CN102997042A - Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system - Google Patents

Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system Download PDF

Info

Publication number
CN102997042A
CN102997042A CN201110271191.1A CN201110271191A CN102997042A CN 102997042 A CN102997042 A CN 102997042A CN 201110271191 A CN201110271191 A CN 201110271191A CN 102997042 A CN102997042 A CN 102997042A
Authority
CN
China
Prior art keywords
optical fiber
sensor
natural gas
pipeline
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110271191.1A
Other languages
Chinese (zh)
Inventor
张金权
王小军
李东
焦书浩
王飞
赵锋
谢文婧
于立成
厉宇
曾科宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
China Petroleum Pipeline Bureau Co Ltd
Original Assignee
China National Petroleum Corp
China Petroleum Pipeline Bureau Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, China Petroleum Pipeline Bureau Co Ltd filed Critical China National Petroleum Corp
Priority to CN201110271191.1A priority Critical patent/CN102997042A/en
Publication of CN102997042A publication Critical patent/CN102997042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

The invention discloses a mounting method for an optical fiber sensor of a natural gas pipe leakage optical fiber monitoring system. On a rectangular elastic sheet (8), optical fiber interference arms of an optical fiber interferometer are uniformly arranged in the shape of sine wave; optical fibers are tightly stuck to the rectangular elastic sheet (8) by using a bonding agent; the other optical fiber interferometer and related appliances thereof are wound in a tail fiber winding box (1) in order; input optical fibers and output optical fibers are exposed outside; the tail fiber winding box (1) is fixedly arranged on the rectangular elastic sheet (8) by using a bonding agent; the inner concave surface of the rectangular elastic sheet (8) is stuck to the outer surface of a pipe along the axial direction of the natural gas pipe by using a bonding agent; and the whole shell of the sensor is sleeved on the outer part, and corresponding pipe corrosion-preventing treatment is performed, so that the whole sensor is seamlessly jointed with a corrosion-resistant layer on the surface of the pipe. The sensitivity of an optical fiber sensing unit probe can be effectively controlled, and signal interference except natural gas pipe leakage is well isolated and shielded.

Description

A kind of fiber optic sensor mounting method of natural gas pipeline leakage optical fiber monitoring system
Technical field
The present invention is a kind of fiber optic sensor mounting method of natural gas pipeline leakage optical fiber monitoring system, relates to measurement and the pipe-line system technical field of optical fiber sensing technology, mechanical vibration.
Background technique
At present, the pipeline overall length of building up in the world reaches 2,500,000 kilometers, and having surpassed the railway total kilometrage becomes the main means of transportation of world energy sources, and the oil product of developed country and oil-producing area, the Middle East transports all realizes channelization.China's pipeline has also obtained very fast development in recent years, overall length is also above 70,000 kilometers, begun to take shape across thing, stretch from the north to the south, cover the whole nation, be communicated with the overseas large general layout of energy pipe network, pipeline transport becomes the major way of the allotment conveying of the strategic energy such as oil gas.
Pipeline is subjected to the reasons such as natural disaster, third party's breakage in installation owing to cross-regional wide, has caused more pipe leakage accident to occur.In case natural gas line leaks, will cause completely stopping transportation and a large amount of natural gas resource loss.This not only directly has influence on city along the line and with the energy resource supply of gas enterprise, and, also very easily cause the security incidents such as fire, blast, threaten the people life property safety in area along the line, even also can cause serious environmental pollution and ecocatastrophe.For example, the natural gas line big bang occurs in U.S. San Bruno city on September 9th, 2010, and blast causes long 51 meters, wide 9 a meters hollow place on the road surface.The pipeline of about 8 meters of one segment length, 76 centimetres of diameters is exploded the Heaven, flies out about 30 meters far away, and causes large-range fire disaster, causes 4 people dead, and 3 people are missing, and at least 52 people are injured, 4 hectares of burnt areas, and tens of houses are burnt.People's safety, environmental consciousness significantly promote in recent years, are also more and more paid attention to as the pipeline transportation safety problem of high risk industries.
Make a general survey of the various line leakage technology of internal and overseas, the negative pressure wave method that generally uses at present, flow equilibrium method, the Pipeline Leak detection techniques such as pressure gradient, can't effectively solve the Leak testtion problem of gas pipeline, especially to identification and the location of minute leakage.And based on the good sensing characteristics of optical fiber, optical fiber sensing technology is able to fast development, wherein using more is to utilize an optical cable with the pipeline laying in one ditch as the Leakage Gas sensing unit, although sensitivity is higher than conventional art, but its locating effect is poor, can not satisfy the application demand of natural gas line leakage fully.Another kind of quasi-distributed optical fiber sensory technique based on fiber multiplex, identification and the location that can effectively solve the pipeline gas minute leakage.But the installation specification of its Fibre Optical Sensor unit is complicated, and design difficulty is large, mainly is to guarantee that the sensitivity of Fibre Optical Sensor unit inspection is enough high, and noise isolation will be got well.
Summary of the invention
It is comparatively simple and make enough enough fiber optic sensor mounting methods of good natural gas pipeline leakage optical fiber monitoring system of height, noise isolation of Fibre Optical Sensor unit inspection sensitivity to the objective of the invention is to invent a kind of installation.
The present invention be directed to and have the Fibre Optical Sensor cellular installation method that highly sensitive quasi-distributed optical fiber sensing is leaked the vibration monitoring method and system.It is at the pipeline body with certain intervals high sensitivity optical fiber interference type leak optical fiber sensor to be installed, the vibration wave signal that continuous real-time monitoring is propagated along pipeline body, the vibration wave signal that gathers is carried out analysing and processing, comprise type identification and vibration source location, wherein whether type identification is for to belong to leak type by the extraction and analysis of vibration wave feature being differentiated it, the time lag that simultaneously propagates into adjacent several optical fiber transducers according to vibration wave realizes the determining of vibration wave source position in conjunction with the velocity of propagation of vibration wave on pipeline body, and realizing above-mentioned provides the position information of leakage point (seeing Fig. 1) simultaneously to after the vibration wave signal analysis and processing incident of leakage being reported to the police.And adopting the high sensitivity optical fiber sensor suitably to increase the quantity of optical fiber transducer on improving the basis of incident of leakage monitoring sensitivity, expanded the frequency range that to pick up monitor signal, and estimated that in conjunction with the time delay that a plurality of optical fiber transducers carry out localization method has guaranteed the accuracy of system location.
In natural gas pipeline leakage optical fiber monitoring system, sensing unit is the key that realizes line leakage, and when pipeline occurs to leak, leaking the vibration wave that excites will propagate to the leakage point both sides along pipeline.A sensing unit is installed on pipeline body at a certain distance, is used for monitoring the leakage vibration wave on the pipeline.Sensing unit adopts the fibre optic interferometer structure, can detect sensing unit as leaking vibration wave with optical fiber Michelson interferometer or fiber Mach-Zehnder interferometer.
Optical fiber transducer of the present invention is the optical fiber transducer that detects Axial Vibration of Straight Pipes, and its structure is seen Fig. 2.Optical fiber transducer is comprised of rectangular spring sheet 8 and fibre optic interferometer 4 and tail fiber coiling box 1; Concrete structure is on rectangular spring sheet 8, the fiber optic interferometric arm of fibre optic interferometer is evenly laid with the shape of sine wave, and with tackiness agent optical fiber is close on the rectangular spring sheet 8, remaining fibre optic interferometer and related device thereof are with neat being coiled in the tail fiber coiling box 1, and input, output optical fibre 2 expose outside; Tail fiber coiling box 1 is fixed on above the rectangular spring sheet 8 by tackiness agent, during installation of sensors, use tackiness agent to be bonded on the pipeline external surface along the natural gas line axial direction inner concave of rectangular spring sheet 8, at last with sensor monolithic case cover externally, and do corresponding pipeline corrosion protection and process, make the whole and pipe surface anticorrosive coat slitless connection of sensor.
Wherein said rectangular spring sheet 8 is a bottom indent and the radian steel sheet consistent with pipeline external surface; The axial vibration that produces during gas pipeline leakage allows rectangular spring sheet 8 that deformation occurs, and deformation also occurs the fibre optic interferometer 4 that drive rectangular spring sheet 8 coils above, changes thus the state of the light of transmission in the optical fiber, so that is detected by rear end equipment.
Sensor body bottom sensor fibre evenly distributes along pipeline axial.
The sensor body bottom is adhesively fixed in the natural gas line outer surface by adhesive, and sensor fibre can not viscose glue, the directly outer steel of contact pipeline surface.
Wherein have the vibration damping layer in the shell of sensor, mainly play isolating pipelines wall external interference signal and fixing protection sensor.
The present invention can guarantee that the detection sensitivity of Fibre Optical Sensor unit is high, and effective isolating pipelines wall undesired signal in addition again is applicable to directly contact the Fibre Optical Sensor cellular installation of pipe surface.Can be quasi-distributed natural gas line leakage based on the optical fiber transducer of this installation method high position precision and highly sensitive monitoring means are provided.
The technical solution adopted in the present invention is: this invention comprises optical fiber transducer body, sensor shield 7 and natural gas line.This sensor body is the distributing box body of sensor fibre of a bottom even, and the bottom indent is the radian that is complementary with pipeline external surface, and this mainly is in order to make sensor fibre contact as far as possible pipeline outer wall, to increase its sensitivity.Sensor shield 7 inner spongy layers with the vibration damping protective action mainly play isolating pipelines wall external interference signal and protection sensing unit.Before sensor installation, need to remove the anticorrosive coat of the natural gas line outer surface of respective regions clean, expose steel tube surface, during installation, use adhesive that sensor body is bonded on the pipeline outer wall, this also is in order to make sensor fibre unexpectedly may contact pipeline outer wall, to increase its sensitivity.Afterwards sensor shield 7 is covered on the sensor body outside, drawn from the cable groove that goes out of sensor shield by the transmission cable of drawing in the sensor body, at last the seam crossing at guard shield and pipeline carries out gluing and preservative treatment, makes itself and pipe surface anticorrosive coat slitless connection.
Effect of the present invention and benefit are, natural gas line leakage Fibre Optical Sensor unit based on this installation method has the detection sensitivity height, the advantage that noise isolation is good can be quasi-distributed natural gas line leakage high position precision and highly sensitive monitoring means is provided.
Description of drawings
Fig. 1 monitoring system of fiber optical sensing natural gas pipeline theory diagram
Fig. 2 Axial Vibration of Straight Pipes detection fiber sensor construction figure
The Fibre Optical Sensor cellular installation method schematic representation of Fig. 3 natural gas line leakage
The Fibre Optical Sensor unit installing structure schematic representation (partial enlarged drawing) of Fig. 4 natural gas line leakage
Wherein: 1-tail fiber coiling box 2-input, output optical fibre
4-fibre optic interferometer 5-transmission cable 6-sensing unit body
7-sensor shield 8-rectangular spring sheet 9-pipe surface
10-pipe surface anticorrosive coat.
Embodiment
In conjunction with the accompanying drawings and embodiments the present invention is further specified, but should not limit protection scope of the present invention with this.
Embodiment. this example mainly is for the designed embodiment of natural gas pipeline leakage optical fiber monitoring system sensor, so need to carry out on this monitoring system embodiment's basis.This monitoring system consists of as shown in Figure 1, on pipeline body, every 1.5km an optical fiber transducer is installed, 10 sensors are installed altogether, front 5 sensors and rear 5 sensors consist of respectively a sensor group, an optical fiber in all optical fiber transducer group common transmitted optical cables is connected with system source, as launching fiber, simultaneously each optical fiber transducer group uses alone again optical fiber in the transmission cable to be connected with the system photodetector, as returning optical fiber; Photodetector output termination comprises signals collecting and the puocessing module of leakage signal identification and state event location function, and described signals collecting and puocessing module comprise that signal conditioner, signal picker, processing unit, terminal show and external interface; What wherein connect the photodetector output terminal is signal conditioner, signal picker and processing unit successively, and processing unit output has terminal to show and external interface.Signal picker and processing unit output connect microcomputer.
This routine used optical fiber transducer is the optical fiber transducer (seeing Fig. 3) that detects Axial Vibration of Straight Pipes.
The sensor that system adopts in this example only main sensor fibre consists of, production method forms according to the method coiling of Fig. 2, its outside is covered with sensor outer housing, the shell internal layer is with one deck vibration isolation sponge, stick on the pipe surface that anticorrosive coat left by plane with adhesive glue during installation, make the indent bottom of sensor be close to pipeline outer wall, realize picking up the pipeline body vibration;
In this example, the concrete installation method of this system's optical fiber transducer is shown in Fig. 3,4: at first, the natural gas line external surface coating 10 of cleaning sensing mounting zone, the removal original anticorrosive coat of pipe surface is also slightly polished, until expose smooth steel pipe walls 9.Then, evenly smear adhesive at outer surface of steel tube, sensor base or rectangular spring sheet 8 are pressed on outer surface of steel tube 9, until till adhesive solidifies fully.Then sensor shield 7 is covered sensing unit 6 fully, and the upper vibration damping interlayer of pad betwixt, the sensor shield side goes out the cable groove and should aim at transmission cable 5 positions on the sensor when mounted.Carry out gluing and preservative treatment in sensor shield and pipeline joint-seam place at last, use the material identical with the natural gas line cover coat to carry out therebetween, finally make the whole and pipe surface anticorrosive coat slitless connection of sensor.
This example is through test of many times, can realize the monitoring along any disturbance behavior of pipe transmmision by install to leak the vibration sensing interferometric sensor at tube wall, through realizing signal analysis and processing and intelligent recognition incident of leakage is reported to the police and provided the leakage point position, system sensitivity is high, by the intelligent recognition of leaking has been reduced system's false alarm rate that incident causes largely.

Claims (4)

1. the fiber optic sensor mounting method of a natural gas pipeline leakage optical fiber monitoring system is characterized in that forming the optical fiber transducer that detects Axial Vibration of Straight Pipes by rectangular spring sheet (8), fibre optic interferometer (4) and tail fiber coiling box (1); Its installation method is on rectangular spring sheet (8), the fiber optic interferometric arm of fibre optic interferometer is evenly laid with the shape of sine wave, and with tackiness agent optical fiber is close on the rectangular spring sheet (8), remaining fibre optic interferometer and related device thereof are with neat being coiled in the tail fiber coiling box (1), and input, output optical fibre (2) expose outside; Tail fiber coiling box (1) is fixed on above the rectangular spring sheet (8) by tackiness agent, during installation of sensors, use tackiness agent to be bonded on the pipeline external surface along the natural gas line axial direction inner concave of rectangular spring sheet (8), and do corresponding pipeline corrosion protection and process, make the whole and pipe surface anticorrosive coat slitless connection of sensor, at last with sensor monolithic case cover externally.
2. the fiber optic sensor mounting method of a kind of natural gas pipeline leakage optical fiber monitoring system according to claim 1, it is characterized in that described rectangular spring sheet (8) is a bottom indent and the radian steel sheet consistent with pipeline external surface, sensor body bottom sensor fibre is evenly to distribute along pipeline axial.
3. the fiber optic sensor mounting method of a kind of natural gas pipeline leakage optical fiber monitoring system according to claim 1, it is characterized in that the natural gas line outer surface need remove anticorrosive coat before sensor installation, expose the steel tube surface body, the sensor body bottom is adhesively fixed in the outer surface of natural gas line steel by adhesive, sensor fibre can not viscose glue, the directly outer steel of contact pipeline surface.
4. the fiber optic sensor mounting method of a kind of natural gas pipeline leakage optical fiber monitoring system according to claim 1 is characterized in that the guard shield inside of the optical fiber transducer of described detection Axial Vibration of Straight Pipes has the vibration damping layer.
CN201110271191.1A 2011-09-14 2011-09-14 Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system Pending CN102997042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110271191.1A CN102997042A (en) 2011-09-14 2011-09-14 Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110271191.1A CN102997042A (en) 2011-09-14 2011-09-14 Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system

Publications (1)

Publication Number Publication Date
CN102997042A true CN102997042A (en) 2013-03-27

Family

ID=47925979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110271191.1A Pending CN102997042A (en) 2011-09-14 2011-09-14 Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system

Country Status (1)

Country Link
CN (1) CN102997042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154986A (en) * 2014-08-22 2014-11-19 哈尔滨电机厂有限责任公司 Installation method of optical fiber acceleration sensor for turbine generator stator end vibration measurement
CN105651321A (en) * 2016-01-07 2016-06-08 小牛动力(武汉)新能源技术有限公司 Optical fiber sensing polymer composite film and application method thereof
CN107727226A (en) * 2017-08-31 2018-02-23 电子科技大学 The oil-gas pipeline safety detection method perceived based on optical fiber
CN108679455A (en) * 2018-05-17 2018-10-19 中山市顺康塑料制品有限公司 Pipeline leakage monitor and line leakage method
CN109519714A (en) * 2018-11-23 2019-03-26 重庆大学 Intelligent pipeline insulating layer with tiny leakage self-diagnostic function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598516A (en) * 2004-07-19 2005-03-23 天津大学 Interference distributed fibre-optical pipe leakage real-time monitoring method and device
CN201397405Y (en) * 2009-05-15 2010-02-03 中国石油天然气管道局 Fiber coiling disc for regional anti-intrusion system based on fiber optic interferometer
CN101087989B (en) * 2004-10-15 2011-06-08 摩根研究股份有限公司 Embeddable polarimetric fiber optic sensor and method for monitoring of structures
WO2011103032A2 (en) * 2010-02-18 2011-08-25 US Seismic Systems, Inc. Optical detection systems and methods of using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598516A (en) * 2004-07-19 2005-03-23 天津大学 Interference distributed fibre-optical pipe leakage real-time monitoring method and device
CN101087989B (en) * 2004-10-15 2011-06-08 摩根研究股份有限公司 Embeddable polarimetric fiber optic sensor and method for monitoring of structures
CN201397405Y (en) * 2009-05-15 2010-02-03 中国石油天然气管道局 Fiber coiling disc for regional anti-intrusion system based on fiber optic interferometer
WO2011103032A2 (en) * 2010-02-18 2011-08-25 US Seismic Systems, Inc. Optical detection systems and methods of using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154986A (en) * 2014-08-22 2014-11-19 哈尔滨电机厂有限责任公司 Installation method of optical fiber acceleration sensor for turbine generator stator end vibration measurement
CN105651321A (en) * 2016-01-07 2016-06-08 小牛动力(武汉)新能源技术有限公司 Optical fiber sensing polymer composite film and application method thereof
CN107727226A (en) * 2017-08-31 2018-02-23 电子科技大学 The oil-gas pipeline safety detection method perceived based on optical fiber
CN108679455A (en) * 2018-05-17 2018-10-19 中山市顺康塑料制品有限公司 Pipeline leakage monitor and line leakage method
CN109519714A (en) * 2018-11-23 2019-03-26 重庆大学 Intelligent pipeline insulating layer with tiny leakage self-diagnostic function

Similar Documents

Publication Publication Date Title
CN102997062B (en) Optical fiber sensor-based natural gas pipeline leakage monitoring method and system and installation method for system
CN102997052A (en) Optical fiber sensor for detecting natural gas pipeline leakage
CN102997061B (en) Optical fiber sensor-based natural gas pipeline leakage monitoring system
CN102997051A (en) Optical fiber sensor-based natural gas pipeline leakage monitoring method and system
CN102997057B (en) Optical fiber sensor-based natural gas pipeline leakage monitoring method and system and installation method for system
CN103016851A (en) Smart pipeline with optical fiber sensing function and manufacturing method for smart pipeline
CN102997045A (en) Optical fiber sensing natural gas pipeline leakage event identification method and device
CN103047540B (en) Based on the optical path system for monitoring leakage of natural gas of Fibre Optical Sensor
CN103048588B (en) Method and system for on-line locating power cable fault
CN102997042A (en) Mounting method for optical fiber sensor of natural gas pipe leakage optical fiber monitoring system
CN102011940B (en) Distributed optical fiber and flow pressure value-based pipeline leakage joint detection method
CN101684891B (en) Stress wave and optical fiber sensing compound pipeline safety pre-warning system
CA2781565A1 (en) Detecting broadside and directional acoustic signals with a fiber optical distributed acoustic sensing (das) assembly
WO2012158267A1 (en) Acoustic probe for leak detection in water pipelines
CN102997055B (en) Leakage point locating method and system of optical fiber sensing natural gas pipeline leakage monitoring system
CN102997063A (en) Natural gas pipeline leakage monitoring method based on optical fiber sensing
CN103292719B (en) Distribution type fiber-optic is utilized to measure the distortion of geotextile force structure and stressed method
CN102997056B (en) Method for measuring distance between natural gas pipe leakage detecting sensors
CN102997049A (en) Method for installing optical fiber sensor for natural gas pipeline leakage optical fiber monitoring system
CN101969344B (en) Fiber photoelastic effect based larger-area sound monitoring system
CN104100842A (en) Pipeline monitoring device and system based on distributed fiber sensors and acoustic wave
CN202252865U (en) Optical fiber sensor installation structure for natural gas pipeline leakage optical fiber monitoring system
CN106015947A (en) Internet-based pipeline in-situ monitoring system
CN103047541A (en) Optical fiber sensing natural gas pipeline leakage accident recognition device
CN202338781U (en) Installation structure of OFS (optical fiber sensor) in gas pipeline leakage optical fiber monitoring system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130327