CN103014168A - 基于DNA hairpin和RCA的核酸检测方法 - Google Patents

基于DNA hairpin和RCA的核酸检测方法 Download PDF

Info

Publication number
CN103014168A
CN103014168A CN2012105910682A CN201210591068A CN103014168A CN 103014168 A CN103014168 A CN 103014168A CN 2012105910682 A CN2012105910682 A CN 2012105910682A CN 201210591068 A CN201210591068 A CN 201210591068A CN 103014168 A CN103014168 A CN 103014168A
Authority
CN
China
Prior art keywords
dna
nucleic acid
hairpin
target nucleic
rca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105910682A
Other languages
English (en)
Inventor
桑建明
王玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN2012105910682A priority Critical patent/CN103014168A/zh
Publication of CN103014168A publication Critical patent/CN103014168A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种基于DNA hairpin和RCA的核酸检测方法。该检测方法通过将环部与目标DNA互补,茎部与环状DNA部分互补的DNA hairpin修饰到固体载体上;再加入环状DNA、酶、扩增原料等;当检测体系中加入目标核酸分子时,目标核酸分子与DNA hairpin的环部互补配对,茎-环结构打开,茎部的碱基与环状DNA杂交结合,RCA发生,目标核酸分子的量不同,打开的茎-环结构就不同,进而利用光学或电学的方法实现目标核酸分子定量。该方法以DNAhairpin作为RCA的检测探针,简化了用RCA检测分子的流程,降低了检测成本,同时保留了RCA用于核酸检测高灵敏度等优点,适于推广使用。

Description

基于DNA hairpin和RCA的核酸检测方法
技术领域
本发明属于生物分子检测领域,具体涉及一种基于DNA hairpin和滚环扩增(RCA)实现核酸分子快速、高灵敏检测的方法。 
背景技术
滚环扩增(rolling circle amplification,RCA)是新近发展起来的一种恒温核酸扩增方法。以环状DNA为模板,通过一个短的DNA引物(与部分环状模板互补),在特殊的DNA聚合酶(phi 29 DNA聚合酶)催化下将dNTPs转变成单链DNA。其线性扩增倍数为105,指数化扩增能力大于109,实现对靶核酸的信号放大,灵敏度达到一个拷贝的核酸分子,在核酸检测中具有很大的应用价值和潜力。比如Juan Hu等人(Juan Hu,Chun-yang Zhang;Sensitive detection of nucleicacids with rolling circle amplification and surface-enhanced raman scatteringspectroscopy;Anal.Chem.2010,82,8991-8997)利用RCA实现了高灵敏度的核酸检测,但是其中设计过多分子探针设计,存在两步酶促反应,增加了检测的复杂性和检测成本。 
DNA hairpin是指一段单链DNA分子末端局部互补配对形成的一种特定分子结构,分为茎部(hairpin)和环部(loop)两个部分。DNA hairpin的茎-环结构在某些特殊的情况下可以打开,比如当另一段单链DNA与环部互补配对结合后,其茎-环结构就会打开。基于这种特性,多种核酸检测方法被提出。比如Gwo-bin Lee等人(Yi-chih Su,et al;Multiple pathogen detection for poultry byultilizing integrated microfluidic system;MicroTAS’2012)利用在DNA hairpin的5’端和3’端分别修饰上荧光分子和荧光猝灭分子的方法来检测病原体DNA。但是荧光分子和荧光猝灭分子修饰价格昂贵,作为分子检测的成本过高,不利于检测方法推广使用。 
发明内容
本发明的目的在于利用DNA hairpin的环部与特定单链DNA或RNA互补配 对结合后其茎部会打开,以及目标核酸分子的量不同,打开的茎-环结构就不同的特性,将DNA hairpin的茎部碱基序列设计为滚环扩增的引物,以简化滚环扩增用于核酸检测的步骤,以实现简单,低成本,高灵敏度的核酸检测。 
为实现上述目的,本发明采用以下步骤: 
1)将DNA hairpin修饰到固体载体上; 
2)加入环状DNA、酶、BSA、扩增原料; 
3)加入待测目标核酸分子,进行滚环扩增; 
4)扩增后对目标核酸分子进行定量检测。 
步骤1)中,所述固体载体包括纳米颗粒。 
步骤1)中,所述DNA hairpin,包括5’端连接分子修饰,环部,茎部。 
进一步地,所述5’端连接分子为生物素(biotin),通过与固体载体表面链霉亲和素(streptavidin)结合,将DNA hairpin修饰固定到载体表面; 
进一步地,所述环部碱基设计成能与目标核酸分子互补配对的碱基; 
进一步地,所述茎部的3’端碱基设计成能与滚环扩增的环状DNA互补配对的碱基,作为滚环扩增的引物; 
步骤2)中,所述环状DNA为单链环状DNA,为滚环扩增的模板。 
步骤2)中,所述酶为恒温酶,包括phi 29 DNA聚合酶,RNA聚合酶。 
步骤2)中,当检测的目标分子是单链DNA时,扩增原料为四种脱氧核糖核苷酸,当检测的目标分子是RNA时,扩增的原料为四种核糖核苷酸。 
步骤3)中,所述目标核酸分子包括单链DNA或RNA。 
本发明的核酸检测方法利用了DNA hairpin结构的可逆性和RCA的快速,简易性,提供了一种简易、高灵敏度的核酸分子检测方法,其优点和积极效果如下: 
a)利用DNA hairpin作为RCA的检测探针,简化了用RCA检测分子的流程,减少了酶等生物试剂的使用,降低了检测成本; 
b)利用了DNA hairpin结构的可逆性,同时保留了RCA用于核酸检测高灵敏度等的优点; 
c)各种检测原料包括DNA hairpin,环状DNA,酶,扩增原料等均可在市场上买到,适于广泛推广使用。 
附图说明
图1为滚环扩增过程示意图; 
图2为DNA hairpin通过与目标分子结合引起结构改变示意图; 
图3为结合DNA hairpin和滚环扩增用于核酸检测的原理示意图。 
附图标记说明: 
1.环状DNA;2.滚环扩增引物;3.滚环扩增的长链DNA;4.DNA hairpin的环部;5.DNA hairpin的茎部;6.目标核酸片段;7.氢键;8.连接分子;9.固体载体。 
具体实施方式
下面结合具体实施例进一步阐述利用DNA hairpin和RCA进行核算定量检测如方法。 
1.DNA hairpin的设计与合成 
名称 DNA序列(5’-3‘端)
DNA Hairpin CCTGTCTTCGCCTTGGCCACAGTGGTACGCGAGGCCACCACGAAGGCGAAGACAGGTGCTTAGTC
目标DNA TCGTGGTGGCCTCGCGTACCACTGTGGCCA
环状DNA TGTCTTCGCCTTGTTTCCTTTCCTTGAAACTTCTTCCTTTCTTTCTTTCGACTAAGCACC
2.DNA hairpin修饰到纳米颗粒 
1)取80ul二氧化硅纳米颗粒溶液(10mg/ml),离心,10000rpm/min,3min,弃去上清液,用washing/binding buffer洗三次,每次用80ul,洗后离心10000rpm/min,3min,最后一次离心后加入16ul washing/binding buffer; 
2)在上述颗粒溶液中加入4ul DNA hairpin溶液(100uM),放置到恒温振荡金属浴上,25℃反应1h,反应完之后成后用DI water洗两次后加入10ulDI water。 
3.纳米颗粒晶体形成 
将上述修饰上DNA hairpin的颗粒溶液滴加到硅片上的微米孔上,孔大小为10um*10um*50um,静置,待溶液挥发完后颗粒就会自发堆积到孔中形成纳米颗粒晶体。 
4.定量检测 
将上述包含纳米颗粒晶体的硅片固定到自制的包含两个储液池的小器件中间,储液池的大小均为30μl,储液池中的液体通过纳米颗粒晶体联通,在两储液池中加入待测目标DNA 10μl,10×Phi 29DNA聚合酶缓冲液2μl和Phi 29 DNA聚合酶1μl,10×BSA溶液2μl,四种脱氧核糖核苷酸各1.5μl,在两储液池中插入Ag/AgCl电极,施加0-1V偏压,测定通过纳流体晶体的电导变化。根据电导的变化反推出目标DNA的浓度。 
以上通过实施例对本发明进行了详细的描述,本领域的技术人员应当理解,在不超出本发明的精神和实质的范围内,对本发明做出一定的修改和变动,仍有可能实现本发明所述之结果。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明权利要求书保护的范围内。 

Claims (10)

1.一种基于DNA hairpin和RCA的核酸检测方法,其特征在于,包括以下步骤:
1)将DNA hairpin修饰到固体载体上;
2)加入环状DNA、BSA、酶、扩增原料;
3)加入待测目标核酸分子,进行滚环扩增;
4)扩增后对目标核酸分子进行定量检测。
2.如权利要求1所述的方法,其特征在于,步骤1)中,所述固体载体包括纳米颗粒。
3.如权利要求1所述的方法,其特征在于,步骤1)中,所述DNA hairpin包括5’端连接分子、环部和茎部。
4.如权利要求1所述的方法,其特征在于,步骤2)中,所述环状DNA为单链环状DNA。
5.如权利要求1所述的方法,其特征在于,步骤2)中,所述酶为恒温酶,包括phi 29 DNA聚合酶或RNA聚合酶。
6.如权利要求1所述的方法,其特征在于,步骤2)中,当检测的目标核酸分子是单链DNA时,扩增原料为四种脱氧核糖核苷酸,当检测的目标核酸分子是RNA时,扩增原料为四种核糖核苷酸。
7.如权利要求1所述的方法,其特征在于,步骤3)中,所述目标核酸分子包括单链DNA或RNA。
8.如权利要求3所述的方法,其特征在于,所述DNA hairpin的5’端连接分子为生物素,通过与固体载体表面链霉亲和素结合,将DNA hairpin修饰固定到载体表面。
9.如权利要求3所述的方法,其特征在于,所述DNA hairpin的环部包括能与目标核酸分子碱基互补配对的碱基。
10.如权利要求3所述的方法,其特征在于,所述DNA hairpin的茎部的3’端包括能与环状DNA分子互补配对的碱基。
CN2012105910682A 2012-12-28 2012-12-28 基于DNA hairpin和RCA的核酸检测方法 Pending CN103014168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105910682A CN103014168A (zh) 2012-12-28 2012-12-28 基于DNA hairpin和RCA的核酸检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105910682A CN103014168A (zh) 2012-12-28 2012-12-28 基于DNA hairpin和RCA的核酸检测方法

Publications (1)

Publication Number Publication Date
CN103014168A true CN103014168A (zh) 2013-04-03

Family

ID=47963280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105910682A Pending CN103014168A (zh) 2012-12-28 2012-12-28 基于DNA hairpin和RCA的核酸检测方法

Country Status (1)

Country Link
CN (1) CN103014168A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555838A (zh) * 2013-10-31 2014-02-05 深圳先进技术研究院 一种基于滚环扩增反应的miRNA检测探针、检测方法及试剂盒
CN106884047A (zh) * 2017-02-15 2017-06-23 济南大学 基于核酸适配体检测miRNA‑155的方法
CN108064339A (zh) * 2014-12-16 2018-05-22 哈佛学院院长及董事 元荧光团的触发组装
US10876971B2 (en) 2010-10-29 2020-12-29 President And Fellows Of Harvard College Nucleic acid nanostructure barcode probes
US11286517B2 (en) 2016-02-17 2022-03-29 President And Fellows Of Harvard College Molecular programming tools
US11492661B2 (en) 2017-01-10 2022-11-08 President And Fellows Of Harvard College Multiplexed signal amplification
US11639522B2 (en) 2015-01-30 2023-05-02 President And Fellows Of Harvard College Microscope-free imaging
US11981956B2 (en) 2018-01-26 2024-05-14 President And Fellows Of Harvard College Proximity detection methods and compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061133A2 (en) * 2000-11-09 2002-08-08 Yale University Nucleic acid detection using structured probes
US20040086892A1 (en) * 2002-11-06 2004-05-06 Crothers Donald M. Universal tag assay
CN101238221A (zh) * 2005-04-12 2008-08-06 现场Rcp公司 用于产生寡核苷酸的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061133A2 (en) * 2000-11-09 2002-08-08 Yale University Nucleic acid detection using structured probes
US20040086892A1 (en) * 2002-11-06 2004-05-06 Crothers Donald M. Universal tag assay
CN101238221A (zh) * 2005-04-12 2008-08-06 现场Rcp公司 用于产生寡核苷酸的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876971B2 (en) 2010-10-29 2020-12-29 President And Fellows Of Harvard College Nucleic acid nanostructure barcode probes
CN103555838A (zh) * 2013-10-31 2014-02-05 深圳先进技术研究院 一种基于滚环扩增反应的miRNA检测探针、检测方法及试剂盒
CN103555838B (zh) * 2013-10-31 2016-09-14 深圳先进技术研究院 一种基于滚环扩增反应的miRNA检测探针、检测方法及试剂盒
CN108064339A (zh) * 2014-12-16 2018-05-22 哈佛学院院长及董事 元荧光团的触发组装
US11639522B2 (en) 2015-01-30 2023-05-02 President And Fellows Of Harvard College Microscope-free imaging
US11286517B2 (en) 2016-02-17 2022-03-29 President And Fellows Of Harvard College Molecular programming tools
US11492661B2 (en) 2017-01-10 2022-11-08 President And Fellows Of Harvard College Multiplexed signal amplification
CN106884047A (zh) * 2017-02-15 2017-06-23 济南大学 基于核酸适配体检测miRNA‑155的方法
CN106884047B (zh) * 2017-02-15 2021-03-23 济南大学 基于核酸适配体检测miRNA-155的方法
US11981956B2 (en) 2018-01-26 2024-05-14 President And Fellows Of Harvard College Proximity detection methods and compositions

Similar Documents

Publication Publication Date Title
CN103014168A (zh) 基于DNA hairpin和RCA的核酸检测方法
Wang et al. New CRISPR-derived microRNA sensing mechanism based on Cas12a self-powered and rolling circle transcription-unleashed real-time crRNA recruiting
Wang et al. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplexDNAzyme
Zhao et al. Isothermal amplification of nucleic acids
Miao et al. Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles
Zhang et al. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor
Xie et al. Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification
Zhang et al. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification
Hao et al. A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer
Zhang et al. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA
Bi et al. Exonuclease-assisted cascaded recycling amplification for label-free detection of DNA
Zhou et al. Ultrasensitive DNA detection based on Au nanoparticles and isothermal circular double-assisted electrochemiluminescence signal amplification
D’Agata et al. Advanced methods for microRNA biosensing: a problem-solving perspective
Shen et al. A real-time colorimetric assay for label-free detection of microRNAs down to sub-femtomolar levels
Li et al. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification
Liang et al. Electrochemical biosensor for microRNA detection based on cascade hybridization chain reaction
Liu et al. Exonuclease III-powered self-propelled DNA machine for distinctly amplified detection of nucleic acid and protein
Yang et al. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells
Koo et al. Visualization and quantification of microRNA in a single cell using atomic force microscopy
CN103014169B (zh) 基于纳米颗粒和滚环扩增的核酸定性检测方法
Ma et al. Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers
Liu et al. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization
Zhang et al. A modified exponential amplification reaction (EXPAR) with an improved signal-to-noise ratio for ultrasensitive detection of polynucleotide kinase
He et al. The rapid detection of microRNA based on p19-enhanced fluorescence polarization
Xue et al. Ultrasensitive fluorescence detection of nucleic acids using exonuclease III-induced cascade two-stage isothermal amplification-mediated zinc (II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent nanotags

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130403