CN103018673B - Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network - Google Patents
Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network Download PDFInfo
- Publication number
- CN103018673B CN103018673B CN201210468407.8A CN201210468407A CN103018673B CN 103018673 B CN103018673 B CN 103018673B CN 201210468407 A CN201210468407 A CN 201210468407A CN 103018673 B CN103018673 B CN 103018673B
- Authority
- CN
- China
- Prior art keywords
- data
- dwnn
- prediction
- life
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910003307 Ni-Cd Inorganic materials 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000003860 storage Methods 0.000 title claims abstract description 27
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 36
- 238000012549 training Methods 0.000 claims abstract description 34
- 230000003044 adaptive effect Effects 0.000 claims abstract description 29
- 230000006872 improvement Effects 0.000 claims abstract description 14
- 238000012360 testing method Methods 0.000 claims description 35
- 238000010219 correlation analysis Methods 0.000 claims description 15
- 238000012952 Resampling Methods 0.000 claims description 13
- 238000007781 pre-processing Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 7
- 238000012804 iterative process Methods 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 6
- 238000013506 data mapping Methods 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 28
- 238000010586 diagram Methods 0.000 description 9
- 206010011906 Death Diseases 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000000556 factor analysis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000004540 process dynamic Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000000714 time series forecasting Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法,实现为:收集所有航天Ni-Cd蓄电池寿命预测相关数据;寿命预测相关数据预处理;数据相关性分析;数据映射并得到Ni-Cd蓄电池放电终压的当量数据值;DWNN网络的改进;一次M-DWNN(1M-DWNN)网络的建立、训练及预测;基于二次M-DWNN(2M-DWNN)网络的自适应迭代预测模型建立、训练及预测;动态时间窗调整;本发明在寿命预测的过程中动态的调整整个DWNN网络,确保在整个寿命预测过程,预测精度随着时间的延长及数据量的增加不断提高。
An aerospace Ni-Cd storage battery life prediction method based on an improved dynamic wavelet neural network, implemented as follows: collect all relevant data of aerospace Ni-Cd storage battery life prediction; preprocess data related to life prediction; analyze data correlation; Equivalent data value of discharge end voltage of Ni-Cd battery; improvement of DWNN network; establishment, training and prediction of primary M-DWNN (1M-DWNN) network; adaptive iteration based on secondary M-DWNN (2M-DWNN) network Prediction model establishment, training and prediction; dynamic time window adjustment; the present invention dynamically adjusts the entire DWNN network during the life prediction process to ensure that the prediction accuracy is continuously improved with the extension of time and the increase of data volume throughout the life prediction process.
Description
技术领域technical field
本发明属于航天Ni-Cd蓄电池寿命预测技术领域,特别是一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法。The invention belongs to the technical field of life prediction of aerospace Ni-Cd accumulators, in particular to a method for predicting the life of aerospace Ni-Cd accumulators based on an improved dynamic wavelet neural network.
背景技术Background technique
寿命预测技术涉及到的范围和领域极其广泛,从原材料的疲劳寿命到复杂成型产品寿命,从民用领域到国防领域都需要寿命预测技术。目前,针对航天Ni-Cd蓄电池的主要寿命预测技术可归纳如下:Life prediction technology involves a wide range of fields and fields, from the fatigue life of raw materials to the life of complex molded products, from the civil field to the national defense field. At present, the main life prediction technologies for aerospace Ni-Cd batteries can be summarized as follows:
a,基于物理模型的寿命预测:该方法对Ni-Cd蓄电池内部的物化过程进行分析,从而建立反映对象演变过程的物理模型,通过相关数据对模型参数进行调整,最后得到需要的寿命预测模型;a, Life prediction based on physical model: This method analyzes the physical and chemical process inside the Ni-Cd battery, so as to establish a physical model reflecting the evolution process of the object, adjust the model parameters through relevant data, and finally obtain the required life prediction model;
b,基于统计模型假设的寿命预测:此类方法首先假设Ni-Cd蓄电池寿命服从某种统计分布,并利用大量已有的寿命数据确定该模型的参数,从而建立Ni-Cd蓄电池的寿命预测模型;b. Life prediction based on statistical model assumptions: This method first assumes that the life of Ni-Cd batteries obeys a certain statistical distribution, and uses a large number of existing life data to determine the parameters of the model, thereby establishing a life prediction model for Ni-Cd batteries ;
c,基于寿命影响因素分析训练的寿命预测:此方法主要通过研究并确定影响Ni-Cd蓄电池的各寿命影响因素,并借助大量的寿命试验数据建立影响因素同寿命之间的关联关系,从而建立Ni-Cd蓄电池的寿命预测模型。c, Life prediction based on life-influencing factor analysis training: This method mainly studies and determines the various life-influencing factors that affect Ni-Cd batteries, and establishes the correlation between the influencing factors and life with the help of a large number of life test data. Life prediction model for Ni-Cd batteries.
对于上述三种方法,基于物理模型的寿命预测需要深入研究Ni-Cd蓄电池的内部机理,其工作量巨大且可移植性相对较差,对于不同型号的Ni-Cd蓄电池需分别建立寿命预测模型;基于统计模型假设及基于寿命影响因素分析训练的寿命预测则需要大量的Ni-Cd蓄电池寿命数据以建立寿命预测模型。考虑到在实际工程应用中,航天Ni-Cd蓄电池,往往会受到各种客观条件限制,不可能存在大量的用于寿命预测的寿命数据。因而,研究一种针对Ni-Cd蓄电池极少寿命数据情况下的寿命预测方法具有重要意义。For the above three methods, life prediction based on physical models requires in-depth study of the internal mechanism of Ni-Cd batteries, which has a huge workload and relatively poor portability. For different types of Ni-Cd batteries, life prediction models need to be established separately; Life prediction based on statistical model assumptions and life-influencing factor analysis training requires a large amount of Ni-Cd battery life data to establish a life prediction model. Considering that in practical engineering applications, aerospace Ni-Cd batteries are often limited by various objective conditions, and it is impossible to have a large amount of life data for life prediction. Therefore, it is of great significance to study a life prediction method for Ni-Cd batteries with very little life data.
人工神经网络(Artificial Neural Network,ANN)是一个模拟大脑神经系统结构和功能,由大量简单处理单元即神经元广泛连接组成的人工网络。它能从已知数据中自动归纳规则,获得这些数据的内在规律,具有很强的非线性映射能力。人工神经网络具有以下几个突出优点:1.高度的并行性;2.高度的非线性全局作用;3.良好的容错性和联想记忆功能;4.十分强的自适应、自学习功能。Artificial Neural Network (ANN) is an artificial network that simulates the structure and function of the nervous system of the brain and is composed of a large number of simple processing units, namely neurons, which are widely connected. It can automatically induce rules from known data, obtain the internal laws of these data, and has a strong nonlinear mapping ability. Artificial neural network has the following outstanding advantages: 1. High degree of parallelism; 2. High degree of non-linear global effect; 3. Good fault tolerance and associative memory function; 4. Very strong self-adaptive and self-learning function.
申请人先前申请的专利,申请号20101022095.1,名称为:一种基于动态双极MPNN的小样本数据对象的寿命预测方法,通过收集寿命预测对象的所有可用数据并对其进行寿命预测相关数据预处理和数据相关性分析;得到这些寿命影响因素同预测对象寿命表征参数间函数关系。然后数据映射并得到预测对象的当量数据值;通过改进的MPNN网络进行一次MPNN网络的训练及预测和二次MPNN网络的训练及预测;最后根据预测对象寿命表征参数的寿命终止判据确定预测对象的寿命值。该项专利通过双极MPNN网络实现了基于小样本数据的蓄电池寿命预测,给出了针对于具有小样本数据特点的一类问题的解决方案,具有较强的通用性。由于该专利核心在于一次与二次MPNN的预测精度,而其中MPNN网络是由具有统计特性的PNN网络改进而成,使得MPNN网络在保留了PNN网络优点的同时也引入了不能很好体现出待预测蓄电池单体特性的不足;此外,在该项专利中,二次MPNN网络使用的迭代预测为不重复训练的单支单步迭代预测,使得蓄电池寿命预测精度偏低,且只有在蓄电池处于严重衰退时期其寿命预测精度才能有所保证,这在很大程度上限制了蓄电池寿命预测的工程应用。The applicant previously applied for a patent, application number 20101022095.1, titled: A life prediction method for small sample data objects based on dynamic bipolar MPNN, by collecting all available data of life prediction objects and performing life prediction related data preprocessing on them and data correlation analysis; obtain the functional relationship between these life-influencing factors and the life-span characterization parameters of the predicted object. Then the data is mapped and the equivalent data value of the predicted object is obtained; the training and prediction of the MPNN network and the training and prediction of the MPNN network for the second time are performed through the improved MPNN network; finally, the predicted object is determined according to the end-of-life criterion of the life characteristic parameter of the predicted object lifetime value. This patent realizes battery life prediction based on small sample data through a bipolar MPNN network, and provides a solution to a class of problems with small sample data characteristics, which has strong versatility. Since the core of this patent lies in the prediction accuracy of the primary and secondary MPNN, and the MPNN network is improved from the PNN network with statistical characteristics, the MPNN network retains the advantages of the PNN network and also introduces a problem that cannot be well reflected. Insufficient prediction of battery cell characteristics; in addition, in this patent, the iterative prediction used by the secondary MPNN network is a single-step iterative prediction without repeated training, which makes the battery life prediction accuracy low, and only when the battery is in serious condition The accuracy of life prediction can only be guaranteed during the recession period, which limits the engineering application of battery life prediction to a large extent.
动态小波神经网络(Dynamic Wavelet Neural Networks,DWNN)是人工神经网络的一种,该网络由输入、WNN、输出、及输出反馈四个部分组成,如图2所示。Dynamic wavelet neural network (Dynamic Wavelet Neural Networks, DWNN) is a kind of artificial neural network, which consists of four parts: input, WNN, output, and output feedback, as shown in Figure 2.
其中,U为外部输入,N为外部输入维数;Y为输出;M为输出反馈节点个数;WNN为标准静态小波神经网络。DWNN的表达式为:Among them, U is the external input, N is the dimension of external input; Y is the output; M is the number of output feedback nodes; WNN is the standard static wavelet neural network. The expression of DWNN is:
Y(t+1)=WNN(Y(t),…,Y(t-M+1),U(t),…,U(t-N))Y(t+1)=WNN(Y(t),…,Y(t-M+1),U(t),…,U(t-N))
由于DWNN网络从多角度构建网络递归,增强对历史信息的记忆容量,在计算过程中呈现过程动态特性,比前馈神经网络和已有递归小波神经网络具有更强的动态行为和计算能力,且同时具有对预测对象总体与个体特性进行分辨分析的能力等优点,被广泛用于实际工程项目。本发明在继承专利申请20101022095.1解决小样本数据对象寿命预测思想的基础上,首先对DWNN进行改进,使改进后的DWNN模型能够更加精细地跟踪蓄电池的衰退过程,同时,利用自适应迭代预测方法提升二次预测精度,进而,大幅度提高蓄电池寿命预测精度,以满足Ni-Cd对象及其数据特点的寿命预测需求。Since the DWNN network builds network recursion from multiple angles, enhances the memory capacity of historical information, and presents process dynamic characteristics during the calculation process, it has stronger dynamic behavior and calculation capabilities than feedforward neural networks and existing recursive wavelet neural networks, and At the same time, it has the advantages of the ability to distinguish and analyze the overall and individual characteristics of the predicted object, and is widely used in actual engineering projects. On the basis of inheriting patent application 20101022095.1 to solve the idea of life prediction for small sample data objects, the present invention firstly improves DWNN, so that the improved DWNN model can track the decline process of the storage battery more precisely, and at the same time, uses the self-adaptive iterative prediction method to improve The secondary prediction accuracy, and then, greatly improve the battery life prediction accuracy to meet the life prediction requirements of Ni-Cd objects and their data characteristics.
发明内容Contents of the invention
本发明技术解决问题:克服现有技术的不足,提供一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法,该方法在保留了申请号20101022095.1优点的基础上,一方面,通过对总体与个体信息具有较强分辨分析能力的DWNN网络的改进,使得本发明具有对单体预测对象的分辨能力,并使改进后的DWNN模型能够更加精细地跟踪蓄电池的衰退过程;另一方面,利用自适应迭代过程构建了2M-DWNN模型,使得蓄电池寿命预测精度得到很好保证;进而,在综合M-DWNN模型与自适应迭代模型基础上,大幅度提升了寿命预测的精度,进一步克服了申请20101022095.1存在的精度偏低的不足。The technical problem of the present invention is to overcome the deficiencies of the prior art, and provide a method for predicting the life of an aerospace Ni-Cd storage battery based on an improved dynamic wavelet neural network. On the basis of retaining the advantages of the application number 20101022095.1, on the one hand, through The improvement of the DWNN network with strong resolution and analysis ability for the overall and individual information enables the present invention to have the resolution ability for single prediction objects, and enables the improved DWNN model to track the decline process of the storage battery more precisely; on the other hand , the 2M-DWNN model was constructed by using the adaptive iterative process, so that the accuracy of battery life prediction is well guaranteed; furthermore, on the basis of the integrated M-DWNN model and adaptive iterative model, the accuracy of life prediction is greatly improved, and further overcome The problem of low precision in the application 20101022095.1 was solved.
本发明提供的航天Ni-Cd蓄电池寿命预测方法总体流程如图1所示,具体通过如下步骤实现:The overall flow of the aerospace Ni-Cd storage battery life prediction method provided by the present invention is shown in Figure 1, and is specifically realized through the following steps:
步骤一、收集所有Ni-Cd蓄电池寿命预测的相关数据;Step 1, collect relevant data of life prediction of all Ni-Cd accumulators;
通过对Ni-Cd蓄电池及相似产品分析,收集可以利用的所有寿命预测相关数据。Collect all relevant data available for life prediction by analyzing Ni-Cd batteries and similar products.
步骤二、寿命预测相关数据预处理;Step 2, data preprocessing related to life prediction;
对步骤一得到的寿命预测数据进行分析和筛选,提取出本发明所需的放电终压参数数据(本发明中的Ni-Cd蓄电池寿命终止判据)及寿命影响因素数据,包括:放电电流数据、充电电流数据、充放电循环次数及放电深度数据等。同时,对筛选出的相关数据进行奇异值剔除、数据降噪等预处理工作。The life prediction data obtained in step 1 is analyzed and screened, and the discharge end voltage parameter data required by the present invention (Ni-Cd storage battery life end criterion in the present invention) and life influencing factor data are extracted, including: discharge current data , charging current data, charge and discharge cycle times and discharge depth data, etc. At the same time, preprocessing work such as singular value elimination and data noise reduction is performed on the screened relevant data.
步骤三、数据相关性分析;Step three, data correlation analysis;
考虑相似产品及Ni-Cd蓄电池的放电深度寿命影响因素,需要通过函数逼近或SPSS方法对相似产品和Ni-Cd蓄电池对应的预处理后的参数进行相关性分析,从而得到相似产品和Ni-Cd蓄电池之间在放电终压上的相关关系。Considering the factors affecting the discharge depth and life of similar products and Ni-Cd batteries, it is necessary to perform correlation analysis on the parameters after pretreatment of similar products and Ni-Cd batteries through function approximation or SPSS methods, so as to obtain similar products and Ni-Cd batteries. Correlation between batteries on discharge terminal voltage.
所述的相关性分析是指通过函数逼近或利用SPSS(统计产品与服务解决方案——Statistical Product and Service Solutions),实现对不同参数数据的相关性分析,从而得到参数数据间的映射关系。The correlation analysis refers to realizing the correlation analysis of different parameter data through function approximation or using SPSS (Statistical Product and Service Solutions), so as to obtain the mapping relationship between parameter data.
步骤四、数据映射并得到Ni-Cd蓄电池放电终压的当量数据值;Step 4, data mapping and obtaining the equivalent data value of the final discharge voltage of the Ni-Cd storage battery;
利用步骤三得到的在各寿命影响因素的作用下,得到的相似产品同Ni-Cd蓄电池放电终压间的相关关系,以参考的相似产品的放电终压数据为基础,映射并得到Ni-Cd蓄电池放电终压的当量数据值,如图4所示“当量-EoDV”曲线,其中,虚曲线表示Ni-Cd蓄电池已有在轨放电终压(EoDV)数据;实曲线为与在轨EoDV曲线具有部分相同影响因素条件下的当量放电终压(ED-EoDV)曲线。Using the relationship between the similar products obtained in step 3 and the end-of-discharge voltage of Ni-Cd batteries under the influence of various life-influencing factors, based on the data of the end-of-discharge voltage of the referenced similar products, map and obtain the Ni-Cd The equivalent data value of the final discharge voltage of the battery is shown in Figure 4 as the "equivalent-EoDV" curve, where the dotted curve indicates that the Ni-Cd battery has on-orbit end-of-discharge voltage (EoDV) data; the solid curve is the same as the on-orbit EoDV curve The equivalent discharge end voltage (ED-EoDV) curve under the condition of some of the same influencing factors.
步骤五、DWNN网络的改进(M-DWNN);Step 5. Improvement of DWNN network (M-DWNN);
根据航天Ni-Cd蓄电池寿命预测精度需求,对DWNN进行改进,改进方案如下:利用DWNN输出数据序列{Yi}构建AR模型(本发明中:{Yi}即为{EoDV_orbi}),包括确定AR模型阶数p及系数ai,i=0,1,2,…,p-1,进而,把AR模型的阶数作为DWNN模型反馈节点数目,即令M=p,AR模型的系数作为各反馈节点的权重系数,并作为WNN模型输入,进而完成对DWNN网络模型的改进。其中,AR模型系数与节点的对应关系为:ai·Y(t-i),i=0,1,2,…,p-1,如图5所示。According to the requirements of aerospace Ni-Cd storage battery life prediction accuracy, DWNN is improved, and the improvement plan is as follows: use the DWNN output data sequence {Yi} to build an AR model (in this invention: {Yi} is {EoDV_orbi}), including determining the AR model The order p and the coefficient a i , i=0,1,2,...,p-1, furthermore, the order of the AR model is taken as the number of feedback nodes of the DWNN model, that is, M=p, and the coefficient of the AR model is taken as each feedback node The weight coefficient is used as the input of the WNN model, and then the improvement of the DWNN network model is completed. Wherein, the corresponding relationship between AR model coefficients and nodes is: a i ·Y(ti), i=0, 1, 2, . . . , p-1, as shown in FIG. 5 .
步骤六、一次M-DWNN(1M-DWNN)网络的建立、训练及预测;Step 6. Establishment, training and prediction of an M-DWNN (1M-DWNN) network;
根据影响因素分析及关联分析结果,确定1M-DWNN输入节点数,输出为经处理后的Ni-Cd蓄电池放电终压(单输出)。利用Ni-Cd蓄电池在轨EoDV及由步骤四得到的ED-EoDV做差分比例处理,如图4所示,构造1M-DWNN的训练样本及测试样本。为了剔除训练样本中的奇异值,加快网络的收敛速度,将由上述构造的输入向量、目标向量进行归一化处理,然后输入1M-DWNN网络对其进行训练,从而确定1M-DWNN网络参数,并利用训练好的1M-DWNN网络进行预测,通过反归一化及反差分过程获取Ni-Cd蓄电池放电终压预测值,进而实现以O-c段曲线为参考,得到放电终压预测结果数据段a-e。According to the analysis of influencing factors and the results of correlation analysis, the number of input nodes of 1M-DWNN is determined, and the output is the final discharge voltage of the treated Ni-Cd battery (single output). Use the Ni-Cd battery on-rail EoDV and the ED-EoDV obtained from step 4 to do differential proportional processing, as shown in Figure 4, to construct the training samples and test samples of 1M-DWNN. In order to eliminate the singular values in the training samples and speed up the convergence speed of the network, the input vector and target vector constructed above are normalized, and then input into the 1M-DWNN network for training, so as to determine the parameters of the 1M-DWNN network, and The trained 1M-DWNN network is used for prediction, and the predicted value of the final discharge voltage of the Ni-Cd battery is obtained through the process of inverse normalization and inverse difference, and then the data segment a-e of the final discharge voltage prediction result is obtained using the O-c segment curve as a reference.
步骤七、基于二次M-DWNN(2M-DWNN)网络的自适应迭代预测模型建立、训练及预测;Step 7. Establishment, training and prediction of an adaptive iterative prediction model based on the secondary M-DWNN (2M-DWNN) network;
确定2M-DWNN输入节点数及输出节点数(单输出)。利用经预处理后Ni-Cd蓄电池放电终压数据和1M-DWNN的放电终压预测结果,构造2M-DWNN的训练及测试样本,即自适应迭代预测,其流程如图6所示。进而开展预测工作,最后根据Ni-Cd蓄电池寿命终止判据确定Ni-Cd蓄电池的寿命值。Determine the number of 2M-DWNN input nodes and output nodes (single output). Using the preprocessed Ni-Cd battery discharge end voltage data and the discharge end voltage prediction results of 1M-DWNN, the training and test samples of 2M-DWNN are constructed, that is, adaptive iterative prediction. The process is shown in Figure 6. Then carry out prediction work, and finally determine the life value of Ni-Cd battery according to the end of life criterion of Ni-Cd battery.
其中,自适应迭代预测模型描述如下:Among them, the adaptive iterative prediction model is described as follows:
(1)自适应迭代预测的数据准备(均值-斜率时间序列构造)(1) Data preparation for adaptive iterative forecasting (mean-slope time series construction)
本发明中的迭代预测模型,对o-e段放电终压值进行分段均值处理,并在此基础上,计算均值的斜率,二次M-DWNN预测即对该均值-斜率时间序列进行自适应迭代预测,图7所示为均值-斜率序列生成图。The iterative prediction model in the present invention performs segmental mean value processing on the final discharge voltage value of the o-e segment, and on this basis, calculates the slope of the mean value, and the second M-DWNN prediction is the self-adaptive iteration of the mean value-slope time series Forecasting, Figure 7 shows the mean-slope sequence generation plot.
(j=1,2,…,n;n=fix(N/interval)) Equ.1(j=1,2,…,n;n=fix(N/interval)) Equ.1
其中,{xi}表示EoDV值序列,长度为N,interval为均值区间,{Avr(j)}为均值序列,长度为n,{s(k)}为均值-斜率序列,长度为n-1,Among them, { xi } represents the EoDV value sequence, the length is N, interval is the mean interval, {Avr(j)} is the mean value sequence, the length is n, {s(k)} is the mean-slope sequence, the length is n- 1,
从步骤(2)开始的后续内容以{s(k)}均值-斜率序列为对象,对自适应迭代预测方法的核心内容进行描述。The follow-up content starting from step (2) takes the {s(k)} mean-slope sequence as the object, and describes the core content of the adaptive iterative forecasting method.
(2)自适应迭代过程(2) Adaptive iterative process
由步骤(1)构造完成均值-斜率时间序列后,开始执行自适应迭代预测的核心内容,具体方法如下:After the mean-slope time series is constructed by step (1), the core content of adaptive iterative prediction is started, and the specific method is as follows:
(2.1)自适应时间序列数据重抽样(2.1) Adaptive time series data resampling
对于给定长度为n的时间序列{Ai j},其中,i,j分别表示原始时间序列迭代预测次数与时间序列的重抽样间隔,则A0 1:={s(k)}=s1,s2,s3,…,sk,…,sn-1,sn,表示原始数据,已迭代预测次数为0,时间序列抽样间隔定义为1,其中‘:=’表示‘定义为’;而A1 2则表示经过一个迭代预测后,重抽样间隔为2的时间序列数据。根据2M-DWNN网络训练样本量的需要等间隔的从A0 1中进行重采样,进而得到新的时间序列:For a given time series {A i j } of length n, where i, j respectively represent the number of iterative predictions of the original time series and the resampling interval of the time series, then A 0 1 :={s(k)}=s 1 ,s 2 ,s 3 ,…,s k ,…,s n-1 ,s n represent the original data, the number of iterated predictions is 0, and the time series sampling interval is defined as 1, where ':=' means the definition is'; and A 1 2 represents the time series data with a resampling interval of 2 after an iterative forecast. According to the requirement of 2M-DWNN network training sample size, resample from A 0 1 at equal intervals to obtain a new time series:
A0 j:Sn-(jn-3),*j’…,Sn-(i+1)*j,Sn-i*j,…,Sn-2*j,Sn-j,Sn A 0 j : S n-(jn-3),*j '...,S n-(i+1)*j ,S ni*j ,...,S n-2*j ,S nj ,S n
[j=1,2,3,…,jmax,n-(jn-1)*j≥1,jn≥Sample_size_min][j=1,2,3,...,jmax,n-(j n -1)*j≥1, j n ≥Sample_size_min]
其中:n为原始时间序列A0 1长度;A0 j表示以重采样间隔为j而得到时间序列,且从原始数据的最后一个数据(sn)开始抽样;jn表示时间序列A0 j的长度,且满足:n-(jn-1)*j≥1,且jn随着j的增大不断减小。假设2M-DWNN网络训练样本量的需求最小值为Sample_size_min,则jn应满足jn≥Sample_size_min。令,jmax=fix(n/(Sample_size_min))为j的最大值,其中fix表示向下取整。如此完成自适应重新抽样过程。Among them: n is the length of the original time series A 0 1 ; A 0 j means that the time series is obtained with a resampling interval of j, and the sampling starts from the last data (s n ) of the original data; j n means the time series A 0 j and satisfy: n-(j n -1)*j≥1, and j n decreases with the increase of j. Assuming that the minimum required sample size for 2M-DWNN network training is Sample_size_min, then j n should satisfy j n ≥ Sample_size_min. Let j max =fix(n/(Sample_size_min)) be the maximum value of j, where fix means rounding down. This completes the adaptive resampling process.
(2.2)自适应重抽样时间序列数据的单步预测(2.2) Single-step forecasting of adaptively resampled time series data
利用单步预测思想,分别构建2M-DWNN模型(构建思想同1M-DWNN相同,都是采用基于AR模型的定阶与系数权重法),对经重抽样得到的时间序列数据进行单步预测。可以得到A0 j的一步预测值,进而得到新的时间序列A0 j′可表示为:Using the idea of single-step forecasting, the 2M-DWNN model is constructed respectively (the construction idea is the same as that of 1M-DWNN, and both adopt the fixed order and coefficient weight method based on the AR model), and perform single-step forecasting on the time series data obtained by resampling. The one-step forecast value of A 0 j can be obtained, and then the new time series A 0 j ′ can be expressed as:
…,Sn-(i+1)*j,Sn-i*j,…,Sn-2*j,Sn-j,Sn,S′n+j …,S n-(i+1)*j ,S ni*j ,…,S n-2*j ,S nj ,S n ,S′ n+j
(j=1,2,3,…jmax)(j=1,2,3,...jmax)
同样的过程完成所有A0 j时间序列,其中j=1,2,3,…,jmax。从而完成一次迭代过程,并得到jmax个预测值,所构成的新时间序列可表示为:The same process completes all A 0 j time series, where j=1,2,3,...,j max . In this way, an iterative process is completed, and j max predicted values are obtained, and the new time series formed can be expressed as:
A1 1:S1,S2,…,Sn-1,Sn,S′n+1,S′n+2,…,S′n+jmax A 1 1 :S 1 ,S 2 ,…,S n-1 ,S n ,S′ n+1 ,S′ n+2 ,…,S′ n+jmax
前面两个步骤实现了由任意时间序列A0 1得到jmax个预测值后的新的时间序列A1 1,进而完成了一次迭代预测过程。当用A1 1替代原始数据A0 1并重复上述过程,如此迭代即可得到A2 1,A3 1,…,Ak 1,…。The first two steps realize the new time series A 1 1 after obtaining j max predicted values from any time series A 0 1 , and then complete an iterative forecasting process. When A 1 1 is used to replace the original data A 0 1 and the above process is repeated, A 2 1 , A 3 1 ,…,A k 1 ,… can be obtained through such iterations.
(3)自适应预测迭代数据结果反变换及Ni-Cd寿命值判定(3) Inverse transformation of adaptive prediction iterative data results and judgment of Ni-Cd life value
通过迭代过程,可以无限多的获取均值-斜率序列Ak 1,为了最终判定蓄电池的寿命,需要对预测得到的均值-斜率序列Ak 1进行反变换,并得到Ni-Cd蓄电池的放电终压序列{x′i},该序列包含已有在轨放电终压数据、1M-DWNN预测结果数据及2M-DWNN迭代预测结果数据。基于{x’i}序列,通过蓄电池寿命判据确定Ni-Cd蓄电池剩余寿命预测值。Through the iterative process, an infinite number of mean-slope sequences A k 1 can be obtained. In order to finally determine the life of the battery, it is necessary to inversely transform the predicted mean-slope sequence A k 1 and obtain the end-of-discharge voltage of the Ni-Cd battery Sequence {x′ i }, which contains the existing on-orbit discharge final voltage data, 1M-DWNN prediction result data and 2M-DWNN iterative prediction result data. Based on {x' i } sequence, the predicted value of remaining life of Ni-Cd battery is determined by battery life criterion.
步骤八、动态时间窗调整;Step 8, dynamic time window adjustment;
在利用M-DWNN对Ni-Cd蓄电池进行预测的过程中,由于时间的推移,会不断获取新的数据。此时,需要动态的(每N天为一个调整周期,N根据实际需要确定)重复上述步骤二到步骤七,重新构建和训练M-DWNN网络(包括1M-DWNN和2M-DWNN模型)以更新网络参数并重新预测,确保保证随着在轨运行时间的延长,预测精度会不断地提升。In the process of using M-DWNN to predict Ni-Cd battery, due to the passage of time, new data will be continuously obtained. At this time, it is necessary to dynamically (every N days is an adjustment period, and N is determined according to actual needs) repeat the above steps 2 to 7 to rebuild and train the M-DWNN network (including 1M-DWNN and 2M-DWNN models) to update Network parameters are re-predicted to ensure that the prediction accuracy will continue to improve as the on-orbit operation time increases.
说明:在寿命预测前期,系统性能稳定,因而,在较长时间段内放电终压变化缓慢。在这段时间内,网络训练的‘动态调整时间窗’可以适当放宽,如:半个月或1个月等。随着预测的进行,系统的性能开始逐步衰退,应适当缩小寿命预测的时间窗宽度(如:一周),以便更加及时和准确的得到蓄电池剩余寿命值。Explanation: In the early stage of life prediction, the performance of the system is stable, so the final discharge voltage changes slowly in a long period of time. During this period, the 'dynamic adjustment time window' for network training can be appropriately relaxed, such as half a month or one month. As the prediction progresses, the performance of the system begins to decline gradually, and the time window width of life prediction should be appropriately reduced (eg: one week), so as to obtain the remaining life value of the battery in a more timely and accurate manner.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
(1)DWNN具有对预测对象总体与个体特性进行分辨分析的能力,使得本发明能有效结合蓄电池单体与总体信息,并给出准确的单体蓄电池寿命预测结果;(1) DWNN has the ability to distinguish and analyze the overall and individual characteristics of the predicted object, so that the present invention can effectively combine the information of the battery cell and the overall information, and provide accurate battery life prediction results;
(2)对DWNN进行改进,使改进后的DWNN模型能够更加精细地跟踪蓄电池的衰退过程,从而首先在模型建立方面保证了预测的精度;(2) Improve the DWNN, so that the improved DWNN model can track the decline process of the battery more precisely, so as to ensure the accuracy of the prediction in terms of model establishment;
(3)所采用的自适应迭代技术具有根据实际数据自适应进行迭代预测能力,提升了二次预测精度;(3) The adaptive iterative technology adopted has the ability to perform iterative prediction adaptively based on the actual data, which improves the accuracy of the secondary prediction;
(4)本发明提出的包括1M-DWNN与2M-DWNN在内的综合预测模型,整体上大幅度提升了寿命预测精度,尤其在蓄电池运行于非严重衰退时期,其蓄电池寿命预测精度可提升约一个数量级。(4) The comprehensive prediction model including 1M-DWNN and 2M-DWNN proposed by the present invention greatly improves the life prediction accuracy on the whole, especially when the battery is not in a severe recession, the battery life prediction accuracy can be improved by about One order of magnitude.
附图说明Description of drawings
图1为航天Ni-Cd蓄电池寿命预测流程图;Figure 1 is a flow chart of aerospace Ni-Cd battery life prediction;
图2为现有经典动态小波神经网络模型图;Fig. 2 is existing classical dynamic wavelet neural network model diagram;
图3为基于改进型DWNN的航天Ni-Cd蓄电池寿命预测控制逻辑图;Figure 3 is the logic diagram of life prediction control of aerospace Ni-Cd battery based on improved DWNN;
图4为本发明中航天Ni-Cd蓄电池寿命预测模型建立过程示意图;Fig. 4 is the schematic diagram of the establishment process of the aerospace Ni-Cd storage battery life prediction model in the present invention;
图5为改进型动态小波神经网络模型图;Fig. 5 is an improved dynamic wavelet neural network model diagram;
图6为本发明中的自适应迭代预测流程图;Fig. 6 is the flowchart of adaptive iterative prediction in the present invention;
图7为均值-斜率序列生成图;Fig. 7 is mean value-slope sequence generation figure;
图8为放电终压原始数据图;Figure 8 is a graph of the original data of the final discharge voltage;
图9为经异常值处理及降噪后放电终压数据图;Figure 9 is a data diagram of the end-of-discharge voltage after abnormal value processing and noise reduction;
图10为1M-DWNN模型结构图;Figure 10 is a structural diagram of the 1M-DWNN model;
图11为1M-DWNN预测测试精度曲线图;Figure 11 is a curve diagram of 1M-DWNN prediction test accuracy;
图12为基于1M-DWNN模型的Ni-Cd蓄电池放电终压衰退预测曲线图;Fig. 12 is a Ni-Cd accumulator battery discharge end-voltage decay prediction curve based on the 1M-DWNN model;
图13为包括2M-DWNN模型预测结果在内的综合M-DWNN预测结果图。Figure 13 is a graph of the comprehensive M-DWNN prediction results including the prediction results of the 2M-DWNN model.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明是一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法,所述的寿命预测方法是一种非参数方法,该方法对现有的DWNN网络进行改进后得到M-DWNN网络,经过对Ni-Cd蓄电池数据的分析及预处理工作后,利用处理完的数据构成1M-DWNN网络的训练集及测试集,经过训练学习之后,利用1M-DWNN网络预测补充历史数据样本;在完成这些工作之后即可以利用2M-DWNN网络开展迭代寿命预测工作,最后根据寿命终止判据确定Ni-Cd蓄电池寿命值,图1所示为本发明的寿命预测方法的总体流程图,图3为寿命预测控制逻辑图,具体实施步骤如下:The present invention is a life prediction method for aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network. The life prediction method is a non-parametric method, and the method improves the existing DWNN network to obtain M-DWNN Network, after the analysis and preprocessing of the Ni-Cd battery data, use the processed data to form the training set and test set of the 1M-DWNN network, after training and learning, use the 1M-DWNN network to predict and supplement historical data samples; After completing these tasks, the 2M-DWNN network can be used to carry out iterative life prediction work, and finally the Ni-Cd accumulator life value is determined according to the end-of-life criterion. Fig. 1 shows the overall flow chart of the life prediction method of the present invention, and Fig. 3 It is the logic diagram of life prediction control, and the specific implementation steps are as follows:
步骤一、收集Ni-Cd蓄电池寿命预测所有可用的寿命预测相关数据;Step 1, collecting all available life prediction related data for Ni-Cd storage battery life prediction;
通过对航天Ni-Cd蓄电池及其相似产品分析,收集可以利用的所有寿命预测相关数据。包括:温度、充电电流、放电电流、放电电量、负载电流数据、充电电量、剩余电量、电压、充放电比等参数数据;对于太阳电池阵,其可用数据为:温度、方阵电流数据、负载电流数据、功率、母线电压、升压器输出电压等参数数据。Through the analysis of aerospace Ni-Cd battery and its similar products, all available life prediction related data are collected. Including: temperature, charging current, discharging current, discharging power, load current data, charging power, remaining power, voltage, charge-discharge ratio and other parameter data; for solar cell arrays, the available data are: temperature, square array current data, load Current data, power, bus voltage, booster output voltage and other parameter data.
所述的相似产品是指在物理结构、逻辑结构及功能结构上,同Ni-Cd蓄电池相似或相同的产品。The similar product refers to a product that is similar or identical to Ni-Cd storage battery in terms of physical structure, logical structure and functional structure.
步骤二、寿命预测相关数据预处理;Step 2, data preprocessing related to life prediction;
对步骤一中得到的寿命预测相关数据进行分析和筛选,提取出Ni-Cd蓄电池的放电终压数据和寿命影响因素,并对寿命影响因素进行分类。The data related to life prediction obtained in step 1 are analyzed and screened, the end-of-discharge data of Ni-Cd batteries and life-influencing factors are extracted, and the life-influencing factors are classified.
所述的Ni-Cd蓄电池的放电终压(EoDV)及参数数据如下:The end-of-discharge voltage (EoDV) and parameter data of the Ni-Cd storage battery are as follows:
(1)相似产品的放电终压(EoDV_sim)的全寿命数据,即从相似产品开始使用到该相似产品寿命终结的历史时间序列数据,其时间序列数据可表示为:{EoDV_simi};(1) The full-life data of the end-of-discharge voltage (EoDV_sim) of similar products, that is, the historical time series data from the beginning of use of similar products to the end of the life of similar products, and the time series data can be expressed as: {EoDV_simi};
(2)Ni-Cd蓄电池在轨运行放电终压(EoDV_orb)的不完全寿命数据,即从Ni-Cd蓄电池开始使用到目前为止所有的时间序列数据,其时间序列数据可表示为:{EoDV_orbi}。(2) The incomplete life data of the end-of-discharge voltage (EoDV_orb) of the Ni-Cd battery on orbit, that is, all the time-series data from the Ni-Cd battery to the present. The time-series data can be expressed as: {EoDV_orbi} .
所述的寿命影响因素及寿命影响因素数据可分为以下两类:The life-influencing factors and life-influencing factor data can be divided into the following two categories:
(1)时间序列寿命影响因素数据:本发明中同Ni-Cd蓄电池放电终压具有相同时间尺度的寿命影响因素数据,这些影响因素数据包括:充电电流数据(Charge Current:CC)、放电电流(Discharge Current:DC)、充放电循环次数,所述的寿命影响因素数据包括相似产品寿命影响因素的全寿命数据及在轨Ni-Cd蓄电池寿命影响因素现有的时间序列数据,且相似产品数据的构成形式及表达方式与在轨Ni-Cd蓄电池放电终压及寿命影响因素类似,具体可分为:相似产品充电电流、相似产品放电电流、相似产品充放电循环数据及在轨Ni-Cd蓄电池充电电流、在轨Ni-Cd蓄电池放电电流、在轨Ni-Cd蓄电池充放电循环次数;(1) Time-series life-influencing factor data: In the present invention, the data of life-influencing factors having the same time scale as the final discharge voltage of Ni-Cd battery, these influencing factor data include: charging current data (Charge Current: CC), discharging current ( Discharge Current: DC), the number of charge-discharge cycles, the data of life-influencing factors include the full-life data of similar product life-influencing factors and the existing time series data of on-orbit Ni-Cd battery life-influencing factors, and the data of similar product data The composition and expression are similar to those of the on-orbit Ni-Cd battery discharge terminal voltage and life-span influencing factors, which can be divided into: similar product charging current, similar product discharge current, similar product charge-discharge cycle data, and on-orbit Ni-Cd battery charging Current, on-rail Ni-Cd battery discharge current, on-rail Ni-Cd battery charge and discharge cycle times;
(2)数据调整寿命影响因素数据:有别于时间序列寿命影响因素数据,此类影响因素数据为有限个数据对,这些数据对是相似产品的历史数据,反应的是相应寿命影响因素参数同寿命之间的对应关系。用于局部调整Ni-Cd蓄电池放电终压(EoDV_sim、EoDV_orb)及充电电流数据(Charge Current:CC)、放电电流(Discharge Current:DC)等时序数据。对于Ni-Cd蓄电池来说,放电深度即为此类寿命影响因素,当放电深度(Depth of Discharge:DOD)为17%时,其对应的寿命值为2万次充放电循环,由此构成一个数据对(17%-20000)。(2) Data adjustment of life-influencing factor data: different from time-series life-influencing factor data, this type of influencing factor data is a limited number of data pairs, these data pairs are historical data of similar products, and reflect the corresponding life-influencing factor parameters with the same Correspondence between life spans. It is used to locally adjust Ni-Cd battery discharge terminal voltage (EoDV_sim, EoDV_orb), charge current data (Charge Current: CC), discharge current (Discharge Current: DC) and other timing data. For Ni-Cd batteries, the depth of discharge is such a life-influencing factor. When the depth of discharge (Depth of Discharge: DOD) is 17%, the corresponding life value is 20,000 charge-discharge cycles, thus forming a Data pairs (17%-20000).
在完成寿命影响因素分类后,对上述Ni-Cd蓄电池的放电终压数据(EoDVi:包括相似产品(EoDV_simi)和在轨Ni-Cd蓄电池的放电终压数据(EoDV_orbi))、充电电流数据放电电流、放电深度(包括相似产品和在轨数据)进行奇异值剔除、数据降噪预处理,进而得到经数据预处理的数据{EoDV_p_simi}、{EoDV_p_orbi}、{CC_p_simi}、{CC_p_orbi}、{DC_p_simi}、{DC_p_orbi}、{C_simi}、{C_orbi}、{DOD_simi}、{DOD_orbi}。在进行寿命预测的过程中,Ni-Cd蓄电池的寿命影响因素数据及在预测过程中对这些数据的操作,必须同相似产品的寿命影响因素数据及其操作一一对应。After completing the classification of life-influencing factors, the discharge end voltage data (EoDVi: including similar products (EoDV_simi) and on-orbit Ni-Cd battery discharge end voltage data (EoDV_orbi)), charging current data, and discharge current data of the above-mentioned Ni-Cd batteries , depth of discharge (including similar products and on-orbit data) for singular value elimination, data noise reduction preprocessing, and then get preprocessed data {EoDV_p_simi}, {EoDV_p_orbi}, {CC_p_simi}, {CC_p_orbi}, {DC_p_simi} , {DC_p_orbi}, {C_simi}, {C_orbi}, {DOD_simi}, {DOD_orbi}. In the process of life prediction, the life-influencing factor data of Ni-Cd battery and the operation of these data in the prediction process must correspond to the life-influencing factor data and operation of similar products.
步骤三、数据相关性分析;Step three, data correlation analysis;
利用SPSS对步骤二中筛选到的放电深度寿命影响因素数据进行相关性分析,从而得到这些寿命影响因素同Ni-Cd蓄电池放电终压数据间函数关系f。Use SPSS to conduct correlation analysis on the data of factors affecting the life of discharge depth screened in step 2, so as to obtain the functional relationship f between these factors affecting life and the end-of-discharge data of the Ni-Cd battery.
步骤四、数据映射并得到预测对象的当量时间序列数据值;Step 4, data mapping and obtaining the equivalent time series data value of the forecast object;
利用步骤三得到的相似产品和Ni-Cd蓄电池之间在放电终压上的相关关系f,以相似产品放电终压数据为基础,映射并得到Ni-Cd蓄电池放电终压的当量放电终压数据{EDEoDVi},如图4实线‘当量-EoDV’所示。Using the correlation f between similar products and Ni-Cd batteries obtained in step 3 on the end-of-discharge voltage, based on the end-of-discharge data of similar products, map and obtain the equivalent end-of-discharge data of the end-of-discharge voltage of Ni-Cd batteries {EDEoDVi}, as shown in the solid line 'Equivalent-EoDV' in Figure 4.
步骤五、DWNN网络的改进(M-DWNN);Step 5. Improvement of DWNN network (M-DWNN);
以在轨蓄电池放电终压时序数据{EoDV_p_orbi}为数据对象,构建AR模型,确定AR模型阶数p及系数ai,i=0,1,2,…,p-1,即令M=p,AR模型的系数作为各反馈节点的权重系数,并作为WNN模型输入,进而完成对DWNN网络模型的改进,其中,AR模型系数与节点的对应关系为:ai·Y(t-i),i=0,1,2,…,p-1,如图5所示。在1M-DWNN及2M-DWNN中都需要分别构建AR模型,以实现对DWNN的改进。其中,1M-DWNN需要构建一个AR模型,2M-DWNN在每次迭代过程中需要构建jmax个AR模型,且建立过程都是以可用的在轨放电终压数据为基础(对于迭代预测,其时序数据为已有及预测的均值-斜率序列)。所述jmax含义由发明内容步骤七(2.1)定义。Taking the time-series data {EoDV_p_orbi} of the final discharge voltage of the on-orbit battery as the data object, construct the AR model, determine the AR model order p and the coefficient a i , i=0,1,2,...,p-1, that is, set M=p, The coefficients of the AR model are used as the weight coefficients of each feedback node and input as the WNN model, and then the improvement of the DWNN network model is completed. The corresponding relationship between the coefficients of the AR model and the nodes is: a i Y(ti), i=0 ,1,2,…,p-1, as shown in Figure 5. Both 1M-DWNN and 2M-DWNN need to build AR models separately to improve DWNN. Among them, 1M-DWNN needs to build an AR model, and 2M-DWNN needs to build j max AR models in each iteration process, and the establishment process is based on the available on-orbit discharge final voltage data (for iterative prediction, its Time series data are existing and predicted mean-slope series). The meaning of j max is defined by step seven (2.1) of the summary of the invention.
步骤六、一次M-DWNN(1M-DWNN)网络的建立、训练及预测;Step 6. Establishment, training and prediction of an M-DWNN (1M-DWNN) network;
对由步骤二得到的Ni-Cd蓄电池放点终压{EoDV_p_orbi}和由步骤四得到的Ni-Cd蓄电池的当量数据值{ED-EoDVi}进行差分比例处理,并作为1M-DWNN网络输出。对由步骤二得到的时间序列寿命影响因素数据(包括相似产品和在轨Ni-Cd蓄电池的充电电流、放点电流、充放电循环次数)进行差分比例处理,作为1M-DWNN网络输入参数,至此,构造出1M-DWNN网络的输入向量和目标向量。The final discharge point voltage {EoDV_p_orbi} of the Ni-Cd battery obtained in step 2 and the equivalent data value {ED-EoDVi} of the Ni-Cd battery obtained in step 4 are differentially processed and output as a 1M-DWNN network. Perform differential proportional processing on the time-series life-influencing factor data (including charging current, discharge point current, and number of charge-discharge cycles of similar products and on-rail Ni-Cd batteries) obtained from step 2, and use it as the input parameter of the 1M-DWNN network, so far , to construct the input vector and target vector of the 1M-DWNN network.
为了实现剔除训练样本中的奇异值,加快网络的收敛速度,将由上述构造的输入向量和目标向量进行归一化处理;然后输入1M-DWNN网络对其进行训练;最后,利用训练好的1M-DWNN神经网络,对寿命指标参数进行预测。经反归一化及反差分后得到1M-DWNN的预测值序列{EoDV_pre_i}。具体过程描述如下:In order to eliminate the singular values in the training samples and speed up the convergence of the network, the input vector and target vector constructed above are normalized; then input into the 1M-DWNN network for training; finally, use the trained 1M- DWNN neural network predicts life index parameters. After denormalization and reverse difference, the predicted value sequence {EoDV_pre_i} of 1M-DWNN is obtained. The specific process is described as follows:
(1)AR模型建立(1) AR model establishment
对由步骤二得到的Ni-Cd蓄电池放点终压{EoDV_p_orbi}和由步骤四得到的Ni-Cd蓄电池的当量数据值{ED-EoDVi}进行差分比例处理,并用于建立AR模型,进而,获取AR模型阶数p及系数{ai},AR模型的基本表达式如下:The final discharge point voltage {EoDV_p_orbi} of the Ni-Cd battery obtained in step 2 and the equivalent data value {ED-EoDVi} of the Ni-Cd battery obtained in step 4 are subjected to differential proportional processing, and used to establish an AR model, and then, to obtain AR model order p and coefficient {a i }, the basic expression of AR model is as follows:
AR:Y(t+1)=a0Y(t)+a1Y(t-1)+…+apY(t-p)+e(t)AR: Y(t+1)=a 0 Y(t)+a 1 Y(t-1)+…+a p Y(tp)+e(t)
其中,e(t)为均值为0的白噪声信号。Among them, e(t) is a white noise signal with a mean value of 0.
(2)1M-DWNN差分比例输入/输出(2) 1M-DWNN differential proportional input/output
如图3所示,经上述步骤分析后,本发明1M-DWNN为三输入单输出网络(外部为三输入、内部输入数由AR模型阶数p确定,本专利中不加特殊说明情况下,所有输入都指外部输入),其输入可描述为:As shown in Figure 3, after the analysis of the above steps, the 1M-DWNN of the present invention is a three-input single-output network (the external is three-input, and the number of internal inputs is determined by the order p of the AR model. In the case of no special instructions in this patent, All inputs refer to external inputs), whose inputs can be described as:
1)差分CC(在轨EoDV对应的充电电流{CC_p_orbi}、与EDEoDV曲线对应的充电电流{CC_p_simi}之间差分)(线性归一化);1) Differential CC (the difference between the charging current {CC_p_orbi} corresponding to the on-rail EoDV and the charging current {CC_p_simi} corresponding to the EDEoDV curve) (linear normalization);
2)差分DC(在轨EoDV对应的放电电流{DC_p_orbi}与ED-EoDV曲线对应的放电电流{DC_p_simi}之间差分)(线性归一化);2) Differential DC (the difference between the discharge current {DC_p_orbi} corresponding to the on-rail EoDV and the discharge current {DC_p_simi} corresponding to the ED-EoDV curve) (linear normalization);
3)循环次数(ED-EoDV曲线对应的充放电循环次数{C_orbi})(反正切归一化);3) Number of cycles (the number of charge and discharge cycles {C_orbi} corresponding to the ED-EoDV curve) (arctangent normalized);
输出为:差分EoDV(在轨{EoDV_p_orbi}与{EoDV_p_simi}之间差分)(线性归一化),经归一化处理后的具体表达式为:The output is: differential EoDV (difference between on-track {EoDV_p_orbi} and {EoDV_p_simi}) (linear normalization), the specific expression after normalization is:
其中:CC_p_orbi及CC_p_simi分别表示第i次循环周期内,在轨EoDV曲线与ED-EoDV曲线对应的放电电流值;DC_p_orbi及DC_p_simi分别表示第i次循环周期内,在轨EoDV曲线与ED-EoDV曲线对应的放电电流值;C_orbi为已充放电循环次数,EoDV_p_orbi及ED_EoDVi分别为在轨EoDV曲线与ED-EoDV曲线上的放电终压值。如图3所示,对于任意点C_orbi存在着相应的ΔEoDVi,而这种差异的存在即是由充电电流、放电电流及充放电循环次数共同作用的结果。由此,可以认为ΔEoDVi是输入向量的函数,且这种函数关系可由Equ.2表达。Among them: CC_p_orbi and CC_p_simi represent the discharge current values corresponding to the on-orbit EoDV curve and ED-EoDV curve in the i-th cycle respectively; DC_p_orbi and DC_p_simi represent the on-orbit EoDV curve and ED-EoDV curve in the i-th cycle respectively Corresponding discharge current value; C_orbi is the number of charge and discharge cycles, EoDV_p_orbi and ED_EoDVi are the final discharge voltage values on the rail EoDV curve and ED-EoDV curve respectively. As shown in Figure 3, there is a corresponding ΔEoDV i for any point C_orbi, and the existence of this difference is the result of the joint action of the charging current, discharging current and the number of charging and discharging cycles. Thus, it can be considered that ΔEoDV i is a function of the input vector, and this functional relationship can be expressed by Equ.2.
(3)1M-DWNN训练、测试及预测(3) 1M-DWNN training, testing and prediction
利用由图4中已有在轨EoDV数据(从O-a段)及其相应的ED-EoDV数据(从O点到b点段),放电电流、充电电流及充放电循环次数构造1M-DWNN网络的输入向量和目标向量,训练/测试并建立1M-DWNN网络。基于1M-DWNN的预测输入,并以b-c段数据为基础预测得到a-e段数据曲线。Using the existing on-track EoDV data (from O-a segment) and its corresponding ED-EoDV data (from O point to b point segment) in Figure 4, discharge current, charge current and charge-discharge cycle times to construct the 1M-DWNN network Input vector and target vector, train/test and build 1M-DWNN network. Based on the prediction input of 1M-DWNN, and based on the b-c segment data, the a-e segment data curve is predicted.
步骤七、基于二次M-DWNN(2M-DWNN)网络的自适应迭代预测模型建立、训练及预测;Step 7. Establishment, training and prediction of an adaptive iterative prediction model based on the secondary M-DWNN (2M-DWNN) network;
以经步骤二预处理的Ni-Cd蓄电池的放电终压数据{EoDV_p_i}(图4中对应的o-a段数据)及由步骤六1M-DWNN网络预测得到的放电终压数据{EoDV_pre_i}(图4中对应的a-e段数据)为基础,在确定Sample_size_min和interval后,依据均值-斜率时间序列的构造方法生成均值-斜率时间序列Aj 0。Based on the end-of-discharge data {EoDV_p_i} of the Ni-Cd battery pretreated in step 2 (corresponding oa segment data in Figure 4) and the end-of-discharge data {EoDV_pre_i} predicted by the 1M-DWNN network in step 6 (Figure 4 Based on the corresponding ae section data in ), after determining the Sample_size_min and interval, the mean-slope time series A j 0 is generated according to the construction method of the mean-slope time series.
由2M-DWNN预测过程描述可知,通过自适应迭代预测,可以实现在单步预测下的大量预测值。在整个2M-DWNN模型建立过程中,由于重抽样后的数据预测及迭代预测在本质上都是相同的,因而,这里仅以Aj i序列为例对2M-DWNN的实施过程加以描述。From the description of the 2M-DWNN prediction process, it can be seen that a large number of prediction values under single-step prediction can be realized through adaptive iterative prediction. In the whole process of building the 2M-DWNN model, since the data prediction after resampling and iterative prediction are essentially the same, here only the A j i sequence is taken as an example to describe the implementation process of 2M-DWNN.
(1)AR模型建立(1) AR model establishment
以生成的Aj i(在给定迭代次数i及重抽样间隔为j条件下,得到的序列,如图6所示)均值-斜率时间序列为数据基础开展单步时间序列为数据基础,建立经典AR模型,并获取AR模型中的阶数p及系数{ai},AR模型的基本表达式如下:Taking the generated A j i (under the condition of given iteration number i and resampling interval j, the sequence obtained, as shown in Figure 6) mean-slope time series as the data basis, carry out the single-step time series as the data basis, establish Classical AR model, and obtain the order p and coefficient {a i } in the AR model, the basic expression of the AR model is as follows:
AR:X(t+1)=a0X(t)+a1X(t-1)+…+apX(t-p)+e(t)AR: X(t+1)=a 0 X(t)+a 1 X(t-1)+…+a p X(tp)+e(t)
其中,e(t)为均值为0的白噪声信号。由此,确定2M-DWNN模型的反馈环节节点数及权重系数,从而构建Aj i数据条件下的2M-DWNN模型。Among them, e(t) is a white noise signal with a mean value of 0. Therefore, the number of feedback link nodes and weight coefficients of the 2M-DWNN model are determined, so as to construct the 2M-DWNN model under the condition of A j i data.
(2)2M-DWNN的数据输入/输出(2) Data input/output of 2M-DWNN
以生成的Aj i均值-斜率时间序列为数据基础开展单步时间序列预测,如图3所示,根据Ni-Cd蓄电池寿命预测的经验或通过实验测试确定2M-DWNN网络的输入节点数,其输出节点数为1。The single-step time series prediction is carried out based on the generated A j i mean-slope time series data, as shown in Figure 3, the number of input nodes of the 2M-DWNN network is determined according to the experience of Ni-Cd battery life prediction or through experimental testing, Its output node number is 1.
(3)2M-DWNN训练、测试及预测(3) 2M-DWNN training, testing and prediction
以4输入单输出为例,此时,2M-DWNN网络的单步功能逻辑关系可表述如下:Taking 4-input and single-output as an example, at this time, the logical relationship of the single-step function of the 2M-DWNN network can be expressed as follows:
k=EoDV_end,(EoDV_end-j),(EoDV_end-2·j),…,(EoDV_end-(Len_j-5)·j)k=EoDV_end, (EoDV_end-j), (EoDV_end-2 j), ..., (EoDV_end-(Len_j-5) j)
其中,EoDV_end、Len_j分别为经过i次迭代预测后所组成的EoDV序列的最后一个值,及在EoDV基础上,以间隔j抽样得到的新序列的时间时序长度。如此,逐步基于建立的均值-斜率时间序列A1 i完成自适应迭代预测过程,最后对得到的预测值进行均值-斜率反变换,得到放电终压序列{x(i)},即可获取图4所示的e-d段在轨EoDV数据曲线及标记寿命终止(寿命判据)位置d点的坐标值d(C_end1,EoDV_threshold),其中C_end1即为Ni-Cd蓄电池的预测寿命。Among them, EoDV_end and Len_j are respectively the last value of the EoDV sequence formed after iterative prediction for i times, and the time sequence length of the new sequence obtained by sampling at interval j on the basis of EoDV. In this way, the adaptive iterative prediction process is completed gradually based on the established mean-slope time series A 1 i , and finally the mean-slope inverse transformation is performed on the obtained predicted value to obtain the end-of-discharge voltage sequence {x(i)}, and the graph The on-orbit EoDV data curve of the ed segment shown in 4 and the coordinate value d(C_end1, EoDV_threshold) of the position d point marking the end of life (life criterion), where C_end1 is the predicted life of the Ni-Cd battery.
步骤八、动态时间窗调整;Step 8, dynamic time window adjustment;
在实际工程中,随着时间的推移,Ni-Cd蓄电池在上述参数上的数据量逐渐增多,新的数据能有效的提升寿命预测精度。根据Ni-Cd蓄电池特点及使用要求,设置相应的动态时间窗值,如:一个月、两周、一周等。之后按照设置的时间窗值,重复上述步骤二到步骤七,对1M-DWNN和2M-DWNN网络进行重新训练和预测,重新确定Ni-Cd蓄电池的寿命值。In actual engineering, with the passage of time, the amount of data on the above parameters of Ni-Cd batteries gradually increases, and new data can effectively improve the accuracy of life prediction. According to the characteristics and usage requirements of Ni-Cd battery, set the corresponding dynamic time window value, such as: one month, two weeks, one week, etc. Then, according to the set time window value, repeat the above steps 2 to 7, retrain and predict the 1M-DWNN and 2M-DWNN networks, and re-determine the life value of the Ni-Cd battery.
本发明在改进型动态小波神经网络(DWNN网络)的基础上通过合理的分析和组织网络输入及输出数据,分阶段的分别构建一次改进型动态小波神经网络(1M-DWNN)和二次改进型动态小波神经网络(2M-DWNN),利用构建的这两个改进型神经网络预测,并得到Ni-Cd蓄电池的寿命值。另外,本发明可以在给定的时间窗前提下更新寿命预测用数据,并重新训练神经网络,进而得到新数据下Ni-Cd蓄电池的寿命值。使用者可以通过寿命预测了解预测对象的剩余使用寿命,从而可以通过配置使用环境来控制Ni-Cd蓄电池寿命及为后勤管理进行决策提供依据,使得在保证Ni-Cd蓄电池的最主要的任务得以实施的前提下,最大限度的、可靠的利用和使用Ni-Cd蓄电池,从而充分发挥Ni-Cd蓄电池的效能。Based on the improved dynamic wavelet neural network (DWNN network), the present invention constructs the first improved dynamic wavelet neural network (1M-DWNN) and the second improved The dynamic wavelet neural network (2M-DWNN) is used to predict and obtain the life value of the Ni-Cd storage battery by using the two improved neural networks constructed. In addition, the present invention can update the data for life prediction under the premise of a given time window, and retrain the neural network, and then obtain the life value of the Ni-Cd storage battery under the new data. Users can know the remaining service life of the predicted object through life prediction, so that they can control the life of Ni-Cd battery by configuring the use environment and provide a basis for decision-making in logistics management, so that the most important task of ensuring Ni-Cd battery can be implemented Under the premise of the maximum, reliable use and use of Ni-Cd batteries, so as to give full play to the performance of Ni-Cd batteries.
下面以我国航天HY-1B小卫星30AhNi-Cd蓄电池为对象,相似产品为地面试验45AhNi-Cd蓄电池为例进一步说明。由于小卫星电源系统的寿命相关数据极少,符合本发明所需要解决的小样本数据寿命预测问题。通过本实施例的详细阐述,进一步说明本发明的实施过程及工程应用过程。The following takes the 30AhNi-Cd storage battery of my country Aerospace HY-1B small satellite as the object, and the similar product is the ground test 45AhNi-Cd storage battery as an example to further explain. Since the life-related data of the power system of the small satellite is very little, it meets the problem of life prediction of small sample data that needs to be solved in the present invention. Through the detailed elaboration of this embodiment, the implementation process and engineering application process of the present invention are further described.
对于HY-1B小卫星Ni-Cd蓄电池,可以用于寿命预测的数据为:在轨蓄电池放电电压数据(不完全数据)、在轨蓄电池放电电流数据(不完全数据)、在轨蓄电池充电电流数据(不完全数据)、在轨蓄电池放电深度数据(不完全数据)、地面蓄电池试验放电终压数据(完全数据)、地面蓄电池试验放电电流数据(恒定)、地面蓄电池试验充电电流数据(恒定)、地面蓄电池试验放电深度数据(恒定)以及历史的放电深度和相应的寿命值5对。For HY-1B small satellite Ni-Cd batteries, the data that can be used for life prediction are: on-orbit battery discharge voltage data (incomplete data), on-orbit battery discharge current data (incomplete data), on-orbit battery charging current data (incomplete data), on-orbit battery discharge depth data (incomplete data), ground battery test discharge final voltage data (complete data), ground battery test discharge current data (constant), ground battery test charging current data (constant), Ground battery test discharge depth data (constant) and historical discharge depth and corresponding life value 5 pairs.
所述的“不完全数据”表示由于在轨蓄电池仍然能够正常工作,仅仅只是完全寿命数据的前一部分时间序列数据。The "incomplete data" means that the on-orbit battery is still able to work normally, and it is only the time series data of the first part of the full life data.
在利用上述用于寿命预测的数据的基础上,应用本发明提出的寿命预测方法对小卫星蓄电池的寿命进行预测,其应用的步骤和方法如下:On the basis of utilizing the above-mentioned data for life prediction, apply the life prediction method proposed by the present invention to predict the life of the small satellite storage battery, the steps and methods of its application are as follows:
步骤一、收集Ni-Cd蓄电池寿命预测所有可用的寿命预测相关数据;Step 1, collecting all available life prediction related data for Ni-Cd storage battery life prediction;
通过对小卫星蓄电池分析,收集可以利用的所有相关数据如下:Through the analysis of small satellite batteries, all relevant data that can be collected are as follows:
预测对象数据——在轨小卫星Ni-Cd蓄电池:Prediction object data - Ni-Cd storage battery for small satellites in orbit:
(1)在轨蓄电池放电电压数据(不完全数据);(1) On-orbit battery discharge voltage data (incomplete data);
(2)在轨蓄电池充电电压数据(不完全数据);(2) On-orbit battery charging voltage data (incomplete data);
(3)在轨蓄电池放电电流数据(不完全数据);(3) On-orbit battery discharge current data (incomplete data);
(4)在轨蓄电池充电电流数据(不完全数据);(4) On-orbit battery charging current data (incomplete data);
(5)在轨蓄电池放电电量数据(不完全数据);(5) On-orbit battery discharge data (incomplete data);
(6)在轨蓄电池充电电量数据(不完全数据);(6) On-orbit battery charge data (incomplete data);
(7)在轨蓄电池温度数据(不完全数据);(7) On-orbit battery temperature data (incomplete data);
(8)在轨蓄电池充放电比(不完全数据);(8) On-orbit battery charge-discharge ratio (incomplete data);
相似产品数据——地面试验Ni-Cd蓄电池:Similar product data - ground test Ni-Cd battery:
(1)地面试验Ni-Cd蓄电池放电终压数据(完全数据);(1) Ground test Ni-Cd battery discharge final voltage data (complete data);
(2)地面试验Ni-Cd蓄电池放电电流数据(恒定);(2) Ground test Ni-Cd battery discharge current data (constant);
(3)地面试验Ni-Cd蓄电池充电电流数据(恒定);(3) Ground test Ni-Cd battery charging current data (constant);
(4)地面试验Ni-Cd蓄电池放电深度数据(恒定);(4) The discharge depth data of the Ni-Cd battery in the ground test (constant);
(5)历史的放电深度和相应的寿命值5对;(5) 5 pairs of historical discharge depth and corresponding life value;
步骤二、寿命预测相关数据预处理;Step 2, data preprocessing related to life prediction;
对步骤一中得到的所有相关数据进行合理的分析,结合上述对本发明的描述,提取出可用于放电终压数据及寿命影响因素数据如下:Reasonably analyze all relevant data obtained in step 1, and in conjunction with the above description of the present invention, extract the data that can be used for the end-of-discharge voltage and life-span influencing factors as follows:
(1)寿命表征参数:(1) Life characterization parameters:
在轨蓄电池放电终压数据{EoDV_orbi}——可由‘在轨小卫星蓄电池放电电压’提取获得;On-orbit battery discharge final voltage data {EoDV_orbi}——can be extracted from the 'on-orbit small satellite battery discharge voltage';
地面试验Ni-Cd蓄电池放电终压数据{EoDV_simi};Ground test Ni-Cd battery discharge final voltage data {EoDV_simi};
(2)寿命影响因素:(2) Factors affecting life expectancy:
地面试验Ni-Cd蓄电池充电电流(CC_sim);Ground test Ni-Cd battery charging current (CC_sim);
地面试验Ni-Cd蓄电池放电电流(DC_sim);Ground test Ni-Cd battery discharge current (DC_sim);
地面试验Ni-Cd蓄电池充放电循环数据(C_sim);Ground test Ni-Cd battery charge and discharge cycle data (C_sim);
在轨Ni-Cd蓄电池充电电流(CC_orb);On-orbit Ni-Cd battery charging current (CC_orb);
在轨Ni-Cd蓄电池放电电流(DC_orb);On-orbit Ni-Cd battery discharge current (DC_orb);
在轨Ni-Cd蓄电池充放电循环次数(C_orb);On-orbit Ni-Cd battery charge and discharge cycle times (C_orb);
在轨蓄电池放电深度数据(DOD_orb)——可由‘在轨蓄电池放电电量数据’提取获得;On-orbit battery discharge depth data (DOD_orb) - can be extracted from the 'on-orbit battery discharge power data';
地面试验Ni-Cd蓄电池放电深度数据(DOD_sim);Ground test Ni-Cd battery depth of discharge data (DOD_sim);
历史的放电深度和相应的寿命值5对;5 pairs of historical discharge depth and corresponding life value;
对上述数据进行奇异值剔除,数据降噪预处理工作。图8、图9为经奇异值剔处理及降噪前后地面蓄电池试验放电终压数据图。从图中对比可以看出,经剔值及降噪后的数据比较规整、波动性更小。另外,需要从在轨蓄电池放电电压中获取在轨蓄电池放电终压数据,以表征在轨蓄电池的性能和寿命状况。Perform singular value elimination and data noise reduction preprocessing on the above data. Fig. 8 and Fig. 9 are data diagrams of the final discharge voltage data of the ground battery test before and after singular value removal processing and noise reduction. From the comparison in the figure, it can be seen that the data after value removal and noise reduction are more regular and less volatile. In addition, it is necessary to obtain the discharge end voltage data of the on-rail battery from the discharge voltage of the on-rail battery to characterize the performance and life of the on-rail battery.
步骤三、数据相关性分析;Step three, data correlation analysis;
通过函数逼近或SPSS对地面试验Ni-Cd蓄电池和在轨Ni-Cd蓄电池对应的预处理后的参数进行相关性分析。根据Ni-Cd蓄电池的在轨实际17%放电深度和地面试验Ni-Cd蓄电池30%放电深度建立起Ni-Cd蓄电池寿命同参考的地面试验Ni-Cd蓄电池寿命之间的相关关系f:1:1.7。Through function approximation or SPSS, the correlation analysis is carried out on the parameters after pretreatment corresponding to the ground test Ni-Cd battery and the in-orbit Ni-Cd battery. According to the actual 17% discharge depth of the Ni-Cd battery on the track and the 30% discharge depth of the ground test Ni-Cd battery, the correlation between the Ni-Cd battery life and the reference ground test Ni-Cd battery life is established f: 1: 1.7.
步骤四、数据映射并得到预测对象的当量时间序列数据值;Step 4, data mapping and obtaining the equivalent time series data value of the forecast object;
利用步骤三得到的相关关系f:1:1.7,以地面试验Ni-Cd蓄电池放电终压数据为基础,映射并得到Ni-Cd蓄电池放电终压的当量放电终压数据{EDEoDVi},如图4实线‘当量EoDV’所示。Using the correlation f: 1:1.7 obtained in step 3, based on the discharge end voltage data of the Ni-Cd battery in the ground test, map and obtain the equivalent discharge end voltage data {EDEoDVi} of the discharge end voltage of the Ni-Cd battery, as shown in Figure 4 The solid line 'Equivalent EoDV' is shown.
步骤五、DWNN网络的改进(M-DWNN);Step 5. Improvement of DWNN network (M-DWNN);
本部分的具体改进及参数设置参见步骤六、七中的AR模型建立。For the specific improvements and parameter settings in this part, please refer to the establishment of the AR model in steps 6 and 7.
步骤六、一次M-DWNN(1M-DWNN)网络的建立、训练及预测;Step 6. Establishment, training and prediction of an M-DWNN (1M-DWNN) network;
以{EoDV_p_orbi}和{ED-EoDVi}的差分数据结果为对象,所构建的AR模型参数如为:p=4,ai={-0.632,0.545,-0.021,0.162},进而,1M-DWNN反馈节点数M=4,且加权系数可知。由于1M-DWNN网络的输入节点数为三,基于Equ.2,确立所建立1M-DWNN模型如图10所示。Taking the differential data results of {EoDV_p_orbi} and {ED-EoDVi} as the object, the constructed AR model parameters are as follows: p=4,a i ={-0.632,0.545,-0.021,0.162}, and then, 1M-DWNN The number of feedback nodes is M=4, and the weighting coefficient is known. Since the number of input nodes of the 1M-DWNN network is three, based on Equ.2, the established 1M-DWNN model is shown in Figure 10.
按照1M-DWNN网络的输入与输出数据要求,利用经归一化处理后的在轨Ni-Cd蓄电池充电电流(CC_p_orb)、在轨Ni-Cd蓄电池放电电流(DC_p_orb)、在轨放电终压数据{EoDV_p_orbi}、地面试验Ni-Cd蓄电池充电电流(CC_p_sim)、地面试验Ni-Cd蓄电池放电电流(DC_p_sim)充放电循环次数及由步骤四得到的当量放电终压数据{ED_EoDVi}构造1M-DWNN网络的输入向量和目标向量,训练/测试并建立1M-DWNN网络,训练及预测相关具体参数如下:According to the input and output data requirements of the 1M-DWNN network, use the normalized on-rail Ni-Cd battery charging current (CC_p_orb), on-rail Ni-Cd battery discharge current (DC_p_orb), and on-rail discharge final voltage data {EoDV_p_orbi}, ground test Ni-Cd battery charging current (CC_p_sim), ground test Ni-Cd battery discharge current (DC_p_sim) charge and discharge cycle times and equivalent discharge end voltage data {ED_EoDVi} obtained from step 4 to construct 1M-DWNN network The input vector and target vector, train/test and establish 1M-DWNN network, the specific parameters related to training and prediction are as follows:
训练时间:2.3153sTraining time: 2.3153s
预测精度:均方误差MSE=0.0143Prediction accuracy: mean square error MSE=0.0143
图11所示为1M-DWNN预测测试精度曲线,从图中可以看出1M-DWNN能够很好的跟踪蓄电池性能退化过程。Figure 11 shows the 1M-DWNN prediction test accuracy curve. It can be seen from the figure that 1M-DWNN can track the battery performance degradation process very well.
1M-DWNN网络输出为相应充放电循环次数下对应的差分归一化值,经反归一化及反差分后可得在轨放电终压值,图12为基于1M-DWNN模型的Ni-Cd蓄电池放电终压衰退预测曲线,总体上很好地跟踪了已有在轨放电终压数据趋势。The output of the 1M-DWNN network is the corresponding normalized value of the difference under the corresponding number of charge and discharge cycles. After denormalization and reverse difference, the final voltage value of the on-rail discharge can be obtained. Figure 12 shows the Ni-Cd based on the 1M-DWNN model The battery discharge end-voltage decline prediction curve generally follows the trend of the existing on-orbit discharge end-voltage data well.
步骤七、基于二次M-DWNN(2M-DWNN)网络的自适应迭代预测建立、训练及预测;Step 7. Establishment, training and prediction of adaptive iterative prediction based on the secondary M-DWNN (2M-DWNN) network;
令Sample_size_min=100,interval=8,以经步骤二预处理的Ni-Cd蓄电池的放电终压数据{EoDV_p_i}(图4中对应的o-a段数据)及由步骤六1M-DWNN网络预测得到的放电终压数据{EoDV_pre_i}(图4中对应的a-e段数据)为基础,依据均值-斜率时间序列的构造方法生成均值-斜率时间序列Aj 0。Set Sample_size_min=100, interval=8, use the end-of-discharge data {EoDV_p_i} of the Ni-Cd battery pretreated in step 2 (corresponding oa section data in Figure 4) and the discharge predicted by the 1M-DWNN network in step 6 Based on the final pressure data {EoDV_pre_i} (corresponding data in section ae in Figure 4), the mean-slope time series A j 0 is generated according to the construction method of the mean-slope time series.
对于2M-DWNN,在每次迭代过程中均需要构建jmax个AR模型,且建立过程都是以Aj 0(对于已迭代次数大于0的数据,AR模型构建的数据基础为Aj i,其中i>0)为数据基础,且限定对于任意Aj i重抽样序列jmax为定值,如此保证了每次迭代过程中,所构建的AR模型的量是相同。基于构建的AR模型,依据Equ.3建立4输入/单输出的2M-DWNN模型,完成自适应迭代预测过程,最后对得到的预测值进行均值斜率反变换,得到放电终压序列{x(i)},即可获取图4所示的e-d段在轨EoDV数据曲线及标记寿命终止(寿命判据)位置d点的坐标值d(C_end1,EoDV_threshold),其中C_end1即为Ni-Cd蓄电池的预测寿命。For 2M-DWNN, j max AR models need to be constructed in each iteration process, and the establishment process is based on A j 0 (for data with iteration times greater than 0, the data basis for AR model construction is A j i , where i>0) is the data basis, and j max is limited to a fixed value for any A j i resampling sequence, so as to ensure that the amount of the constructed AR model is the same in each iteration process. Based on the constructed AR model, a 4-input/single-output 2M-DWNN model is established according to Equ.3, and the adaptive iterative prediction process is completed. Finally, the average slope inverse transformation is performed on the obtained predicted value to obtain the final discharge voltage sequence {x(i )}, the on-orbit EoDV data curve of the ed segment shown in Figure 4 and the coordinate value d(C_end1, EoDV_threshold) of the position d point marking the end of life (life criterion) can be obtained, where C_end1 is the prediction of the Ni-Cd battery life.
图13为包括2M-DWNN模型预测结果在内的综合M-DWNN预测结果,其中右侧粗线部分所示为二次迭代预测结果。根据HY-1B小卫星蓄电池的寿命判据,得到本发明实施例的预测寿命值为:5.21年,即:5年2个月15天14小时24分。Figure 13 shows the comprehensive M-DWNN prediction results including the 2M-DWNN model prediction results, where the thick line on the right shows the second iteration prediction results. According to the life criterion of the HY-1B small satellite storage battery, the predicted life value of the embodiment of the present invention is 5.21 years, that is, 5 years, 2 months, 15 days, 14 hours and 24 minutes.
步骤八、动态时间窗调整;Step 8, dynamic time window adjustment;
本发明实施例的时间窗为1week,当设置的一周时间到达时,利用已经收集到的新的在轨小卫星蓄电池数据,重复上述步骤二到步骤七过程即可得到新的寿命预测值。The time window of the embodiment of the present invention is 1 week. When the set one week time arrives, use the new in-orbit small satellite battery data that has been collected and repeat the above steps 2 to 7 to obtain a new life prediction value.
本发明说明书未详细阐述部分属于本领域公知技术。The parts not described in detail in the description of the present invention belong to the well-known technology in the art.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210468407.8A CN103018673B (en) | 2012-11-19 | 2012-11-19 | Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210468407.8A CN103018673B (en) | 2012-11-19 | 2012-11-19 | Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103018673A CN103018673A (en) | 2013-04-03 |
CN103018673B true CN103018673B (en) | 2015-01-21 |
Family
ID=47967499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210468407.8A Expired - Fee Related CN103018673B (en) | 2012-11-19 | 2012-11-19 | Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103018673B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104102804A (en) * | 2013-04-11 | 2014-10-15 | 华为技术有限公司 | Method and device for predicting service life of component of equipment |
CN103439666B (en) * | 2013-09-02 | 2016-01-20 | 北京航空航天大学 | A kind of method of geometry of capacity of lithium ion battery slump evaluations |
CN103633351A (en) * | 2013-11-15 | 2014-03-12 | 中国科学院电工研究所 | Method for establishing temperature control strategy for fuel battery |
CN105759215B (en) * | 2016-02-26 | 2019-09-27 | 江苏快乐电源(涟水)有限公司 | A kind of charged capacity prediction methods of the lead-acid accumulator of data-driven |
CN107797067B (en) * | 2016-09-05 | 2019-09-27 | 北京航空航天大学 | A deep learning-based method for predicting lifetime migration of lithium-ion batteries |
CN106569138A (en) * | 2016-10-21 | 2017-04-19 | 北京空间飞行器总体设计部 | Method for predicting service life of satellite subsample cadmium-nickel storage battery based on performance degradation |
CN107480395B (en) * | 2017-08-29 | 2019-12-13 | 燕山大学 | Method and system for constructing vehicle steering knuckle load spectrum prediction model |
CN107748332B (en) * | 2017-09-29 | 2019-05-17 | 北京航空航天大学 | A kind of battery charge state (SOC) measuring system based on mechanical wave |
CN108279383B (en) * | 2017-11-30 | 2020-07-03 | 深圳市科列技术股份有限公司 | Battery life prediction method, battery data server and battery data processing system |
CN109034469A (en) * | 2018-07-20 | 2018-12-18 | 成都中科大旗软件有限公司 | A kind of tourist flow prediction technique based on machine learning |
CN110018423A (en) * | 2019-05-07 | 2019-07-16 | 江苏吉意信息技术有限公司 | Battery life Prediction System and battery life predictor method |
CN111931798B (en) * | 2019-05-13 | 2023-05-23 | 北京绪水互联科技有限公司 | Method for classifying and detecting cold head state and predicting service life |
CN110287640B (en) * | 2019-07-03 | 2023-10-13 | 辽宁艾特斯智能交通技术有限公司 | Lighting equipment service life prediction method and device, storage medium and electronic equipment |
CN110659776B (en) * | 2019-09-25 | 2022-04-19 | 南京国电南自维美德自动化有限公司 | New energy power generation power prediction method and system with self-adaptive time scale |
CN111090051B (en) * | 2020-01-21 | 2020-11-10 | 北京空间飞行器总体设计部 | Method for automatically diagnosing discharge final voltage of cadmium-nickel storage battery for satellite |
CN111190112B (en) * | 2020-02-10 | 2020-10-09 | 宜宾职业技术学院 | A method and system for predicting battery charge and discharge based on big data analysis |
CN111190113B (en) * | 2020-04-15 | 2020-07-07 | 中国人民解放军国防科技大学 | A method for detecting abnormal performance degradation of spacecraft battery |
CN111474485A (en) * | 2020-04-28 | 2020-07-31 | 上海空间电源研究所 | A method and system for evaluating real-time capacity of spacecraft battery pack in orbit |
CN111537889B (en) * | 2020-05-09 | 2022-11-11 | 国网福建省电力有限公司莆田供电公司 | Data-driven echelon battery RUL prediction and classification method |
CN112540309B (en) * | 2020-12-10 | 2024-02-06 | 广州能源检测研究院 | Battery monitoring system and method based on battery cycle data similarity analysis |
CN116070140B (en) * | 2023-04-03 | 2023-07-14 | 国网冀北电力有限公司 | A system and method for monitoring the safe operation status of a power distribution substation |
CN116736174B (en) * | 2023-08-15 | 2023-12-26 | 中国华能集团清洁能源技术研究院有限公司 | Method, apparatus, computer device and storage medium for predicting remaining life of battery |
CN118888884B (en) * | 2024-10-09 | 2024-11-29 | 陕西长风动力有限公司 | Battery energy optimization management method based on artificial intelligence algorithm |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04274776A (en) * | 1991-03-01 | 1992-09-30 | Oki Electric Ind Co Ltd | Detecting device of lifetime of ni-cd storage battery |
JPH07280898A (en) * | 1994-04-11 | 1995-10-27 | Matsushita Electric Ind Co Ltd | Battery life notifying unit |
CN1890574A (en) * | 2003-12-18 | 2007-01-03 | 株式会社Lg化学 | Apparatus and method for estimating state of charge of battery using neural network |
CN101894185A (en) * | 2010-06-29 | 2010-11-24 | 北京航空航天大学 | A Lifetime Prediction Method for Small Sample Data Objects Based on Dynamic Bipolar MPNN |
-
2012
- 2012-11-19 CN CN201210468407.8A patent/CN103018673B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04274776A (en) * | 1991-03-01 | 1992-09-30 | Oki Electric Ind Co Ltd | Detecting device of lifetime of ni-cd storage battery |
JPH07280898A (en) * | 1994-04-11 | 1995-10-27 | Matsushita Electric Ind Co Ltd | Battery life notifying unit |
CN1890574A (en) * | 2003-12-18 | 2007-01-03 | 株式会社Lg化学 | Apparatus and method for estimating state of charge of battery using neural network |
CN101894185A (en) * | 2010-06-29 | 2010-11-24 | 北京航空航天大学 | A Lifetime Prediction Method for Small Sample Data Objects Based on Dynamic Bipolar MPNN |
Non-Patent Citations (3)
Title |
---|
Life Prediction of Small Satellite Storage Battery Based on Dynamic Bi-Step MPNN Method;Tao Lai-fa等;《2010 International Conference on Electrical and Control Engineering》;20100627;全文 * |
Prediction on Moonlet Power System Data Based on Modified Probability Neural Network;Tao Lai-fa等;《2009 8th International Conference on reliability、Maintainability and safety》;20091231;全文 * |
复合材料疲劳剩余寿命预测的动态小波神经网络方法;谢建宏等;《仪器仪表学报》;20040831;第25卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103018673A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103018673B (en) | Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network | |
WO2022198616A1 (en) | Battery life prediction method and system, electronic device, and storage medium | |
CN109214575A (en) | A kind of super short-period wind power prediction technique based on small wavelength short-term memory network | |
CN112327188A (en) | A Model-Data Hybrid-Driven Remaining Life Prediction Method for Li-ion Batteries | |
CN101894185A (en) | A Lifetime Prediction Method for Small Sample Data Objects Based on Dynamic Bipolar MPNN | |
CN110488204A (en) | A kind of energy-storage travelling wave tube SOH-SOC joint On-line Estimation method | |
CN114861527A (en) | Lithium battery life prediction method based on time series characteristics | |
CN103033761A (en) | Lithium ion battery residual life forecasting method of dynamic gray related vector machine | |
CN113065283A (en) | Battery life prediction method, system, electronic device and storage medium | |
CN112834927A (en) | Method, system, device and medium for predicting remaining life of lithium battery | |
CN115453399B (en) | Battery pack SOH estimation method considering inconsistency | |
CN110082682A (en) | A kind of lithium battery charge state estimation method | |
CN111579993A (en) | An online estimation method of lithium battery capacity based on convolutional neural network | |
CN114676645B (en) | A non-stationary time series forecasting method and system | |
CN113687242A (en) | Lithium ion battery SOH estimation method for optimizing and improving GRU neural network based on GA algorithm | |
CN113702836B (en) | A method for estimating the state of charge of lithium-ion batteries based on EMD-GRU | |
CN115166534A (en) | Method and system for predicting remaining service life of lithium ion battery | |
Zhang et al. | Remaining useful life prediction of lithium-ion batteries based on TCN-DCN fusion model combined with IRRS filtering | |
CN114660497A (en) | Lithium ion battery service life prediction method aiming at capacity regeneration phenomenon | |
AU2021101964A4 (en) | Artificial intelligence based smart electric vehicle battery management system | |
CN116679231A (en) | Lithium battery SoH estimation method based on gram angle field and VGG16 model | |
CN116953547A (en) | Energy storage battery health assessment method, system, equipment and storage medium | |
Lu et al. | Deep learning to predict battery voltage behavior after uncertain cycling-induced degradation | |
CN118465591A (en) | A method for estimating the health status of lithium-ion batteries based on parallel hybrid neural networks | |
CN113406503A (en) | Lithium battery SOH online estimation method based on deep neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150121 Termination date: 20201119 |
|
CF01 | Termination of patent right due to non-payment of annual fee |