CN103018196A - Fast detection method for rape water demand information - Google Patents
Fast detection method for rape water demand information Download PDFInfo
- Publication number
- CN103018196A CN103018196A CN2012105289080A CN201210528908A CN103018196A CN 103018196 A CN103018196 A CN 103018196A CN 2012105289080 A CN2012105289080 A CN 2012105289080A CN 201210528908 A CN201210528908 A CN 201210528908A CN 103018196 A CN103018196 A CN 103018196A
- Authority
- CN
- China
- Prior art keywords
- rapeseed
- hyperspectral
- infrared
- data
- water demand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 238000001514 detection method Methods 0.000 title claims abstract description 25
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims abstract description 51
- 244000188595 Brassica sinapistrum Species 0.000 claims abstract description 48
- 238000000701 chemical imaging Methods 0.000 claims abstract description 37
- 238000006073 displacement reaction Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 239000010937 tungsten Substances 0.000 claims abstract description 9
- 238000003973 irrigation Methods 0.000 claims abstract description 8
- 230000002262 irrigation Effects 0.000 claims abstract description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000002367 halogens Chemical class 0.000 claims abstract description 4
- 230000003595 spectral effect Effects 0.000 claims description 11
- 238000003384 imaging method Methods 0.000 claims description 6
- -1 tungsten halogen Chemical class 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims description 2
- 238000007590 electrostatic spraying Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 230000001066 destructive effect Effects 0.000 abstract description 7
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 208000005156 Dehydration Diseases 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 241000196324 Embryophyta Species 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 240000002791 Brassica napus Species 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000001863 plant nutrition Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种油菜需水信息的快速探测方法,所用的近红外超光谱成像装置由光箱、卤钨灯光源、控制器、计算机、近红外相机、摄谱仪、镜头、Y分支线性和电控位移台组成。利用近红外超光谱成像装置采集油菜叶片的超光谱数据立方体;比较不同波长下超光谱图像中目标与背景差异,采用背景差异较大的970nm图像进行目标背景分割;提取油菜含水率的最优波长,利用ENVI软件抽取720nm、960nm、1450nm处的主成分图像数据;建立主成分图像的灰度、纹理和反射强度分布特征空间,结合叶片含水率数据,基于偏最小二乘法,建立油菜含水率预测模型,参考标准化管理的对照组样本和实时环境温湿度数据,给出油菜的需水量和灌溉参考信息,实现了油菜需水信息的快速无损探测。
The invention relates to a rapid detection method for water demand information of rapeseed. The near-infrared hyperspectral imaging device used is composed of a light box, a halogen tungsten light source, a controller, a computer, a near-infrared camera, a spectrograph, a lens, a Y-branch linear and Composition of electronically controlled displacement stage. Use the near-infrared hyperspectral imaging device to collect the hyperspectral data cube of rape leaves; compare the difference between the target and the background in the hyperspectral images at different wavelengths, and use the 970nm image with a large background difference to segment the target background; extract the optimal wavelength of the moisture content of rapeseed , use ENVI software to extract the principal component image data at 720nm, 960nm, and 1450nm; establish the grayscale, texture and reflection intensity distribution feature space of the principal component image, combine the leaf moisture content data, and based on the partial least squares method, establish the moisture content prediction of rapeseed The model, referring to the standardized control group samples and real-time environmental temperature and humidity data, gives the water demand and irrigation reference information of rapeseed, and realizes the rapid and non-destructive detection of rapeseed water demand information.
Description
技术领域 technical field
本发明涉及一种针对油菜需水信息的无损探测方法,特指基于近红外超光谱成像技术对油菜水分胁迫状态进行无损检测,结合实时环境信息探测,对油菜需水信息进行评价和灌溉决策管理的方法。 The invention relates to a non-destructive detection method for water demand information of rapeseed, especially refers to non-destructive detection of water stress state of rapeseed based on near-infrared hyperspectral imaging technology, combined with real-time environmental information detection, evaluation of water demand information of rapeseed and irrigation decision-making management Methods.
背景技术 Background technique
油菜是中国最重要的油料作物之一,常年种植面积在1亿亩以上,年产菜籽近1000万吨,占油料作物总产量的40%-45%。油菜是需水较多的作物,水分胁迫使油菜生长发育产生生理障碍,使植株蛋白质合成受到抑制;对硼的吸收利用影响也很大,油菜是对硼敏感的作物,缺硼常导致油菜“花而不实”,这都将使油菜产量降低,并影响菜籽的品质。我国北方及丘陵油菜种植区,普遍存在干旱缺水的情况;快速诊断植株缺水状况,科学精确的指导灌溉,有效利用有限的水资源,保证油菜的优质高产,这具有重要意义。 Rapeseed is one of the most important oil crops in China, with an annual planting area of more than 100 million mu and an annual output of nearly 10 million tons of rapeseed, accounting for 40%-45% of the total output of oil crops. Rapeseed is a crop that needs more water. Water stress causes physiological obstacles to the growth and development of rapeseed, which inhibits plant protein synthesis; it also has a great impact on the absorption and utilization of boron. Rapeseed is a boron-sensitive crop, and boron deficiency often leads to rape " Flowers but not fruit", which will reduce the yield of rapeseed and affect the quality of rapeseed. Drought and water shortage are common in northern my country and hilly rapeseed areas; it is of great significance to quickly diagnose the water shortage situation of plants, scientifically and accurately guide irrigation, effectively use limited water resources, and ensure high-quality and high-yield rapeseed.
目前作物需水状况及水分胁迫主要是通过测量植株叶片的气孔导度、叶水势、冠层温度、蒸腾速率、植株茎杆直径的变化等指标间接获得,或者以生产者经验和实验室常规干湿重测量为主,这些传统的测试手段会对作物产生破坏,影响作物生长,而且耗费大量的人力、物力,时效性差。基于反射光谱、计算机视觉和红外温度探测的作物水分胁迫检测技术具有快速、方便、非破坏性的优点,目前国内在基于光谱、计算机视觉和红外温度探测的作物水分无损检测已有一些相关研究专利公开,申请号为200510088935.0的发明专利申请,公开了一种便携式植物氮素和水分含量的无损检测方法及测量仪器,通过检测植株叶片在四个特征波长处的光谱反射强度信息来进行植物的营养诊断,利用对四个波长植被指数的反演来获取植物的氮素和含水率信息;申请号为200710178192.5的发明专利申请,公开了一种在线式作物冠气温差灌溉决策监测系统,通过一组高速云台内部安装的红外冠层温度传感器和支架立杆上设置的环境温度传感器等监测装置,可以实现对小区内作物的冠层温度的监测。基于光谱技术的无损诊断方法,通常采用点源采样方式,无法体现整个叶片或冠层区域的光反射特性差异。视觉传感器具有较高的分辨率和较大的视场范围,通过图像分割技术能够有效去除背景等因素的影响,克服了光谱法测试范围较小和对测试部位要求较严格的缺点,但传统的计算机视觉技术光谱分辨率很低,通常获取的是目标在400-700nm的可见光区域的合成图像或很少几个波段的多光谱图像,而水分子的特征波段在960nm和1450nm区域,这导致传统的视觉图像技术难以应用于作物水分胁迫的无损探测。而基于红外温度的水分胁迫检测,由于特征单一且对环境温度和湿度的敏感性较大,因此目前仅能对作物的水分胁迫进行趋势判断,难以进行精确定量分析。 At present, the water demand and water stress of crops are mainly obtained indirectly by measuring the stomatal conductance of plant leaves, leaf water potential, canopy temperature, transpiration rate, and changes in plant stem diameter, or by using the experience of producers and routine dry conditions in the laboratory. Wet weight measurement is the main method. These traditional testing methods will damage crops, affect crop growth, and consume a lot of manpower and material resources, and have poor timeliness. Crop water stress detection technology based on reflection spectrum, computer vision and infrared temperature detection has the advantages of fast, convenient and non-destructive. At present, there are some related research patents in China based on spectrum, computer vision and infrared temperature detection. Publication, application number 200510088935.0 patent application for invention, discloses a portable non-destructive detection method and measuring instrument for plant nitrogen and water content, by detecting the spectral reflection intensity information of plant leaves at four characteristic wavelengths to carry out plant nutrition Diagnosis, using the inversion of the vegetation index of four wavelengths to obtain plant nitrogen and water content information; the invention patent application with the application number 200710178192.5 discloses an online crop canopy temperature difference irrigation decision-making monitoring system, through a group of The monitoring devices such as the infrared canopy temperature sensor installed inside the high-speed platform and the ambient temperature sensor installed on the support pole can realize the monitoring of the canopy temperature of the crops in the plot. Non-destructive diagnostic methods based on spectral technology usually use point source sampling, which cannot reflect the difference in light reflection characteristics of the entire leaf or canopy area. The visual sensor has a high resolution and a large field of view. The image segmentation technology can effectively remove the influence of factors such as the background, which overcomes the shortcomings of the small test range of the spectroscopic method and the strict requirements on the test site. However, the traditional The spectral resolution of computer vision technology is very low, and what is usually obtained is a synthetic image of the target in the visible light region of 400-700nm or a multispectral image of a few bands, while the characteristic bands of water molecules are in the 960nm and 1450nm regions, which leads to the traditional It is difficult to apply the advanced visual image technology to the non-destructive detection of crop water stress. However, the water stress detection based on infrared temperature has a single feature and is highly sensitive to environmental temperature and humidity. Therefore, it can only judge the trend of crop water stress at present, and it is difficult to carry out accurate quantitative analysis.
本发明采用的近红外超光谱成像技术获取油菜的水分胁迫信息,该技术是集近红外反射光谱和超光谱成像技术于一身的新技术,在900-1700nm的连续的谱段上对同一目标以3.5nm的高分辨率在256个波段上连续成像,构成一个按波长顺序排列的图像数据立方体,兼有反射光谱和视觉图像技术的优势,既能对植株水分胁迫引起的颜色、纹理、形态变化等特征进行可视化分析,又能对植株叶片受水分胁迫导致的水分子近红外光谱反射率分布信息的变化等进行综合分析。目前国内外文献尚未见利用近红外超光谱成像技术进行作物需水信息探测的相关专利和报道。 The near-infrared hyperspectral imaging technology adopted in the present invention obtains the water stress information of rapeseed. This technology is a new technology integrating near-infrared reflection spectrum and hyperspectral imaging technology. The high resolution of 3.5nm is continuously imaged in 256 bands, forming an image data cube arranged in order of wavelength, which has the advantages of reflection spectrum and visual image technology, and can not only detect the color, texture and shape changes caused by water stress in plants It can also conduct a comprehensive analysis of the changes in the near-infrared spectral reflectance distribution information of water molecules caused by water stress on plant leaves. At present, there are no relevant patents and reports on the use of near-infrared hyperspectral imaging technology for crop water demand information detection in domestic and foreign literature.
发明内容 Contents of the invention
本发明的目的是提供一种油菜需水信息的快速探测方法。通过自行构建的近红外超光谱成像采集装置,采集油菜叶片的超光谱数据立方体;提取油菜水分胁迫的最优特征波长和主成分图像,构建水分胁迫的近红外光谱分布和特征图像的颜色、纹理、形态特征空间;基于多信息融合技术,建立油菜水分胁迫的诊断模型,实现对油菜水分胁迫信息的快速无损检测和定量分析。为油菜水分管理和灌溉决策提供了科学依据。 The purpose of the invention is to provide a rapid detection method of rapeseed water demand information. Through the self-built near-infrared hyperspectral imaging acquisition device, the hyperspectral data cube of rape leaves is collected; the optimal characteristic wavelength and principal component image of rape water stress are extracted, and the near-infrared spectral distribution of water stress and the color and texture of the characteristic image are constructed , Morphological feature space; Based on multi-information fusion technology, a diagnostic model of water stress in rapeseed is established to realize rapid non-destructive detection and quantitative analysis of water stress information in rapeseed. It provides a scientific basis for rapeseed water management and irrigation decision-making.
为实现上述目的,本发明采用自行构建的近红外超光谱成像装置采集油菜样本的近红外超光谱数据,近红外超光谱成像装置包括如下部件:光箱、卤钨灯光源、控制器、计算机、超光谱成像传感器、Y分支线性灯和电控位移台,所述超光谱成像传感器由近红外相机、摄谱仪和镜头依次连接组成,并固定在光箱内顶部中心位置;所述电控位移台固定在光箱内的底面几何中心,位于所述超光谱成像传感器的正下方;所述Y分支线性灯对称安装在光箱内中部左右两侧;所述卤钨灯光源与Y分支线性灯通过两根玻璃光纤相连接;所述超光谱成像传感器和电控位移台通过数据线与控制器相连接;计算机与所述控制器通过数据线相连接,控制器接受计算机的控制指令,控制所述电控位移台的行进速度和超光谱成像传感器信息采集时的扫描速度、曝光时间、焦距和其它参数。 In order to achieve the above object, the present invention adopts the near-infrared hyperspectral imaging device built by itself to collect the near-infrared hyperspectral data of the rape sample. The near-infrared hyperspectral imaging device includes the following components: light box, tungsten halogen light source, controller, computer, A hyperspectral imaging sensor, a Y branch linear lamp and an electronically controlled displacement stage, the hyperspectral imaging sensor is composed of a near-infrared camera, a spectrograph and a lens connected in sequence, and is fixed at the top center of the light box; the electronically controlled displacement The table is fixed at the geometric center of the bottom surface in the light box, located directly below the hyperspectral imaging sensor; the Y-branch linear lamp is symmetrically installed on the left and right sides of the middle of the light box; the halogen tungsten light source and the Y-branch linear lamp Connected by two glass optical fibers; the hyperspectral imaging sensor and the electronically controlled displacement stage are connected to the controller through a data line; the computer is connected to the controller through a data line, and the controller accepts the control instructions of the computer to control the The travel speed of the electronically controlled displacement stage and the scanning speed, exposure time, focal length and other parameters during information collection of the hyperspectral imaging sensor are described.
其中所述的近红外相机、摄谱仪和镜头共同组成的超光谱成像传感器,其最下端为镜头,其后向上依次连接摄谱仪、近红外相机;其中所述的近红外相机为铟镓砷成像相机,光谱范围为900-1700nm。 The hyperspectral imaging sensor composed of near-infrared camera, spectrograph and lens is the lowest end of which is the lens, and then connects the spectrograph and near-infrared camera upwards in turn; the near-infrared camera is indium gallium Arsenic imaging camera with a spectral range of 900-1700nm.
其中所述的超光谱成像传感器光谱分辨率为3.5nm,采用线扫描方式采集样本的超光谱数据;所述线扫描方式是通过位于其正下方的电控位移台沿直线移动完成的,在900-1700nm的近红外波长范围内,一次扫描过程可同步获取256个波段上的近红外超光谱图像。 The spectral resolution of the hyperspectral imaging sensor described therein is 3.5nm, and the hyperspectral data of the sample is collected in a line scanning mode; In the near-infrared wavelength range of -1700nm, a scanning process can simultaneously acquire near-infrared hyperspectral images in 256 bands.
其中所述的光箱内部采用黑色静电喷涂。 The interior of the light box described therein is electrostatically painted in black.
为实现发明的目的,本发明一种油菜需水信息的快速探测方法按照下述步骤进行: In order to realize the purpose of the invention, a kind of rapid detection method of rapeseed water demand information of the present invention is carried out according to the following steps:
(1)将油菜样本固定在电控位移台上,调整镜头焦距和近红外相机的分辨率、增益、曝光时间以保证图像的清晰,设定电控位移台的速度,避免扫描图像失真;对超光谱成像传感器进行黑白场的标定,设定超光谱图像的有效反射强度区间,消除相机暗电流噪声; (1) Fix the rapeseed sample on the electronically controlled displacement platform, adjust the focal length of the lens and the resolution, gain, and exposure time of the near-infrared camera to ensure the clarity of the image, and set the speed of the electronically controlled displacement platform to avoid distortion of the scanned image; The hyperspectral imaging sensor calibrates the black and white field, sets the effective reflection intensity interval of the hyperspectral image, and eliminates the dark current noise of the camera;
(2)采集油菜样本的近红外超光谱数据立方体,通过二阶Butterworth滤波器进行数字滤波去除近红外超光谱数据的相机“坏点”数据,比较不同波长下超光谱图像中目标与背景的差异,采用背景差异较大的970nm图像进行背景分割; (2) Collect the near-infrared hyperspectral data cube of the rapeseed sample, digitally filter through the second-order Butterworth filter to remove the camera "bad point" data of the near-infrared hyperspectral data, and compare the difference between the target and the background in the hyperspectral image at different wavelengths , using 970nm images with large background differences for background segmentation;
(3)提取油菜含水率的最优波长,利用ENVI软件抽取720nm、960nm、1450nm处的主成分图像数据; (3) Extract the optimal wavelength of water content of rapeseed, and use ENVI software to extract the principal component image data at 720nm, 960nm, and 1450nm;
(4)基于获取的主成分图像,建立主成分图像的灰度、纹理和反射强度分布特征空间,结合叶片含水率数据,基于偏最小二乘法,建立油菜含水率预测模型,参考标准化管理的对照组样本和实时环境温度和湿度数据,给出油菜的需水量和灌溉参考信息。 (4) Based on the obtained principal component images, the grayscale, texture and reflection intensity distribution feature space of the principal component images was established, combined with the leaf moisture content data, based on the partial least squares method, a prediction model of rapeseed moisture content was established, referring to the comparison of standardized management Group samples and real-time ambient temperature and humidity data, giving rapeseed water demand and irrigation reference information.
本发明的有益效果:(1)本发明采用近红外超光谱成像装置对油菜需水信息进行定量分析,这在以往文件中都没有涉及。(2)本发明通过同步获取油菜叶片的综合信息,融合近红外图像灰度、纹理和近红外反射强度分布特征进行油菜含水率预测和分析,实现了油菜需水信息的快速探测,与传统的光谱和视觉图像单一检测手段相比,识别的精度和稳定性有了明显的提高,油菜含水率测量误差小于5%。 Beneficial effects of the present invention: (1) The present invention uses a near-infrared hyperspectral imaging device to quantitatively analyze the water demand information of rapeseed, which has not been involved in previous documents. (2) The present invention obtains the comprehensive information of rapeseed leaves synchronously, integrates the near-infrared image grayscale, texture and near-infrared reflection intensity distribution characteristics to predict and analyze the water content of rapeseed, and realizes the rapid detection of rapeseed water demand information, which is different from the traditional Compared with the single detection method of spectrum and visual image, the recognition accuracy and stability have been significantly improved, and the measurement error of rapeseed moisture content is less than 5%.
附图说明 Description of drawings
图1是本发明一种油菜需水信息的快速探测方法流程图; Fig. 1 is a kind of rapid detection method flowchart of rapeseed water demand information of the present invention;
图2是近红外超光谱成像装置结构示意图;1-光箱;2-卤钨灯光源;3-控制器;4-计算机;5-近红外相机;6-摄谱仪;7-镜头;8-Y分支线性灯;9-电控位移台;10-油菜样本。 Figure 2 is a schematic diagram of the structure of a near-infrared hyperspectral imaging device; 1-light box; 2-halogen tungsten light source; 3-controller; 4-computer; 5-near-infrared camera; 6-spectrograph; 7-lens; 8 -Y branch linear lamp; 9-electrically controlled displacement stage; 10-rape sample.
具体实施方式 Detailed ways
下面结合附图对本发明进行进一步详细描述。 The present invention will be described in further detail below in conjunction with the accompanying drawings.
为实现上述目的,本发明采用自行构建的近红外超光谱成像装置采集油菜样本的近红外超光谱数据,近红外超光谱成像装置包括如下部件:光箱1、卤钨灯光源2、控制器3、计算机4、近红外相机5、摄谱仪6、镜头7、Y分支线性灯8和电控位移台9。光箱1的作用是屏蔽外界干扰,为近红外超光谱数据采集提供稳定的光源和检测环境,光箱1顶部中心位置固定了由近红外相机5、摄谱仪6和镜头7组成的超光谱成像传感器;光箱的底面几何中心固定了电控位移台9,在光箱中部左右两侧对称安装了Y分支线性灯8;其中超光谱成像传感器垂直安装在电控位移台9的正上方;卤钨灯光源2与Y分支线性灯8通过两根玻璃光纤相连接;超光谱成像传感器和电控位移台9通过数据线与控制器3相连接;计算机4与控制器3通过数据线相连接,控制器3接受计算机4的控制指令,控制电控位移台9的行进速度和超光谱成像传感器信息采集时的扫描速度、曝光时间、焦距等参数,实施信息采集控制。
In order to achieve the above object, the present invention adopts a self-constructed near-infrared hyperspectral imaging device to collect near-infrared hyperspectral data of rape samples. The near-infrared hyperspectral imaging device includes the following components: light box 1, tungsten halogen light source 2, controller 3 , a
其中所述近红外相机5、摄谱仪6和镜头7共同组成的超光谱成像传感器,其最下端为镜头7,其后向上依次连接摄谱仪6、近红外相机5;其中所述的近红外相机5为铟镓砷成像相机,其光谱范围为900-1700nm。
The hyperspectral imaging sensor that wherein said near-
其中所述的超光谱成像传感器光谱分辨率为3.5nm,采用线扫描方式采集样本的超光谱数据;所述线扫描方式是通过位于其正下方的电控位移台9带动样本沿扫描方向移动完成的,在900-1700nm的近红外波长范围内,一次扫描过程可同步获取256个波段上的近红外超光谱图像。 The spectral resolution of the hyperspectral imaging sensor described therein is 3.5nm, and the hyperspectral data of the sample is collected by a line scanning mode; the line scanning mode is completed by driving the sample to move along the scanning direction through the electronically controlled displacement stage 9 directly below it Yes, within the near-infrared wavelength range of 900-1700nm, a scanning process can simultaneously acquire near-infrared hyperspectral images in 256 bands.
其中所述的卤钨灯光源波长范围为400-2600nm。 The wavelength range of the halogen tungsten light source is 400-2600nm.
其中所述的光箱内部采用黑色静电喷涂。 The interior of the light box described therein is electrostatically painted in black.
实际测量时,按照下述步骤进行: In actual measurement, follow the steps below:
(1)将油菜样本10固定在电控位移台9上,调整镜头焦距为10mm和近红外相机的分辨率为717×525、快门速度为1/1000s、帧率为26,以保证图像的清晰,设定电控位移台9的速度参数为9,避免扫描图像失真;对超光谱成像传感器进行黑白场的标定,采集黑场和白场信息,其中黑场通过关闭光源和镜头盖扫描进行,白场通过扫描标准白板进行,获得900-1700nm波长范围的相对参考值,其中黑场的参考值为0,白场的相对参考值为255,以白场和黑场的差值作为分母,计算各像素点的成像灰度值,设定超光谱图像的有效反射强度区间,消除相机暗电流噪声;各像素点的相对强度值计算通过下式进行:
(1) Fix the
(1) (1)
式中:x为像素点强度检测值;x min ,x max 为黑场的强度均值和白场的强度均值。 In the formula: x is the intensity detection value of the pixel point; x min and x max are the mean value of the intensity of the black field and the mean value of the intensity of the white field.
(2)采集油菜样本10的近红外超光谱数据立方体,通过二阶Butterworth滤波器进行数字滤波去除近红外超光谱数据的相机“坏点”数据,比较不同波长下超光谱图像中目标与背景的差异,采用背景差异较大的970nm图像进行背景分割;
(2) Collect the near-infrared hyperspectral data cube of
(3)提取油菜含水率的最优波长,利用ENVI软件抽取720nm、960nm、1450nm处的主成分图像数据; (3) Extract the optimal wavelength of water content of rapeseed, and use ENVI software to extract the principal component image data at 720nm, 960nm, and 1450nm;
(4)基于获取的主成分图像,建立主成分图像的灰度、纹理和反射强度分布特征空间,结合叶片含水率数据,基于偏最小二乘法,建立油菜含水率预测模型: (4) Based on the acquired principal component images, the grayscale, texture and reflection intensity distribution feature space of the principal component images was established, combined with the leaf moisture content data, based on the partial least squares method, the rapeseed moisture content prediction model was established:
W=621.75+171.54ANS 1450 -169.28ANS 960 +68.55ANS 720 (2) W=621.75+171.54ANS 1450 -169.28ANS 960 +68.55ANS 720 (2)
式中:W油菜含水率(%),ANS 1450 、ANS 960 、ANS 720 为相应波长下的灰度、纹理和反射强度分布特征变量的经过归一化并加权融合的特征参数;利用该模型对苗期油菜的含水率进行预测,预测值与实测值的平均绝对误差为3.87%,平均相对误差为5.08%,相关系数为0.96,均方差为2.97。预测精度与现有方法相比均显著提高。参考标准化管理的对照组样本和实时环境温度和湿度数据,给出油菜的需水量和灌溉参考信息。 In the formula: W water content of rapeseed (%), ANS 1450 , ANS 960 , ANS 720 are the characteristic parameters of the gray scale, texture and reflection intensity distribution characteristic variables under the corresponding wavelength after normalization and weighted fusion; The moisture content of seedling rape was predicted, and the average absolute error between the predicted value and the measured value was 3.87%, the average relative error was 5.08%, the correlation coefficient was 0.96, and the mean square error was 2.97. The prediction accuracy is significantly improved compared with the existing methods. Referring to the standardized management control group samples and real-time environmental temperature and humidity data, the water demand and irrigation reference information of rapeseed is given.
以上只是结合一个具体实施例,示例性说明及帮助进一步理解本发明,但实施例具体细节仅是为了说明本发明,并不代表本发明构思下全部技术实施例,因此不应理解为对本发明总的技术实施例限定,一些在技术人员看来,不偏离发明构思的非实质性改动,例如以具有相同或相似技术效果的技术特征简单改变或替换,均属本发明保护范围。 The above is only in conjunction with a specific embodiment to illustrate and help further understanding of the present invention, but the specific details of the embodiment are only to illustrate the present invention, and do not represent all technical embodiments under the concept of the present invention. In the eyes of the skilled person, some insubstantial changes that do not deviate from the inventive concept, such as simple changes or replacements with technical features having the same or similar technical effects, all fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105289080A CN103018196A (en) | 2012-12-11 | 2012-12-11 | Fast detection method for rape water demand information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105289080A CN103018196A (en) | 2012-12-11 | 2012-12-11 | Fast detection method for rape water demand information |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103018196A true CN103018196A (en) | 2013-04-03 |
Family
ID=47967049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105289080A Pending CN103018196A (en) | 2012-12-11 | 2012-12-11 | Fast detection method for rape water demand information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103018196A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104165853A (en) * | 2014-08-29 | 2014-11-26 | 烟台东润仪表有限公司 | Spectroscopy water environment online measuring device |
CN104697943A (en) * | 2014-11-10 | 2015-06-10 | 江苏大学 | Rape water stress nondestructive testing method |
CN105353620A (en) * | 2015-11-28 | 2016-02-24 | 中国水利水电科学研究院 | Ground irrigation control method based on surface water depth information |
CN106575419A (en) * | 2014-07-16 | 2017-04-19 | 株式会社理光 | Information processing device, method for generating control signal, information processing system, and program |
CN106706559A (en) * | 2017-03-03 | 2017-05-24 | 上海事凡物联网科技有限公司 | Method, system and server for measuring moisture content of fallen leaves |
CN108469434A (en) * | 2018-04-11 | 2018-08-31 | 山东农业大学 | A kind of monitoring fruit tree whether the device and method of water shortage |
CN108593595A (en) * | 2018-05-03 | 2018-09-28 | 苏州高新区建金建智能科技有限公司 | Leaf water detecting system based near infrared spectrum irradiation technique |
CN108693145A (en) * | 2017-04-11 | 2018-10-23 | 中国农业大学 | A kind of plant leaf blade moisture content detecting method |
CN108693135A (en) * | 2017-04-11 | 2018-10-23 | 中国农业大学 | A kind of plant leaf blade moisture content detecting system |
CN108827898A (en) * | 2018-04-18 | 2018-11-16 | 北京理工大学 | A kind of infrared microscopy optical enhancement system and method for continuous vari-focus |
CN110089308A (en) * | 2019-05-29 | 2019-08-06 | 浙江大学 | A kind of intelligence system and method for cultivating plant |
CN110222475A (en) * | 2019-07-03 | 2019-09-10 | 中国水利水电科学研究院 | A method of based on unmanned plane multispectral remote sensing inverting winter wheat plant moisture content |
CN113396969A (en) * | 2021-05-26 | 2021-09-17 | 江苏大学 | Flexible electrostatic spraying equipment and method based on fruit electrical characteristics |
CN118533786A (en) * | 2024-07-26 | 2024-08-23 | 洛阳奥帆农业科技有限公司 | Vegetable greenhouse planting environment detection device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010476A (en) * | 2004-06-25 | 2006-01-12 | Hitachi Ltd | Simplified evaluation method and device for freezing and low-temperature stress resistant levels of plant |
CN102081039A (en) * | 2010-08-17 | 2011-06-01 | 江苏大学 | Environment-controllable hyperspectral image detecting device for crop nutrition and moisture |
CN102495005A (en) * | 2011-11-17 | 2012-06-13 | 江苏大学 | Method for diagnosing crop water deficit through hyperspectral image technology |
CN102721651A (en) * | 2012-06-18 | 2012-10-10 | 浙江大学 | Detection method and system of water content in plant leaf based on multispectral image |
-
2012
- 2012-12-11 CN CN2012105289080A patent/CN103018196A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010476A (en) * | 2004-06-25 | 2006-01-12 | Hitachi Ltd | Simplified evaluation method and device for freezing and low-temperature stress resistant levels of plant |
CN102081039A (en) * | 2010-08-17 | 2011-06-01 | 江苏大学 | Environment-controllable hyperspectral image detecting device for crop nutrition and moisture |
CN102495005A (en) * | 2011-11-17 | 2012-06-13 | 江苏大学 | Method for diagnosing crop water deficit through hyperspectral image technology |
CN102721651A (en) * | 2012-06-18 | 2012-10-10 | 浙江大学 | Detection method and system of water content in plant leaf based on multispectral image |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106575419A (en) * | 2014-07-16 | 2017-04-19 | 株式会社理光 | Information processing device, method for generating control signal, information processing system, and program |
CN104165853A (en) * | 2014-08-29 | 2014-11-26 | 烟台东润仪表有限公司 | Spectroscopy water environment online measuring device |
CN104697943A (en) * | 2014-11-10 | 2015-06-10 | 江苏大学 | Rape water stress nondestructive testing method |
CN104697943B (en) * | 2014-11-10 | 2017-12-05 | 江苏大学 | A kind of lossless detection method of rape water stress |
CN105353620B (en) * | 2015-11-28 | 2018-05-18 | 中国水利水电科学研究院 | A kind of surface irrigation control method based on surface-water depth information |
CN105353620A (en) * | 2015-11-28 | 2016-02-24 | 中国水利水电科学研究院 | Ground irrigation control method based on surface water depth information |
CN106706559B (en) * | 2017-03-03 | 2019-06-18 | 上海事凡物联网科技有限公司 | Measurement method, system and the server of fallen leaves moisture content |
CN106706559A (en) * | 2017-03-03 | 2017-05-24 | 上海事凡物联网科技有限公司 | Method, system and server for measuring moisture content of fallen leaves |
CN108693145B (en) * | 2017-04-11 | 2020-02-07 | 中国农业大学 | Plant leaf water content detection method |
CN108693145A (en) * | 2017-04-11 | 2018-10-23 | 中国农业大学 | A kind of plant leaf blade moisture content detecting method |
CN108693135A (en) * | 2017-04-11 | 2018-10-23 | 中国农业大学 | A kind of plant leaf blade moisture content detecting system |
CN108469434B (en) * | 2018-04-11 | 2022-01-25 | 山东农业大学 | Device and method for monitoring whether fruit trees lack water |
CN108469434A (en) * | 2018-04-11 | 2018-08-31 | 山东农业大学 | A kind of monitoring fruit tree whether the device and method of water shortage |
CN108827898A (en) * | 2018-04-18 | 2018-11-16 | 北京理工大学 | A kind of infrared microscopy optical enhancement system and method for continuous vari-focus |
CN108827898B (en) * | 2018-04-18 | 2021-04-20 | 北京理工大学 | A continuous zoom microscopic infrared optical enhancement system and method |
CN108593595A (en) * | 2018-05-03 | 2018-09-28 | 苏州高新区建金建智能科技有限公司 | Leaf water detecting system based near infrared spectrum irradiation technique |
CN110089308A (en) * | 2019-05-29 | 2019-08-06 | 浙江大学 | A kind of intelligence system and method for cultivating plant |
CN110089308B (en) * | 2019-05-29 | 2021-03-23 | 浙江大学 | A method for cultivating plants using intelligent systems |
CN110222475A (en) * | 2019-07-03 | 2019-09-10 | 中国水利水电科学研究院 | A method of based on unmanned plane multispectral remote sensing inverting winter wheat plant moisture content |
CN110222475B (en) * | 2019-07-03 | 2021-09-07 | 中国水利水电科学研究院 | A method for inversion of winter wheat plant water content based on UAV multispectral remote sensing |
CN113396969A (en) * | 2021-05-26 | 2021-09-17 | 江苏大学 | Flexible electrostatic spraying equipment and method based on fruit electrical characteristics |
CN113396969B (en) * | 2021-05-26 | 2022-09-16 | 江苏大学 | Flexible electrostatic spraying equipment and method based on fruit electrical characteristics |
CN118533786A (en) * | 2024-07-26 | 2024-08-23 | 洛阳奥帆农业科技有限公司 | Vegetable greenhouse planting environment detection device |
CN118533786B (en) * | 2024-07-26 | 2024-10-18 | 洛阳奥帆农业科技有限公司 | Vegetable greenhouse planting environment detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103018196A (en) | Fast detection method for rape water demand information | |
CN101936882B (en) | A method and device for non-destructive detection of crop nitrogen and moisture | |
CN102384767B (en) | Nondestructive detection device and method for facility crop growth information | |
CN202382768U (en) | Facility crop growth information nondestructive test apparatus | |
CN101915738B (en) | Method and device for rapidly detecting nutritional information of tea tree based on hyperspectral imaging technique | |
CN101718683B (en) | Method for fast detection of chlorophyll content in leaf blades, modeling method and detection method | |
CN203275285U (en) | Rice quality online nondestructive testing device based on hyperspectral imaging | |
CN103018179B (en) | Device and method for near-infrared polarization detection of crop water stress | |
CN103439265B (en) | Real-time monitoring method for growth characters of tea trees in intensive cultivation | |
CN103018180B (en) | Method and device for detecting cotton diseases based on multisource light information technology | |
CN104697943B (en) | A kind of lossless detection method of rape water stress | |
CN102081039A (en) | Environment-controllable hyperspectral image detecting device for crop nutrition and moisture | |
CN101881725B (en) | Automatic monitoring system of greenhouse crop growth conditions based on reflection spectrum | |
CN101210876A (en) | Measuring method of rice nutrient information based on visible/near-infrared multispectral imaging | |
CN102721651A (en) | Detection method and system of water content in plant leaf based on multispectral image | |
CN101382488A (en) | Method for detection of nitrogen content in fresh tea leaves using visible-near infrared diffuse reflectance spectroscopy | |
CN103940748B (en) | Based on the prediction of oranges and tangerines canopy nitrogen content and the visualization method of hyperspectral technique | |
CN102621077A (en) | Hyper-spectral reflection image collecting system and corn seed purity nondestructive detection method based on same | |
CN104422660A (en) | Hyperspectral plant leaf disease and insect pest diagnosis system | |
CN103278503B (en) | Multi-sensor technology-based grape water stress diagnosis method and system therefor | |
CN105021617A (en) | Hyperspectral imaging-based measuring equipment of chlorophyll content of whole rice plant and method thereof | |
CN1975378A (en) | Gray mold early diagnosing system based on visable/near infrared multispectral imaging | |
CN111751347A (en) | Pigment imaging method of barley leaves under powdery mildew stress based on Raman spectroscopy | |
CN102507457A (en) | Device and method for rapidly and nondestructively detecting crop nutrient elements | |
CN210775225U (en) | Fruit maturity detection and picking device based on Raman spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130403 |