CN102992302B - 一种分叉碳纳米管材料的制备方法 - Google Patents

一种分叉碳纳米管材料的制备方法 Download PDF

Info

Publication number
CN102992302B
CN102992302B CN201210581754.1A CN201210581754A CN102992302B CN 102992302 B CN102992302 B CN 102992302B CN 201210581754 A CN201210581754 A CN 201210581754A CN 102992302 B CN102992302 B CN 102992302B
Authority
CN
China
Prior art keywords
carbon nanotube
deionized water
preparation
solution
catalyst precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210581754.1A
Other languages
English (en)
Other versions
CN102992302A (zh
Inventor
李睿
张岩
刘宾虹
李洲鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210581754.1A priority Critical patent/CN102992302B/zh
Publication of CN102992302A publication Critical patent/CN102992302A/zh
Application granted granted Critical
Publication of CN102992302B publication Critical patent/CN102992302B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及纳米碳管材料的制备,旨在提供一种分叉碳纳米管材料的制备方法。该方法包括以下步骤:(1)取氧化石墨加入去离子水中,进行超声分散形成溶液;再加入催化剂前驱体溶液后,逐滴加入NaOH 溶液,调节pH值到 8.5~11.0范围;(2)磁力搅拌后加入硼氢化钠或肼,常温下反应后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末。本发明的分叉碳纳米管制备方法,有利于反应的掌控和进行产品质量控制。制备高纯度的分叉碳纳米管可广泛应用于在纳电子器件、导电材料、各类传感器、轻质高强材料等领域。

Description

一种分叉碳纳米管材料的制备方法
技术领域
本发明涉及一种纳米碳管材料的制备方法,特别涉及以氧化石墨为原料,以硼氢化钠或肼为还原剂,在催化剂的作用下形成分叉碳纳米管材料的制备方法。
背景技术
石墨是元素碳的一种同素异形体,每个碳原子的周边连结著另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成层状结构,具有完整的层状解理特性。石墨晶体中层与层之间相隔较大,是以范德华力结合起来的,解理面以分子键为主,对分子吸引力较弱。但是,由于同一平面层上的碳原子间结合很强,极难破坏,所以石墨的溶点也很高,化学性质也稳定。
氧化石墨为准二维层状空间结构,层内以强共价键结合,层间含有大量的含氧官能团并以弱的氢键相连接。石墨是一种憎水性较强的物质,与其相比,氧化石墨中存在有大量含氧活性化学基团,使氧化石墨具有较强的亲水性,容易在极性溶剂中分散形成稳定的溶胶。另外,石墨被强氧化剂氧化成亲水性的氧化石墨后,其层间距增加,由氧化前的0.335 nm增大到氧化后的0.7-1.2 nm。施加一定的外力,能将氧化石墨烯从氧化石墨的范德华力束缚中解离出来形成氧化石墨烯片。
碳纳米管是元素碳的一种同素异形体,一种特殊石墨烯结构,由石墨原子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸可达微米量级)的一维量子材料,具有典型的层状中空结构特征,一般管的两端有端帽封口。碳纳米管的管身是准圆管结构,由六边形碳环结构单元组成, 端帽部分为含五边形和六边形的碳环组成的多边形结构。碳纳米管可以只有一层也可以有多层,分别称为单层碳纳米管和多层碳纳米管,其直径一般为2~20nm,构成碳纳米管的层片之间的间距约为0.34nm。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
碳纳米管具有良好的力学性能,抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。
碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。是理想的高强度纤维材料。碳纳米管的强度比同体积钢的强度高100倍,重量却只有后者的1/6到1/7。碳纳米管因而被称“超级纤维”。碳纳米管的径向能像弹簧工作,表现出良好的韧性。通过碳纳米管的定性排列,可制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。
相比传统单列纳米碳管,分叉式结构的碳纳米管具有优异的导电性能。
目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等,属于干法。但干法不易精确控制,通常无法制备出分叉式结构的碳纳米管,因为这些方法的原理都是利用碳源气体分解产生自由基,以碳原子的形式溶解在催化剂颗粒中,再析出产生碳纳米管。对于没有金属催化剂的体系,也是自由基直接生长机理,即开口生长机理,从过程上都属于外延生长型,难以形成分叉结构。
发明内容
本发明要解决的技术问题是,提供一种具有分叉结构的碳纳米管制备方法,特别涉及用湿法,以硼氢化钠为还原剂,在催化剂的作用下将氧化石墨还原成而具有分叉结构的碳纳米管的方法。
为解决技术问题,本发明的解决方案是:
提供一种分叉碳纳米管材料的制备方法,包括以下步骤:
(1)取0.5克氧化石墨加入200毫升去离子水中,进行超声分散 1小时形成溶液;在加入5 毫升催化剂前驱体溶液后,逐滴加入NaOH溶液,调节pH值到 8.5~11.0范围;
(2)磁力搅拌 20~40 min 后,加入0.5~2.0克硼氢化钠或肼,常温下反应8~12 h;然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末;
所述催化剂前驱体溶液是氯铂酸、氯化铂、氯钯酸或氯化钯的水溶液,质量浓度范围在 0.1~1.0 g/L。
本发明中,所述NaOH溶液的浓度为1 mol/L。
本发明中使用氯铂酸、氯化铂、氯钯酸或氯化钯为合成分叉碳纳米管的催化剂前驱体,氧化石墨和添加催化剂前驱体的质量比为100~1000:1。以硼氢化钠或肼用做还原剂,一方面将催化剂前驱体还原成相应的金属催化剂用于催化氧化石墨转变为石墨烯的反应,另一方面用以脱除氧化石墨中的氧得到碳纳米管。
本发明具有的有益效果:
本发明利用氧化石墨可以制备石墨烯的特性,形成一种分叉碳纳米管。这种具备分叉式结构的碳纳米管不会形成封头,有利于外来物质植入碳纳米管。传统的干法制备碳纳米管无法得到具有分叉结构的碳纳米管。本发明的分叉碳纳米管制备方法,有利于反应的掌控和进行产品质量控制。制备高纯度的分叉碳纳米管可广泛应用于在纳电子器件、导电材料、各类传感器、轻质高强材料等领域。
附图说明
图1为实施例一制备的石墨烯扫描电镜照片。
具体实施方式
下面结合具体实施方式对本发明进一步详细描述:
实施例一:氯铂酸为催化剂前驱体制备分叉碳纳米管
取0.5克氧化石墨和200毫升去离子水进行超声分散 1 小时形成溶液, 然后加入5 毫升催化剂前驱溶液;催化剂前驱体为氯铂酸(浓度为0.1 g/L);氧化石墨和氯铂酸的质量比为1000:1,逐滴加入NaOH (浓度为1 mol/L),调节 pH值到 8.5, 磁力搅拌 20 min后加入0.5克硼氢化钠,常温下反应8h, 然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末。
实施例二:氯化铂为催化剂前驱体制备分叉碳纳米管
取0.5克氧化石墨和200毫升去离子水进行超声分散 1 小时形成溶液, 然后加入5 毫升催化剂前驱溶液;催化剂前驱体为氯化铂(浓度为0.3 g/L);氧化石墨和氯化铂的质量比为1000:3,逐滴加入NaOH (浓度为1 mol/L),调节 pH值到 10, 磁力搅拌 30 min后加入1.0克肼,常温下反应10 h, 然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末。
实施例三:氯钯酸为催化剂前驱体制备分叉碳纳米管
取0.5克氧化石墨和200毫升去离子水进行超声分散 1 小时形成溶液, 然后加入5 毫升催化剂前驱溶液;催化剂前驱体为氯钯酸(浓度为0.6 g/L);氧化石墨和氯钯酸的质量比为1000:6,逐滴加入NaOH (浓度为1 mol/L),调节 pH值到 11, 磁力搅拌 30 min后加入2.0克肼,常温下反应12 h, 然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末。
实施例四:氯化钯为催化剂前驱体制备分叉碳纳米管
取0.5克氧化石墨和200毫升去离子水进行超声分散 1 小时形成溶液, 然后加入5 毫升催化剂前驱溶液;催化剂前驱体为氯化钯(浓度为1.0 g/L);氧化石墨和氯化钯的质量比为100:1,逐滴加入NaOH (浓度为1 mol/L),调节pH值到 11, 磁力搅拌 30 min 后加入2.0克硼氢化钠,常温下反应12 h, 然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末。
最后,以上公布的仅是本发明的具体实施例。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (2)

1.一种分叉碳纳米管材料的制备方法,其特征在于,包括以下步骤:
(1)取0.5克氧化石墨加入200毫升去离子水中,进行超声分散 1 小时形成溶液;再加入5 毫升催化剂前驱体溶液后,逐滴加入NaOH 溶液,调节pH值到 8.5~11.0范围;
(2)磁力搅拌 20~40 min 后,加入0.5~2.0克硼氢化钠或肼,常温下反应8~12 h;然后用去离子水洗涤,过滤、干燥后得到分叉碳纳米管粉末;
所述催化剂前驱体溶液是氯铂酸、氯化铂、氯钯酸或氯化钯的水溶液,质量浓度范围在 0.1~1.0 g/L。
2.根据权利要求1所述的方法,其特征在于,所述NaOH溶液的浓度为1 mol/L。 
CN201210581754.1A 2012-12-27 2012-12-27 一种分叉碳纳米管材料的制备方法 Expired - Fee Related CN102992302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210581754.1A CN102992302B (zh) 2012-12-27 2012-12-27 一种分叉碳纳米管材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210581754.1A CN102992302B (zh) 2012-12-27 2012-12-27 一种分叉碳纳米管材料的制备方法

Publications (2)

Publication Number Publication Date
CN102992302A CN102992302A (zh) 2013-03-27
CN102992302B true CN102992302B (zh) 2014-10-29

Family

ID=47921510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210581754.1A Expired - Fee Related CN102992302B (zh) 2012-12-27 2012-12-27 一种分叉碳纳米管材料的制备方法

Country Status (1)

Country Link
CN (1) CN102992302B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918067A (zh) * 2004-02-09 2007-02-21 Kh化学有限公司 Y-型枝化碳纳米管的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918067A (zh) * 2004-02-09 2007-02-21 Kh化学有限公司 Y-型枝化碳纳米管的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
分叉碳纳米管的催化生长;杨勇等;《无机化学学报》;20030731;第19卷(第7期);771-773 *
杨勇等.分叉碳纳米管的催化生长.《无机化学学报》.2003,第19卷(第7期),771-773.
温祝亮等.石墨烯负载高活性Pd催化剂对乙醇的电催化氧化.《物理化学学报》.2010,第26卷(第6期),1570-1574.
石墨烯负载高活性Pd催化剂对乙醇的电催化氧化;温祝亮等;《物理化学学报》;20100630;第26卷(第6期);1570-1574 *

Also Published As

Publication number Publication date
CN102992302A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
Rao et al. Carbon-based nanomaterials: Synthesis and prospective applications
Shah et al. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
Wilberforce et al. Role of carbon-based nanomaterials in improving the performance of microbial fuel cells
Zhang et al. Sodium citrate: A universal reducing agent for reduction/decoration of graphene oxide with au nanoparticles
Kong Hybrids of carbon nanotubes and graphene/graphene oxide
Awasthi et al. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials
Sun et al. Synthesis of ZrO2− Carbon nanotube composites and their application as chemiluminescent sensor material for ethanol
Liu et al. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications
Ahmed et al. Synthesis of multi-walled carbon nanotubes decorated with ZnO/Ag nanoparticles by co-precipitation method
CN1302986C (zh) 一种制备碳纳米管的方法
US20090208403A1 (en) Novel catalyst to manufacture carbon nanotubes and hydrogen gas
CN101966449A (zh) 一种多壁碳纳米管负载二氧化钛催化剂的制备方法
Wu et al. One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition
Shariatinia Applications of carbon nanotubes
Meng et al. Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance
Huang et al. Syntheses of carbon nanomaterials by ferrocene
Tavakol et al. Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction
Zhu et al. Assembly and applications of carbon nanotube thin films
Bhagabati et al. Synthesis/preparation of carbon materials
Morsy et al. Carbon nano based materials and their composites for gas sensing applications
CN102992302B (zh) 一种分叉碳纳米管材料的制备方法
Vaka et al. Carbon nanotubes and their composites: From synthesis to applications
Karaca et al. Carbon-based nanostructures and nanomaterials
JIA et al. Oxidation of formic acid over palladium catalyst supported on activated carbon derived from polyaniline and modified lignosulfonate composite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Li Rui

Inventor after: Zhang Yan

Inventor after: Liu Binhong

Inventor after: Li Zhoupeng

Inventor before: Li Zhoupeng

Inventor before: Liu Binhong

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: LI ZHOUPENG LIU BINHONG TO: LI RUI ZHANG YAN LIU BINHONG LI ZHOUPENG

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20151227

EXPY Termination of patent right or utility model