CN103017294B - 多联机空调的制热启动方法 - Google Patents

多联机空调的制热启动方法 Download PDF

Info

Publication number
CN103017294B
CN103017294B CN201210525291.7A CN201210525291A CN103017294B CN 103017294 B CN103017294 B CN 103017294B CN 201210525291 A CN201210525291 A CN 201210525291A CN 103017294 B CN103017294 B CN 103017294B
Authority
CN
China
Prior art keywords
frequency
seconds
changeable compressor
command
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210525291.7A
Other languages
English (en)
Other versions
CN103017294A (zh
Inventor
郑坚江
程德威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Aux Electric Co Ltd
Original Assignee
Ningbo Aux Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Aux Electric Co Ltd filed Critical Ningbo Aux Electric Co Ltd
Priority to CN201210525291.7A priority Critical patent/CN103017294B/zh
Publication of CN103017294A publication Critical patent/CN103017294A/zh
Application granted granted Critical
Publication of CN103017294B publication Critical patent/CN103017294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开的了一种多联机空调的制热启动方法,它通过对空调系统中各个零部件在不同时间运行的不同时长来协调控制,采用这种制热启动方法后,由于将多联机空调系统内的各个零部件按照各自的启动时间和启动时长,有序地、合理地将协调好各零部件之间的动作时序,有利于多联机空调系统的正常可靠运行地方式进行控制,避免出现整个多联机空调系统运行的紊乱现象,保证直流变频压缩机的正常运行,并且延长其使用寿命。

Description

多联机空调的制热启动方法
技术领域
本发明涉及空调控制技术领域,具体讲是一种多压缩机并联的多联机空调的制热启动方法。
背景技术
现有技术的直流变频多联机空调,基本上有8匹、10匹、12匹、14匹和16匹等5种规格,而目前涡旋式直流变频压缩机单台的功率只有4匹、8匹和10匹等,因此,要设计12匹的多联机空调时,就必须采用一台4匹和一台8匹的直流变频压缩机并联组成;同样,要设计14匹的多联机空调时,就必须采用一台4匹和一台10匹的直流变频压缩机并联组成;要设计16匹的多联机空调时,就必须采用两台8匹的直流变频压缩机并联组成。而且,在直流变频多联机系统中,除了直流变频压缩机外,还配置有很多零部件,如电子膨胀阀、四通阀、室内风机电机、室外风机电机以及各种电磁阀等等,而直流变频多联机不管是在启动阶段、正常运行阶段,还是停机阶段,都必须协调各控制零部件之间的动作关系。这是由于,多联机空调在制热模式运行的状况下,如果由于室内机全部强制关机或者由于室内环境温度达到需要的设定的温度后关机的话,则多联机空调会停机。等待一段时间后,如果室内环境温度重新上升,或者强制开机时,多联机需要重新启动开机,此时,如果不协调好启动阶段各控制零部件之间动作的时序,就会导致整个直流变频多联机系统启动阶段运行的紊乱,从而影响系统的制热能力的可靠性,甚至导致故障停机,更严重的会烧毁压缩机。
发明内容
本发明所要解决的技术问题是,提供一种多联机空调的制热启动方法,通过这种启动方法,可以协调好直流变频多联机系统中各控制零部件之间的动作时序,保证系统制热能力的可靠性,避免故障停机、避免烧毁压缩机。
为解决上述技术问题,本发明提供的多联机空调的制热启动方法,该多联机空调包括两台并联连接的直流变频压缩机,其启动方法包括以下步骤:
1)遥控器或线控器或集中控制器对多联机空调的室内电控装置发出制热开机指令,多联机空调的室内电控装置接收指令后将制热开机指令传递给室外电控装置,室外电控装置就发出整个多联机空调的制热启动指令,开始制热启动过程;
2)多联机空调中的气旁通电磁阀接收到制热启动指令后通电开启,通电持续60秒~80秒后,气旁通电磁阀关闭;
3)多联机空调中的第一回油电磁阀接收到制热启动指令后通电开启,将第一油气分离器底部的润滑油输送回第一直流变频压缩机的回气管中,通电持续30秒~40秒后,第一回电磁阀关闭;
4)第一直流变频压缩机接收到制热启动指令后,延时20秒~30秒后才开始启动,进入第一段回油运行状态,此时第一直流变频压缩机的运行频率达到20赫兹~40赫兹,当第一段回油状态运行60秒~80秒后,第一直流变频压缩机进入第二段回油运行状态,此时第一直流变频压缩机的运行频率达到50赫兹~70赫兹,直至多联机空调中第二直流变频压缩机结束回油运行时,一同退出制热启动过程;
5)多联机空调中的第二回油电磁阀接收到制热启动指令后,先延时10秒~15秒后通电开启,将第二油气分离器底部的润滑油输送回第二直流变频压缩机的回气管中,通电持续30秒~40秒后,第二回油电磁阀关闭;
6)第二直流变频压缩机在接收到制热启动指令后,于第一直流变频压缩机启动后再延时10秒~15秒后再启动,进入第一段回油运行状态,此时第二直流变频压缩机的运行频率达到20赫兹~40赫兹,在此频率运行60秒~80秒后,第二直流变频压缩机进入第二段回油运行状态,此时其运行频率达到50赫兹~70赫兹,在此频率运行100秒~120秒后,退出启动过程;
7)室外风机电机在第二直流变频压缩机启动时,先延时30秒~60秒再开始转入转速自动调节控制;
8)在整个制热模式的运行过程中,在室内环境温度达到要求而停机,或者强制停机时,四通阀一直处于通电开启状态;
9)在接收到制热启动指令后,制热电子膨胀阀处于关闭状态,在第一直流变频压缩机启动后延时40秒~60秒后,制热电子膨胀阀的阀门开度开到200步~300步,保持这个开度直到整个制热启动过程结束;
10)在整个制热启动过程中,喷液电磁阀始终处于断电关闭状态;
11)在整个制热启动过程中,接收到开机指令的室内机的电子膨胀阀的阀门开度为120步~300步,未接收到开机指令的室内机的电子膨胀阀的阀门开度为40步~60步;
12)在整个制热启动过程中,接收到开机指令的室内机风机电机处于防冷风控制状态,即处于停机状态,防止室内换热器盘管中部温度低于25℃时吹出冷风来,当室内换热器盘管中部温度高于25℃时,该室内机的风机电机才开启,并根据室内换热器盘管中部温度进行转速调节;未接收到开机指令的室内机风机电机处于停机状态;
13)当制热启动过程结束后,根据高压压力传感器检测到的系统高压值,第一直流变频压缩机的运行频率进入自动调节控制,第二直流变频压缩机的运行频率停机或者进入自动调节控制;根据低压压力传感器检测到的系统低压值,室外风机电机进行自动调节控制;根据第一直流变频压缩机排气温度传感器和第二直流变频压缩机排气温度传感器检测到的系统温度值,气旁通电磁阀和喷液电磁阀均进入自动调节控制;根据检测到的室内换热器进口温度传感器与室内换热器盘管中部温度传感器的温度之差,接收到开机指令的室内机的电子膨胀阀进入自动调节控制;根据检测到的室内换热器盘管中部温度传感器的温度值,接收到开机指令的室内机的风机电机进入自动调节控制其转速的状态;未接收到开机指令的室内机的电子膨胀阀的阀门开度为40步~60步,未接收到开机指令的室内机的风机电机处于停机状态。
所述的步骤13)中,当接收到开机指令的室内机接收到关机指令时,该室内机的电子膨胀阀关小,其阀门开度为40步~60步,并且该室内机的风机电机在延时30秒~60秒后停机。
所述的步骤13)中,当未接收到开机指令的室内机接收到开机指令时,该室内机的电子膨胀阀开始进入自动调节控制状态,并且根据室内换热器出口温度传感器与室内换热器进口温度传感器的温度之差进行自动调节控制,该室内机的风机电机根据室内换热器盘管中部温度传感器的温度值进入自动调节控制其转速的状态。
采用以上结构和方法后,本发明与现有技术相比,具有以下优点:由于将多联机空调系统内的各个控制零部件在制热启动过程中按照各自的启动时间和启动时长,有序地、合理地将协调好各控制零部件之间的动作时序,有利于多联机空调系统的正常可靠运行地方式进行控制,因此,避免出现整个多联机空调系统运行的紊乱现象,保证直流变频压缩机的正常运行,并且延长其使用寿命。
附图说明
图1是本发明中多联机空调的系统原理图。
图2是本发明多联机空调的制热启动方法的时序示意图。
其中:1、第一直流变频压缩机;2、第一油气分离器;3、第一单向阀;4、第一回油电磁阀;5、第二直流变频压缩机;6、第二油气分离器;7、第二单向阀;8、第二回油电磁阀;9、第三单向阀;10、气旁通电磁阀;11、四通阀;12、室外换热器;13、室外风机电机;14、第四单向阀;15、制热电子膨胀阀;16、高压储液器;17、喷液电磁阀;18、供液截止阀;19、室内电子膨胀阀;20、室内电子膨胀阀;21、室内换热器;22、回气截止阀;23、气液分离器;24、低压压力传感器;25、第一直流变频压缩机排气温度传感器;26、第二直流变频压缩机排气温度传感器;27、高压压力传感器;28、室内换热器进口温度传感器;29、室内换热器盘管中部温度传感器;30、室内换热器出口温度传感器;31、室外换热器盘管中部温度传感器;32、总回气温度传感器。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细地说明。
由图1所示的本发明中多联机空调的系统原理图可知,这是由两台直流变频压缩机并联而成的直流变频多联机,这种多联机装置为现有技术的多联机,通常包括以下这些零部件:1、第一直流变频压缩机;2、第一油气分离器;3、第一单向阀;4、第一回油电磁阀;5、第二直流变频压缩机;6、第二油气分离器;7、第二单向阀;8、第二回油电磁阀;9、第三单向阀;10、气旁通电磁阀;11、四通阀;12、室外换热器;13、室外风机电机;14、第四单向阀;15、制热电子膨胀阀;16、高压储液器;17、喷液电磁阀;18、供液截止阀;19、室内电子膨胀阀;20、室内电子膨胀阀;21、室内换热器;22、回气截止阀;23、气液分离器;24、低压压力传感器;25、第一直流变频压缩机排气温度传感器;26、第二直流变频压缩机排气温度传感器;27、高压压力传感器;28、室内换热器进口温度传感器;29、室内换热器盘管中部温度传感器;30、室内换热器出口温度传感器;31、室外换热器盘管中部温度传感器;32、总回气温度传感器。由图1所示可知,这是一种常规的系统原理图,这里就不详细描述各控制零部件之间的连接关系。
上述装置中,所述的第一油气分离器2将第一直流变频压缩机1排气中的润滑油分离出来,将润滑油储存在第一油气分离器2的底部。同样,所述的第二油气分离器6将第二直流变频压缩机5排气中的润滑油分离出来,将润滑油储存在第二油气分离器6的底部。
所述的低压压力传感器24用于检测制冷系统的低压压力,制热模式运行时控制室外风机电机13的转速,以及用于对制冷系统进行低压保护,防止制冷系统在低压过低时损害压缩机。所述的高压压力传感器27用于检测制冷系统的高压压力,制热模式运行时控制第一直流变频压缩机1和第二直流变频压缩机5的运行频率,以及用于对制冷系统进行高压保护,防止制冷系统在高压过高时损害压缩机。
所述的室内换热器进口温度传感器28和室内换热器盘管中部温度传感器29,分别用来检测室内换热器的进口温度和盘管中部的温度,并根据进口温度和盘管中部温度的差值来调节室内电子膨胀阀19的阀门开度。
所述的室内换热器盘管中部温度传感器29检测的盘管中部温度,用来控制室内风机电机的转速。
所述的室外换热器盘管中部温度传感器31用来检测的室外换热器盘管中部温度,所述的总回气温度传感器32检测到的总回气温度,由室外换热器盘管中部温度和总回气温度的差值来控制和调节制热电子膨胀阀15的阀门开度。
下面结合上述的多联机空调系统对制热启动方法进行详细地说明。
具体实施例一:只有单台室内机接收到开机指令
1)遥控器或线控器或集中控制器对多联机空调的室内电控装置发出制热开机指令,多联机空调的室内电控装置接收指令后将制热开机指令传递给室外电控装置,室外电控装置就发出整个多联机空调的制热启动指令,开始制热启动过程;
2)多联机空调中的气旁通电磁阀10接收到制热启动指令后通电开启,通电持续60秒后,气旁通电磁阀10关闭;
3)多联机空调中的第一回油电磁阀4接收到制热启动指令后通电开启,将第一油气分离器2底部的润滑油输送回第一直流变频压缩机1的回气管中,通电持续30秒后,第一回电磁阀4关闭;
4)第一直流变频压缩机1接收到制热启动指令后,延时20秒后才开始启动,进入第一段回油运行状态,此时第一直流变频压缩机1的运行频率达到30赫兹,当第一段回油状态运行60秒后,第一直流变频压缩机1进入第二段回油运行状态,此时第一直流变频压缩机1的运行频率达到60赫兹,直至多联机空调中第二直流变频压缩机5结束回油运行时,一同退出制热启动过程;
5)多联机空调中的第二回油电磁阀8接收到制热启动指令后,先延时10秒后通电开启,将第二油气分离器6底部的润滑油输送回第二直流变频压缩机5的回气管中,通电持续30秒后,第二回油电磁阀8关闭;
6)第二直流变频压缩机5在接收到制热启动指令后,于第一直流变频压缩机1启动后再延时10秒后再启动,进入第一段回油运行状态,此时第二直流变频压缩机5的运行频率达到30赫兹,在此频率运行60秒后,第二直流变频压缩机5进入第二段回油运行状态,此时其运行频率达到60赫兹,在此频率运行100秒后,退出启动过程;
7)室外风机电机13在第二直流变频压缩机5启动时,先延时30秒再开始转入转速自动调节控制;
8)在整个制热模式的运行过程中,在室内环境温度达到要求而停机,或者强制停机时,四通阀11一直处于通电开启状态;
9)在接收到制热启动指令后,制热电子膨胀阀15处于关闭状态,在第一直流变频压缩机1启动后延时40秒后,制热电子膨胀阀15的阀门开度开到200步,保持这个开度直到整个制热启动过程结束;
10)在整个制热启动过程中,喷液电磁阀17始终处于断电关闭状态;
11)在整个制热启动过程中,接收到开机指令的室内机的电子膨胀阀19的阀门开度为300步,未接收到开机指令的室内机的电子膨胀阀20的阀门开度为50步;
12)在整个制热启动过程中,接收到开机指令的室内机风机电机处于防冷风控制状态,即处于停机状态,防止室内换热器盘管中部温度低于25℃时吹出冷风来,当室内换热器盘管中部温度高于25℃时,该室内机的风机电机才开启,并根据室内换热器盘管中部温度进行转速调节;未接收到开机指令的室内机风机电机处于停机状态;
13)当制热启动过程结束后,根据高压压力传感器27检测到的系统高压值,第一直流变频压缩机1的运行频率进入自动调节控制,第二直流变频压缩机5停机;根据低压压力传感器24检测到的系统低压值,室外风机电机13进行自动调节控制;根据第一直流变频压缩机排气温度传感器25和第二直流变频压缩机排气温度传感器26检测到的系统温度值,气旁通电磁阀10和喷液电磁阀17均进入自动调节控制;根据检测到的室内换热器进口温度传感器28与室内换热器盘管中部温度传感器29的温度之差,接收到开机指令的室内机的电子膨胀阀19进入自动调节控制;根据检测到的室内换热器盘管中部温度传感器29的温度值,接收到开机指令的室内机的风机电机进入自动调节控制其转速的状态;未接收到开机指令的室内机的电子膨胀阀20的阀门开度为50步,未接收到开机指令的室内机的风机电机处于停机状态。
当上述未开机的室内机接收到开机指令时,根据检测到定内换热器的进口温度与盘管中部温度的温度差值,该室内机的电子膨胀阀开始进入自动调节控制状态;根据检测到的室内换热器的盘管中部温度值,该室内机的风机电机进行自动调节控制其转速的状态。
具体实施例二:多台室内机接收到开机指令
1)遥控器或线控器或集中控制器对多联机空调的室内电控装置发出制热开机指令,多联机空调的室内电控装置接收指令后将制热开机指令传递给室外电控装置,室外电控装置就发出整个多联机空调的制热启动指令,开始制热启动过程;
2)多联机空调中的气旁通电磁阀10接收到制热启动指令后通电开启,通电持续80秒后,气旁通电磁阀10关闭;
3)多联机空调中的第一回油电磁阀4接收到制热启动指令后通电开启,将第一油气分离器2底部的润滑油输送回第一直流变频压缩机1的回气管中,通电持续40秒后,第一回电磁阀4关闭;
4)第一直流变频压缩机1接收到制热启动指令后,延时30秒后才开始启动,进入第一段回油运行状态,此时第一直流变频压缩机1的运行频率达到40赫兹,当第一段回油状态运行80秒后,第一直流变频压缩机1进入第二段回油运行状态,此时第一直流变频压缩机1的运行频率达到70赫兹,直至多联机空调中第二直流变频压缩机5结束回油运行时,一同退出制热启动过程;
5)多联机空调中的第二回油电磁阀8接收到制热启动指令后,先延时15秒后通电开启,将第二油气分离器6底部的润滑油输送回第二直流变频压缩机5的回气管中,通电持续40秒后,第二回油电磁阀8关闭;
6)第二直流变频压缩机5在接收到制热启动指令后,于第一直流变频压缩机1启动后再延时15秒后再启动,进入第一段回油运行状态,此时第二直流变频压缩机5的运行频率达到40赫兹,在此频率运行80秒后,第二直流变频压缩机5进入第二段回油运行状态,此时其运行频率达到70赫兹,在此频率运行120秒后,退出启动过程;
7)室外风机电机13在第二直流变频压缩机5启动时,先延时60秒再开始转入转速自动调节控制;
8)在整个制热模式的运行过程中,在室内环境温度达到要求而停机,或者强制停机时,四通阀11一直处于通电开启状态;
9)在接收到制热启动指令后,制热电子膨胀阀15处于关闭状态,在第一直流变频压缩机1启动后延时60秒后,制热电子膨胀阀15的阀门开度开到300步,保持这个开度直到整个制热启动过程结束;
10)在整个制热启动过程中,喷液电磁阀17始终处于断电关闭状态;
11)在整个制热启动过程中,接收到开机指令的室内机的电子膨胀阀19的阀门开度为300步,未接收到开机指令的室内机的电子膨胀阀20的阀门开度为50步;
12)在整个制热启动过程中,接收到开机指令的室内机风机电机处于防冷风控制状态,即处于停机状态,防止室内换热器盘管中部温度低于25℃时吹出冷风来,当室内换热器盘管中部温度高于25℃时,该室内机的风机电机才开启,并根据室内换热器盘管中部温度进行转速调节;未接收到开机指令的室内机风机电机处于停机状态;
13)当制热启动过程结束后,根据高压压力传感器27检测到的系统高压值,第一直流变频压缩机1和第二直流变频压缩机5的运行频率均进入自动调节控制;根据低压压力传感器24检测到的系统低压值,室外风机电机13进行自动调节控制;根据第一直流变频压缩机排气温度传感器25和第二直流变频压缩机排气温度传感器26检测到的系统温度值,气旁通电磁阀10和喷液电磁阀17均进入自动调节控制;根据检测到的室内换热器进口温度传感器28与室内换热器盘管中部温度传感器29的温度之差,接收到开机指令的室内机的电子膨胀阀19进入自动调节控制;根据检测到的室内换热器盘管中部温度传感器29的温度值,接收到开机指令的室内机的风机电机进入自动调节控制其转速的状态;未接收到开机指令的室内机的电子膨胀阀20的阀门开度为50步,未接收到开机指令的室内机的风机电机处于停机状态。
当上述未接收到开机指令的室内机接收到开机指令时,根据检测到的室内换热器的进口温度与盘管中部温度的温度差,该室内机的电子膨胀阀开始进入自动调节控制状态;根据检测到室内换热器的盘管中部温度值,该室内机的风机电机处于自动调节控制其转速的状态。
当上述接收到开机指令的室内机接收到关机指令时,该室内机的电子膨胀阀的阀门关小,其开度为50步,并在延时40秒后该室内机的风机电机停机。

Claims (3)

1.一种多联机空调的制热启动方法,该多联机空调包括两台并联连接的直流变频压缩机,其启动方法包括以下步骤:
1)遥控器或线控器或集中控制器对多联机空调的室内电控装置发出制热开机指令,多联机空调的室内电控装置接收指令后将制热开机指令传递给室外电控装置,室外电控装置就发出整个多联机空调的制热启动指令,开始制热启动过程;
2)多联机空调中的气旁通电磁阀(10)接收到制热启动指令后通电开启,通电持续60秒~80秒后,气旁通电磁阀(10)关闭;
3)多联机空调中的第一回油电磁阀(4)接收到制热启动指令后通电开启,将第一油气分离器(2)底部的润滑油输送回第一直流变频压缩机(1)的回气管中,通电持续30秒~40秒后,第一回油电磁阀(4)关闭;
4)第一直流变频压缩机(1)接收到制热启动指令后,延时20秒~30秒后才开始启动,进入第一段回油运行状态,此时第一直流变频压缩机(1)的运行频率达到20赫兹~40赫兹,当第一段回油状态运行60秒~80秒后,第一直流变频压缩机(1)进入第二段回油运行状态,此时第一直流变频压缩机(1)的运行频率达到50赫兹~70赫兹,直至多联机空调中第二直流变频压缩机(5)结束回油运行时,一同退出制热启动过程;
5)多联机空调中的第二回油电磁阀(8)接收到制热启动指令后,先延时10秒~15秒后通电开启,将第二油气分离器(6)底部的润滑油输送回第二直流变频压缩机(5)的回气管中,通电持续30秒~40秒后,第二回油电磁阀(8)关闭;
6)第二直流变频压缩机(5)在接收到制热启动指令后,于第一直流变频压缩机(1)启动后再延时10秒~15秒后再启动,进入第一段回油运行状态,此时第二直流变频压缩机(5)的运行频率达到20赫兹~40赫兹,在此频率运行60秒~80秒后,第二直流变频压缩机(5)进入第二段回油运行状态,此时其运行频率达到50赫兹~70赫兹,在此频率运行100秒~120秒后,退出启动过程;
7)室外风机电机(13)在第二直流变频压缩机(5)启动时,先延时30秒~60秒再开始转入转速自动调节控制;
8)在整个制热模式的运行过程中,在室内环境温度达到要求而停机,或者强制停机时,四通阀(11)一直处于通电开启状态;
9)在接收到制热启动指令后,制热电子膨胀阀(15)处于关闭状态,在第一直流变频压缩机(1)启动后延时40秒~60秒后,制热电子膨胀阀(15)的阀门开度开到200步~300步,保持这个开度直到整个制热启动过程结束;
10)在整个制热启动过程中,喷液电磁阀(17)始终处于断电关闭状态;
11)在整个制热启动过程中,接收到开机指令的室内机的电子膨胀阀(19)的阀门开度为120步~300步,未接收到开机指令的室内机的电子膨胀阀(20)的阀门开度为40步~60步;
12)在整个制热启动过程中,接收到开机指令的室内机风机电机处于防冷风控制状态,即处于停机状态,防止室内换热器盘管中部温度低于25℃时吹出冷风来,当室内换热器盘管中部温度高于25℃时,该室内机的风机电机才开启,并根据室内换热器盘管中部温度进行转速调节;未接收到开机指令的室内机风机电机处于停机状态;
13)当制热启动过程结束后,根据高压压力传感器(27)检测到的系统高压值,第一直流变频压缩机(1)的运行频率进入自动调节控制,第二直流变频压缩机(5)的运行频率停机或者进入自动调节控制;根据低压压力传感器(24)检测到的系统低压值,室外风机电机(13)进行自动调节控制;根据第一直流变频压缩机排气温度传感器(25)和第二直流变频压缩机排气温度传感器(26)检测到的系统温度值,气旁通电磁阀(10)和喷液电磁阀(17)均进入自动调节控制;根据检测到的室内换热器进口温度传感器(28)与室内换热器盘管中部温度传感器(29)的温度之差,接收到开机指令的室内机的电子膨胀阀(19)进入自动调节控制;根据检测到的室内换热器盘管中部温度传感器(29)的温度值,接收到开机指令的室内机的风机电机进入自动调节控制其转速的状态;未接收到开机指令的室内机的电子膨胀阀(20)的阀门开度为40步~60步,未接收到开机指令的室内机的风机电机处于停机状态。
2.根据权利要求1所述的多联机空调的制热启动方法,其特征在于:所述的步骤13)中,当接收到开机指令的室内机接收到关机指令时,该室内机的电子膨胀阀(19)关小,其阀门开度为40步~60步,并且该室内机的风机电机在延时30秒~60秒后停机。
3.根据权利要求1所述的多联机空调的制热启动方法,其特征在于:所述的步骤13)中,当未接收到开机指令的室内机接收到开机指令时,该室内机的电子膨胀阀(20)开始进入自动调节控制状态,并且根据室内换热器出口温度传感器(30)与室内换热器进口温度传感器(28)的温度之差进行自动调节控制,该室内机的风机电机根据室内换热器盘管中部温度传感器(29)的温度值进入自动调节控制其转速的状态。
CN201210525291.7A 2012-12-05 2012-12-05 多联机空调的制热启动方法 Active CN103017294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210525291.7A CN103017294B (zh) 2012-12-05 2012-12-05 多联机空调的制热启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210525291.7A CN103017294B (zh) 2012-12-05 2012-12-05 多联机空调的制热启动方法

Publications (2)

Publication Number Publication Date
CN103017294A CN103017294A (zh) 2013-04-03
CN103017294B true CN103017294B (zh) 2014-11-12

Family

ID=47966189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210525291.7A Active CN103017294B (zh) 2012-12-05 2012-12-05 多联机空调的制热启动方法

Country Status (1)

Country Link
CN (1) CN103017294B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279693B (zh) * 2013-07-01 2017-06-27 广东美的制冷设备有限公司 空调器的快速启动方法
CN104633999B (zh) * 2015-03-04 2017-12-08 深圳麦克维尔空调有限公司 变频空调室外机
CN105805892B (zh) * 2016-03-31 2019-01-29 海信(山东)空调有限公司 一种空调制热控制方法
CN106225169A (zh) * 2016-08-08 2016-12-14 珠海格力电器股份有限公司 空调的控制装置及方法
CN106196517B (zh) * 2016-09-30 2019-09-17 广东美的制冷设备有限公司 一拖多空调器控制方法、装置及一拖多空调器
CN106403428A (zh) * 2016-10-20 2017-02-15 珠海格力电器股份有限公司 电子膨胀阀的控制方法、装置和系统及空调
CN106839271A (zh) * 2016-12-30 2017-06-13 宁波奥克斯电气股份有限公司 多联机室内机制热到温停机后的控制方法
CN106813360B (zh) * 2017-01-17 2020-04-03 广东美的暖通设备有限公司 多联机系统及其室内机的防冷风控制方法和装置
CN107270492B (zh) * 2017-07-21 2020-08-04 广东美的暖通设备有限公司 空调系统控制方法、装置及空调
CN108224839B (zh) * 2017-12-29 2020-06-09 Tcl空调器(中山)有限公司 一种多联机空调系统及其控制方法
CN109595739A (zh) * 2018-12-07 2019-04-09 四川长虹电器股份有限公司 一种带电子膨胀阀的空调及其控制方法
CN109945435B (zh) * 2019-03-25 2020-10-27 宁波奥克斯电气股份有限公司 一种多联机室内机关机控制方法及多联机装置
CN110425700B (zh) * 2019-09-27 2020-04-24 宁波奥克斯电气股份有限公司 一种空调低温制热启动控制方法、装置及空调器
CN110671742B (zh) * 2019-10-24 2021-08-27 宁波奥克斯电气股份有限公司 多联机空调系统的控制方法、装置和多联机空调系统
CN111207501B (zh) * 2020-01-16 2022-07-29 广东美的暖通设备有限公司 空调的控制方法、系统及空调
CN114076391B (zh) * 2020-08-17 2022-11-22 广东美的制冷设备有限公司 多联机空调及其控制方法、空调控制装置和可读存储介质
CN112361559A (zh) * 2020-11-16 2021-02-12 南京天加环境科技有限公司 一种多联机空调强效制热的控制方法
CN112555977B (zh) * 2020-12-10 2022-07-08 广东芬尼克兹节能设备有限公司 变频热泵的调频方法、装置、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108027A (ko) * 2005-04-11 2006-10-17 엘지전자 주식회사 멀티에어컨 및 그의 압축기 제어방법
CN101469927A (zh) * 2007-12-24 2009-07-01 苏州三星电子有限公司 制热过负荷保护动作中压缩机停机时间最小化控制方法
CN101614432A (zh) * 2008-06-24 2009-12-30 海尔集团公司 一种多联空调频率切换控制方法及系统
CN101726072A (zh) * 2008-10-24 2010-06-09 海尔集团公司 变频空调低温制热的控制方式
CN102109207A (zh) * 2009-12-24 2011-06-29 东莞市广大制冷有限公司 多压缩机空调控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108027A (ko) * 2005-04-11 2006-10-17 엘지전자 주식회사 멀티에어컨 및 그의 압축기 제어방법
CN101469927A (zh) * 2007-12-24 2009-07-01 苏州三星电子有限公司 制热过负荷保护动作中压缩机停机时间最小化控制方法
CN101614432A (zh) * 2008-06-24 2009-12-30 海尔集团公司 一种多联空调频率切换控制方法及系统
CN101726072A (zh) * 2008-10-24 2010-06-09 海尔集团公司 变频空调低温制热的控制方式
CN102109207A (zh) * 2009-12-24 2011-06-29 东莞市广大制冷有限公司 多压缩机空调控制方法及系统

Also Published As

Publication number Publication date
CN103017294A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103017294B (zh) 多联机空调的制热启动方法
CN103017295B (zh) 多联机空调的制冷转制热模式启动方法
CN102997367B (zh) 多联机空调的制冷启动方法
CN102997368B (zh) 多压缩机并联多联机智能除霜控制方法
CN104180563B (zh) 多联机系统制热时的回油方法
CN101949570B (zh) 直流变频自由拖空调启动控制方法
CN102538144B (zh) 多联式空调机组的控制方法
CN104848587B (zh) 变频多联式热泵系统及旁通电子膨胀阀的控制方法
WO2011058781A1 (ja) 熱源システム
AU2011309325B2 (en) Outdoor unit of refrigeration apparatus
CN102353117B (zh) Vrv空调室内负荷突变时的系统保护方法
EP2868992B1 (en) Air conditioning device
CN101688713A (zh) 具有自由冷却泵起动程序的空调系统和方法
CN110207420B (zh) 多联机系统及其控制方法
KR101929854B1 (ko) 멀티 공기 조화기의 진단 제어방법
CN112344602A (zh) 一种提高低温运行可靠性的空调系统及其控制方法
CN105757884A (zh) 空调器的控制方法
CN213335025U (zh) 一种提高低温运行可靠性的空调系统
CN104457048A (zh) 一种空调制冷系统和控制方法
CN104990173A (zh) 空调器、空调器的防火控制方法、控制器及空调系统
US20160273794A1 (en) Air conditioning apparatus
CN102997360B (zh) 一种双分区低温空调系统的控制方法
CN101086370A (zh) 空调器及其控制方法
JP2008008558A (ja) 冷凍装置
CN105066494A (zh) 一种核级直接蒸发组合式空气处理机组及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 315191 Zhejiang city of Ningbo province Jiangshan town Yinzhou District Mingguang Road No. 1166

Patentee after: NINGBO AUX ELECTRIC CO., LTD.

Address before: 315191, AUX Industrial Park, Mingguang North Road, Jiangshan Town, Ningbo, Yinzhou District, Zhejiang 1166, China

Patentee before: Ningbo AUX Electric Co., Ltd.