius, the bending added losses of optical fiber 2, optical fiber 3 and optical fiber 4 are respectively 0.80dB, 0.85dB and 0.91dB; The absolute value variable quantity of the cross-talk that optical fiber 2, optical fiber 3 and the cross-talk of optical fiber 4 in the time that bending radius is 5mm are 60mm with respect to bending radius is respectively 2.73dB/km, 2.75dB/km and 2.77dB/km.
The polarization maintaining optical fibre parameter list that quartzy covering 1 radius of table 1 is 40um
  Optical fiber 1 Optical fiber 2 Optical fiber 3 Optical fiber 4 Optical fiber 5
r1?um 3.0 4.0 5.0 6.0 7.5
△n1 1.25% 1.00% 0.85% 0.50% 0.32%
r2/r1 1.5 1.1 1.2 1.3 1.0
r3/r1 3.0 2.6 1.8 1.6 1.5
△n3 -1.50% -1.25% -1.00% -0.50% -0.50%
r4/r1 4.0 3.0 2.5 2.2 2.0
r5/r1 7.0 5.0 4.0 3.0 2.0
△n5 -1.00% -0.90% -0.75% -0.50% -0.40%
Drawing speed m/min 50 100 150 220 350
Drawing tensile force g 50 60 90 120 150
Interior coating Young modulus Mpa 50 20 0.5 0.3 0.1
Outer layer coating Young modulus Gpa 1.0 0.8 0.7 0.6 0.3
In table 1, r1 is sandwich layer radius; △ n1 is the refractive index contrast of sandwich layer 2 and quartzy covering 1; R2/r1 is the radius ratio of the second quartzy covering ring 3 and sandwich layer 2; R3/r1 is the radius ratio of the 3rd quartzy covering ring 5 and sandwich layer 2; △ n3 is the refractive index contrast of the 3rd quartzy covering ring 5 and quartzy covering 1; R4/r1 is the half of bee-line between two stress opals 4 and the ratio of sandwich layer 2 radiuses; R5/r1 is the radius ratio of stress opal 4 and sandwich layer 2; △ n5 is the refractive index contrast of stress opal 4 and quartzy covering 1.
Embodiment 2: the radius of quartzy covering 1 is 62.5um.
Using plasma chemical vapour deposition technique is made plug in conjunction with sleeve pipe legal system, and plug comprises sandwich layer 2, the second quartzy covering ring 3 and the 3rd quartzy covering ring 5; Put sleeve pipe in plug outside and form solid bar 6, sleeve pipe forms quartzy covering 1.On solid bar 6, axially offer two stress through holes, described stress through hole is along sandwich layer 2 Central Symmetry settings, adopts diamond head, and in conjunction with machinery location, infrared induction location and electronic-controlled while offering stress through hole.
The stress rods 7 of two boron-dopings is made in the boron-doping in silicon dioxide of using plasma method, and the homogeneity of the stress rods 7 that using plasma method is made is better.The surface of stress rods 7 is processed, make the external diameter of stress rods 7 be less than aperture 0.2 mm of stress through hole, each stress rods 7 is combined with a stress through hole and forms stress opal 4.By the top (head end) of each stress through hole on solid bar 6 tail pipe 8 that continues, tail pipe 8 is made up of quartz; Solid bar 6 and tail pipe 8 meltings are integrated.Solid bar 6 bottoms (tail end) are drawn into cone end 9 on lathe, to draw polarization maintaining optical fibre.
Every tail pipe 8 is connected with a voltage indicating device 10, and all voltage indicating devices 10 are connected with a pressure controller 11, form polarization-preserving fiber preform.Polarization-preserving fiber preform is placed on wire-drawer-tower, under the condition that is 5mm, after high-temperature fusion, draws and form bare fibre 12 through heating arrangement 23 in bending radius, draw rate is 50m/min~300m/min, and draw tension is 60g~180g.In pulling process, the air pressure of controlling in tail pipe 8 and stress opal 4 by voltage indicating device 10 is-0.005Mpa; After a stress through hole shrinks, be less than another stress through hole as found, while causing sandwich layer 2 to be out of shape, regulate the voltage indicating device 10 corresponding with less stress through hole by pressure controller 11, the pressure that this voltage indicating device 10 is exported is turned down.
Air pressure difference in pulling process as in two stress opals 4 of discovery, can regulate voltage indicating device 10 by pressure controller 11, identical to guarantee two air pressure in stress opal 4.While drawing the tail end of polarization-preserving fiber preform, the air pressure in two tail pipes 8 need to reduce, and now controlled pressure controller 11 makes the minimum that two tail pipe 8 internal gas pressures reduce be-0.001Mpa.
By bare fibre 12, through attemperator 13, attemperator 13 is 1700 ℃ near the temperature of top, is 1200 ℃ near the temperature of below, and bare fibre 12 is annealed and eliminated stress in attemperator 13; Coating and outer layer coating in bare fibre 12 is applied from the inside to the outside, the Young modulus of interior coating is 0.1Mpa~50Mpa, the Young modulus of outer layer coating is 0.3Gpa~1.0Gpa.Be coated with the bare fibre 12 of interior coating and outer layer coating after solidification equipment 16 solidifies, form polarization maintaining optical fibre; Polarization maintaining optical fibre is successively through deflecting roller 17, tensiometer 18, traction wheel 19 with lead after tow wheel 20, presses preset sequence receive silk and receiving on wire tray tool 22 by locating wheel 21.
Now adopt said method to make five polarization maintaining optical fibres, its parameter is shown in Table 2, and its additional attenuation and added losses are referring to (in Fig. 4 and Fig. 5, along slope coordinate represents additional attenuation, and lateral coordinates represents added losses) shown in Fig. 4, Fig. 5.
Known referring to table 2, Fig. 4 and Fig. 5, for operation wavelength, for the optical fiber 6 and optical fiber 10 of 1310nm, the additional attenuation of optical fiber 6 and optical fiber 10 is respectively 0.45dB/km and 0.53dB/km, is all less than 0.6dB/km.Under the condition that is 5mm in bending radius, the added losses of optical fiber 6 and optical fiber 10 are respectively 0.76dB and 0.79dB, are less than 0.8dB; Absolute value variable quantity when optical fiber 6 and the cross-talk of optical fiber 10 in the time that bending radius is 5mm are 60mm with respect to bending radius is respectively 2.72dB/km and 2.77dB/km, is all less than 3.0dB/km.For operation wavelength, for optical fiber 7, optical fiber 8 and the optical fiber 9 of 1550nm, the additional attenuation of optical fiber 7, optical fiber 8 and optical fiber 9 is respectively 0.31dB/km, and 0.35dB/km and 0.36dB/km are all less than 0.4dB/km.Under the condition that is 5mm in bending radius, the bending added losses of optical fiber 7, optical fiber 8 and optical fiber 9 are respectively 0.87dB, 0.92dB and 0.98dB; The absolute value variable quantity of the cross-talk that optical fiber 7, optical fiber 8 and the cross-talk of optical fiber 9 in the time that bending radius is 5mm are 60mm with respect to bending radius is respectively 2.63dB/km, and 2.55dB/km and 2.87dB/km, be all less than 3dB/km.
The parameter list of the polarization maintaining optical fibre that quartzy covering 1 radius of table 2 is 62.5um
  Optical fiber 6 Optical fiber 7 Optical fiber 8 Optical fiber 9 Optical fiber 10
r1(um) 3.5 5.0 6.0 7.0 8.0
△n1 1.50% 1.00% 0.85% 0.50% 0.32%
r2/r1 1 1.1 1.2 1.3 1.5
r3/r1 1.5 2 2.1 2.4 3
△n3 -1.25% -1.00% -0.80% -0.50% -0.30%
r4/r1 2.0 2.5 3.0 3.0 4.0
r5/r1 8.0 6.0 5.0 3.0 2.5
△n5 -0.90% -0.80% -0.70% -0.50% -0.30%
Drawing speed m/min 50 100 150 200 300
Drawing tensile force g 60 80 100 120 180
Interior coating Young modulus Mpa 50.0 20.0 0.5 0.3 0.1
Outer layer coating Young modulus Gpa 1.0 0.8 0.7 0.6 0.3
In table 2, r1 is sandwich layer radius; △ n1 is the refractive index contrast of sandwich layer 2 and quartzy covering 1; R2/r1 is the radius ratio of the second quartzy covering ring 3 and sandwich layer 2; R3/r1 is the radius ratio of the 3rd quartzy covering ring 5 and sandwich layer 2; △ n3 is the refractive index contrast of the 3rd quartzy covering ring 5 and quartzy covering 1; R4/r1 is the half of bee-line between two stress opals 4 and the ratio of sandwich layer 2 radiuses; R5/r1 is the radius ratio of stress opal 4 and sandwich layer 2; △ n5 is the refractive index contrast of stress opal 4 and quartzy covering 1.
Embodiment 3: the radius of quartzy covering 1 is 20um.
The present invention has also carried out the development of the minimum polarization maintaining optical fibre that cladding radius 1 is 20um.The radius of sandwich layer 2 is 3.0um, and sandwich layer 2 is 0.6% with the refractive index contrast of quartzy covering 1.The radius of the second quartzy covering ring 3 is 3.3um, and the second quartzy covering ring 3 is 1.1 with the radius ratio of sandwich layer 2.The radius of the 3rd quartzy covering ring 5 is 4.5um, and the 3rd quartzy covering ring 5 is that 1.5, the three quartzy covering rings 5 are-0.5% with the refractive index contrast of quartzy covering 1 with the radius ratio of sandwich layer 2.Between two stress opals 4, the half of bee-line is 6.0um, and between two stress opals 4, the ratio of the half of bee-line and sandwich layer 2 radiuses is 2.0.The radius of stress opal 4 is 6.0un, and stress opal 4 is 2.0 with the radius ratio of sandwich layer 2, and stress opal 4 and refractive index contrast quartzy covering 1 are-0.8%.While making this polarization maintaining optical fibre, attemperator 13 is 1500 ℃ near the temperature of top, is 1200 ℃ near the temperature of below; Interior coating adopts the 0.1Mpa Young modulus coating of ultra-soft, and outer layer coating adopts the coating of the Young modulus of extremely hard 1.0Gpa.
Draw rate while making this polarization maintaining optical fibre is 50m/min, and draw tension is 50g; In pulling process, the air pressure of controlling in tail pipe 8 and stress opal 4 by voltage indicating device 10 is-0.0001Mpa.After a stress through hole shrinks, be less than another stress through hole as found, while causing sandwich layer 2 to be out of shape, regulate the voltage indicating device 10 corresponding with less stress through hole by pressure controller 11, the pressure that this voltage indicating device 10 is exported is turned down.
The operation wavelength of this polarization maintaining optical fibre is 1310nm, and the additional attenuation of this polarization maintaining optical fibre is 0.58dB/km; Under the condition that this polarization maintaining optical fibre is 3mm in bending radius, added losses are 0.72dB, and the absolute value of the cross-talk variable quantity that the cross-talk that bending radius is 3mm and bending radius are 60mm is 2.85dB/km.
The present invention is not limited to above-mentioned embodiment, for those skilled in the art, under the premise without departing from the principles of the invention, can also make some improvements and modifications, within these improvements and modifications are also considered as protection scope of the present invention.The content not being described in detail in this instructions belongs to the known prior art of professional and technical personnel in the field.

Claims (10)

1. a small-bend radius polarization maintaining optical fibre, is characterized in that: comprise the 3rd quartzy covering ring (5) of mixing fluorine, also comprise quartzy covering (1), mix the stress opal (4) of sandwich layer (2), the second quartzy covering ring (3) and two boron-dopings of germanium; In described quartzy covering (1), be provided with successively from the inside to the outside sandwich layer (2), the second quartzy covering ring (3), the 3rd quartzy covering ring (5) and stress opal (4), described stress opal (4) is along sandwich layer (2) Central Symmetry setting, and the bending radius of described polarization maintaining optical fibre is less than 5mm; The operation wavelength of described polarization maintaining optical fibre is 1310nm, and its additional attenuation is below 0.6dB/km; The operation wavelength of described polarization maintaining optical fibre is 1550nm, and its additional attenuation is below 0.4dB/km.
2. polarization maintaining optical fibre as claimed in claim 1, is characterized in that: described the second quartzy covering ring (3) is identical with the refractive index of quartzy covering (1).
3. polarization maintaining optical fibre as claimed in claim 1, it is characterized in that: described the second quartzy covering ring (3) is 1.5~1.0 with the radius ratio of sandwich layer (2), described the 3rd quartzy covering ring (5) is 1.5~3.0 with the radius ratio of sandwich layer (2), between two stress opals (4), the ratio of the half of bee-line and sandwich layer (2) radius is 2.0~4.0, and described stress opal (4) is 2.0~8.0 with the radius ratio of sandwich layer (2).
4. polarization maintaining optical fibre as claimed in claim 1, it is characterized in that: described sandwich layer (2) is 0.32%~1.5% with the refractive index contrast of quartzy covering (1), described the 3rd quartzy covering ring (5) is-1.5%~-0.3% with the refractive index contrast of quartzy covering (1), and described stress opal (4) is-1.0%~-0.3% with the refractive index contrast of quartzy covering (1);
The formula that described refractive index contrast adopts is: Δ=(n1-n2)/(n1+n2) * 100%, wherein Δ represents refractive index contrast, and n2 represents the refractive index of quartzy covering (1); When calculate sandwich layer (2) and quartzy covering (1) between refractive index contrast time, the n1 in described formula represents the refractive index of sandwich layer (2); When calculate between the 3rd quartzy covering ring (5) and quartzy covering (1) refractive index contrast time, the n1 in described formula represents the refractive index of the 3rd quartzy covering ring (5); In the time of refractive index contrast between calculated stress opal (4) and quartzy covering (1), the n1 in described formula represents the refractive index of stress opal (4).
5. polarization maintaining optical fibre as claimed in claim 1, is characterized in that: the radius of described quartzy covering (1) is 20um, 40um or 62.5um.
6. the manufacture method based on the arbitrary described polarization maintaining optical fibre of claim 1 to 5, is characterized in that, comprises the following steps:
A, put sleeve pipe in plug outside, form solid bar, described sleeve pipe forms quartzy covering (1); Described plug comprises sandwich layer (2), the second quartzy covering ring (3) and the 3rd quartzy covering ring (5);
B, on solid bar, axially offer two stress through holes, described stress through hole is along sandwich layer (2) Central Symmetry setting; Respectively the stress rods of two boron-dopings is combined with a stress through hole and forms stress opal (4);
C, at the temperature of 2000 ℃~2300 ℃, will after described solid bar melting, be drawn into bare fibre, draw rate is 50m/min~350m/min, draw tension is 50g~180g; In pulling process, control the interior air pressure of described stress opal (4) identical, keeping the interior air pressure of stress opal (4) and the pressure difference of ambient pressure is 0.0001Mpa~0.01Mpa;
D, at the temperature of 1200 ℃~1800 ℃, by bare fibre stress relieving by annealing, bare fibre outside from the inside to the outside successively apply in coating and outer layer coating, formation polarization maintaining optical fibre; The bending radius of described polarization maintaining optical fibre is less than 5mm, and the operation wavelength of described polarization maintaining optical fibre is 1310nm, and its additional attenuation is below 0.6dB/km; The operation wavelength of described polarization maintaining optical fibre is 1550nm, and its additional attenuation is below 0.4dB/km.
7. polarization maintaining optical fibre as claimed in claim 6, is characterized in that: the using plasma of plug described in steps A chemical vapour deposition technique is made in conjunction with sleeve pipe method.
8. polarization maintaining optical fibre as claimed in claim 6, is characterized in that: the boron-doping in silicon dioxide of the using plasma of stress rods described in step B method is made.
9. polarization maintaining optical fibre as claimed in claim 6, it is characterized in that, the identical process of air pressure of controlling described in step C in described stress opal (4) comprises: by two stress through holes tail pipe that continues respectively, every tail pipe is respectively by a voltage indicating device control air pressure, and all voltage indicating device control is all coordinated to control by a pressure controller.
10. polarization maintaining optical fibre as claimed in claim 6, is characterized in that: in described in step D, the Young modulus of coating is 0.1Mpa~50Mpa, and the Young modulus of described outer layer coating is 0.3Gpa~1.0Gpa.
CN201210544757.8A 2012-12-14 2012-12-14 Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber Active CN103018821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210544757.8A CN103018821B (en) 2012-12-14 2012-12-14 Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210544757.8A CN103018821B (en) 2012-12-14 2012-12-14 Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
CN103018821A CN103018821A (en) 2013-04-03
CN103018821B true CN103018821B (en) 2014-06-04

Family

ID=47967631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210544757.8A Active CN103018821B (en) 2012-12-14 2012-12-14 Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber

Country Status (1)

Country Link
CN (1) CN103018821B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278881B (en) * 2013-04-27 2016-01-20 江苏亨通光纤科技有限公司 A kind of manufacturing process of high-temperature resistant optical fiber
JP2015184371A (en) * 2014-03-20 2015-10-22 株式会社フジクラ Polarization holding optical fiber
CN104536085B (en) * 2015-01-07 2017-06-20 烽火通信科技股份有限公司 A kind of thin footpath polarization maintaining optical fibre
TWI572850B (en) * 2015-08-24 2017-03-01 國立高雄應用科技大學 Optical fiber sensor manufacturing apparatus and manufacturing method thereof
CN108508529B (en) * 2018-04-04 2019-12-24 长飞光纤光缆股份有限公司 Zero dispersion displacement polarization maintaining optical fiber
CN108845389B (en) * 2018-05-22 2020-05-05 烽火通信科技股份有限公司 Polarization maintaining optical fiber
CN110346866B (en) * 2019-06-12 2020-08-25 烽火通信科技股份有限公司 Panda type polarization maintaining optical fiber
CN110244405B (en) * 2019-06-18 2020-07-07 烽火通信科技股份有限公司 Multiband bow-tie polarization maintaining optical fiber
CN111443423B (en) * 2020-03-12 2022-03-11 烽火通信科技股份有限公司 Radiation-resistant polarization-maintaining optical fiber and preparation method and application thereof
CN112764156B (en) * 2021-01-12 2022-09-16 烽火通信科技股份有限公司 Bending insensitive polarization maintaining optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892268A (en) * 2005-06-29 2007-01-10 株式会社藤仓 Polarization-maintaining optical fiber and optical fiber gyro
WO2012046696A1 (en) * 2010-10-05 2012-04-12 株式会社フジクラ Polarization-maintaining optical fiber
CN102483499A (en) * 2010-08-18 2012-05-30 株式会社藤仓 Polarization maintaining fiber and optical fiber sensor using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0819166B1 (en) * 2007-11-09 2019-03-06 Draka Comteq, B.V. OPTICAL FIBER, AND OPTICAL BOX
JP5871423B2 (en) * 2010-11-26 2016-03-01 古河電気工業株式会社 Optical fiber module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892268A (en) * 2005-06-29 2007-01-10 株式会社藤仓 Polarization-maintaining optical fiber and optical fiber gyro
CN102483499A (en) * 2010-08-18 2012-05-30 株式会社藤仓 Polarization maintaining fiber and optical fiber sensor using same
WO2012046696A1 (en) * 2010-10-05 2012-04-12 株式会社フジクラ Polarization-maintaining optical fiber
CN103154790A (en) * 2010-10-05 2013-06-12 株式会社藤仓 Polarization-maintaining optical fiber

Also Published As

Publication number Publication date
CN103018821A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103018821B (en) Polarization maintaining optical fiber with small bending radius and manufacture method of polarization maintaining optical fiber
CN103193398B (en) A kind of preparation method of high-speed wire-drawing formed high-temperature resistant optical fiber
CN101738681B (en) High bandwidth multimode fiber
US8687936B2 (en) Optical fiber, optical transmission system, and method of making optical fiber
CN102354019B (en) Bent non-sensitive micro-structured optical fiber and production method thereof
EP2638419B1 (en) Multi-core optical fiber ribbons and methods for making the same
CN1316269C (en) Optical fiber having reduced residual stress discontinuity
JP6129270B2 (en) Bending resistant multimode optical fiber
CN101387720B (en) Method of manufacturing polarization maintaining optical fiber
CN109061793B (en) Seven-core small-diameter single-mode optical fiber and manufacturing method thereof
CN107632338B (en) Bending-resistant single-mode optical fiber and manufacturing method thereof
CN103630965B (en) Bending-resistant tapered fiber and method for manufacturing same
CN103323908A (en) Single mode fiber and manufacturing method thereof
CN111443419A (en) Large-mode-field bending-resistant multi-core few-mode optical fiber
CN104597560A (en) Small outer diameter and low loss fiber for air blowing micro cable and manufacture method thereof
US20180217325A1 (en) Bend-resistant mini optical fiber and manufacturing method thereof
CN103399376B (en) A kind of bend-insensitive single-mode optical fiber and manufacture method thereof
CN103364870B (en) A kind of single-mode fiber and manufacture method thereof
CN102826750B (en) Methods for optical fiber manufacture
WO2013140688A1 (en) Method for producing optical fiber
CN103698841B (en) A kind of microstructure fiber device
CN104536087A (en) Multiple-material mixing microstructure fiber and preparation method thereof
CN103323906A (en) High-temperature-resisting optical fiber
CN203350478U (en) High temperature resistant fiber
CN103278881B (en) A kind of manufacturing process of high-temperature resistant optical fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: No.4, Guanshan 2nd Road, Donghu Development Zone, Wuhan, Hubei 430000

Patentee after: RUIGUANG TELECOMMUNICATION TECHNOLOGIES Co.,Ltd.

Address before: 430074 No.4 Guanshan Second Road, Donghu Development Zone, Wuhan City, Hubei Province

Patentee before: WUHAN FENGHUO RUIGUANG TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address