CN102979175B - Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system - Google Patents

Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system Download PDF

Info

Publication number
CN102979175B
CN102979175B CN201210487074.3A CN201210487074A CN102979175B CN 102979175 B CN102979175 B CN 102979175B CN 201210487074 A CN201210487074 A CN 201210487074A CN 102979175 B CN102979175 B CN 102979175B
Authority
CN
China
Prior art keywords
plate
angle truss
truss
girder
single angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210487074.3A
Other languages
Chinese (zh)
Other versions
CN102979175A (en
Inventor
张爱林
郭志鹏
刘学春
史晓娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Construction Group Co Ltd
Beijing Engineering Co Ltd of China Railway Construction Group Co Ltd
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201210487074.3A priority Critical patent/CN102979175B/en
Publication of CN102979175A publication Critical patent/CN102979175A/en
Application granted granted Critical
Publication of CN102979175B publication Critical patent/CN102979175B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

The invention relates to an industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system, belonging to the technical field of structure engineering. The industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system comprises assembled truss plates, assembled flange columns and prestressed eccentric bracing members. The assembled truss plates are prefabricated in a factory. On a construction site, the assembled truss plates are spliced together through beam end closing plates or column base joints to form frame structure beam-slab layers; the frame structure beam-slab layers are vertically connected through the assembled flange columns to form a multilayer steel frame structure; on the basis of the steel frame structure, the prestressed eccentric bracing members are connected to truss beams or column bottoms in the frame structure beam-slab layers and are used as lateral-force-resistant members; and all members are prefabricated in the factory and are assembled through bolts on the construction site. In combination with modularization, factory production, standardization and assembling, the industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system has the advantages that the factory production and the on-site rapid assembling are realized; and on the premise that the construction quality is guaranteed, the construction speed is improved, the construction period is shortened and the construction cost is decreased.

Description

The how high-rise assembling type steel structure framework-prestressing force eccentrical braces of a kind of industrialization
Technical field
The present invention relates to the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of a kind of industrialization, belong to technical field of structural engineering.
Background technology
China's annual town and country newly constructed house area 2,000,000,000 square metres, wherein more than 80% is high energy consumption building, and unit of China building area energy consumption is more than 2 times of developed country.Join in a common effort meter according to Chinese steel, within 2011, China's output of steel breaks through 700,000,000 tons of high pointes, and within continuous 16 years, be sure to occupy countries in the world output of steel the first, developed country's steel building area accounts for overall floorage more than 50%, and Japan accounts for 80%, and China is less than 4%.China is as the maximum country of construction scope in the world, steel output, and the development of light-duty steel construction house is seriously delayed.
At present, be in the starting stage both at home and abroad to the system research of high-rise steel structure house, the system innovation of industrialization assembling high-rise steel structure is imperative.Have employed a large amount of welding during traditional housing building of steel-structure construction, speed of application is slow, seriously polluted to environment, the most important thing is that the quality of weld seam should not control, has a strong impact on the security performance of building.
Current prestressed cable is only used in beam-string structure, does not also use in high-level structure, adopts prestressed cable in engineering, also not have realization as high-rise lateral resistant member.Traditional steel frame structural system, the lateral rigidity of structure is difficult to meet the demands, be out of shape larger, easily cause the destruction of non-structural element, the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, the basis of steel frame adds the eccentric drag-line of horizontal and vertical prestressing force support, improve the lateral rigidity of structure, improve the deformation performance of structure.
Summary of the invention
The present invention proposes a kind of how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization belonging to technical field of structural engineering.Its object is in the production and construction of steel structure system, by modularization, batch production, standardization and assemblingization combine, achieve factorial praluction, on-the-spot quick assembling, under the prerequisite ensureing construction quality, improve speed of application, decrease the construction period, reduce construction costs.This structural system can the Fast Installation of realization body steel structure frame and lateral resistant member, and can resist earthquake and wind load, embodies the advantage of steel work.
The how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, comprises assembling truss plate, assembling flange post and prestressing force accentric support component;
Assembling truss plate described in it comprises lattice truss beam, column base node and the floor of being furnished with angle steel web member, described lattice truss beam is by beam-ends shrouding, be connected with other lattice truss beams or column base node, form truss plate under(-)chassis, again form bracing is connected in the truss plate under(-)chassis, form assembling truss plate; Described assembling truss plate is prefabricated in the factory, and is mutually spliced, as frame structural beam flaggy by assembling truss plate at the construction field (site) by its beam-ends shrouding or column base node; Described frame structural beam flaggy is connected to form composite steel frame construction up and down by assembling flange post, and described assembling flange post is positioned on the column base node on assembling truss plate; On the basis of described steel framed structure, prestressing force accentric support component is connected to girder truss in frame structural beam flaggy or column bottom as lateral resistant member; Described assembling truss plate, assembling flange post and prestressing force accentric support component are all prefabricated in the factory, and job site is assembled by bolt.
The how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, its assembling truss plate comprises three kinds of specifications, is respectively A plate, B plate and C plate;
Described A plate comprises column base node 13, the long girder 14 of double angle truss, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, it is characterized in that: double angle truss girder 15 is mutually vertical with the long girder of double angle truss 14, and all by beam-ends shrouding, bolt is adopted to be connected with the channel-section steel connecting plate on two-way column block node 13, and the upper and lower end face place of junction is welded with a plate II20 respectively, the two ends of junction plate II20 are connected on the top-bottom chord of double angle truss girder 15 and the long girder 14 of double angle truss, the other end of double angle truss girder 15 is connected with the long girder 16 of single angle truss with double angle truss long girder 14 level, top-bottom chord and the beam-ends shrouding of end described in double angle truss girder 15 and single angle truss long girder 16 end are weldingly connected respectively, and double angle truss girder 15 is connected by the junction plate I18 of upper and lower two sections with the long girder of single angle truss 16 again, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss, single angle truss secondary beam 17 is connected to the other end of the described long girder of double angle truss 14 and the long girder 16 of single angle truss, relative with double angle truss girder 15 level, top-bottom chord and the beam-ends shrouding of single angle truss end, secondary beam 17 one end and single angle truss long girder 16 the other end are weldingly connected respectively, and are connected by two the junction plate I18 being connected to top-bottom chord place between single angle truss secondary beam 17 with the long girder 16 of single angle truss again, two junction plate II20 by being connected to top-bottom chord place between single angle truss secondary beam 17 other end end with the long girder 14 of double angle truss are connected, the described long girder of double angle truss 14, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17 form a rectangular frame, two described rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and two long girders 14 of double angle truss are positioned on straight line, and two long girders 16 of single angle truss are positioned on straight line, the upper and lower side of two long girders 14 of double angle truss all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and three-dimensional column base node 13 two relative directions, and two described single angle truss secondary beams 17 are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node 13, described under(-)chassis is connected with two pieces of floors 19 by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described A plate,
Described B plate comprises double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, double angle truss girder 15 is mutually vertical with the long girder of single angle truss 16, top-bottom chord and the beam-ends shrouding of double angle truss girder 15 end and single angle truss long girder 16 end are weldingly connected respectively, and be connected by the junction plate I18 of upper and lower two sections, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss again; The other end of double angle truss girder 15 is connected with the long girder 16 of another root single angle truss with described single angle truss long girder 16 level by the junction plate II20 of upper and lower two sections, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate II20 with the top-bottom chord of the long girder 16 of single angle truss; Single angle truss secondary beam 17 is connected to the other end of two described two long girders 16 of single angle truss, relative with double angle truss girder 15 level, single angle truss secondary beam 17 is identical with the type of attachment of described double angle truss girder 15 and two long girders of single angle truss 16 with the type of attachment of two long girders of single angle truss 16; Described double angle truss girder 15, the two long girders 16 of single angle truss, single angle truss secondary beams 17 form a rectangular frame; Two described rectangular frames carry out the under(-)chassis connecting and composing a splicing; Single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and the relative two long girders of single angle truss 16 of the rectangular frame level two piece single angle truss long girder 16 relative with another length direction framework level lays respectively on straight line; Described under(-)chassis is connected with floor 19 by girder truss upper chord upper anchoring; All components prefabricated and assembling all in the factory of described B plate;
Described C plate comprises column base node 13, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, double angle truss girder 15 is mutually vertical with the long girder of single angle truss 16, and all by beam-ends shrouding, the channel-section steel connecting plate adjacent with two on three-dimensional column base node 13 adopts bolt to be connected, and the upper and lower end face place of junction is welded with a plate II20 respectively, the two ends of junction plate II20 are connected on the top-bottom chord of double angle truss girder 15 and the long girder 16 of single angle truss; The other end of double angle truss girder 15 is by being welded to connect the long girder 16 of another root single angle truss with single angle truss long girder 16 level, top-bottom chord and the beam-ends shrouding of double angle truss girder 15 end and this root single angle truss long girder 16 end are weldingly connected respectively, and double angle truss girder 15 is connected by the junction plate I18 of upper and lower two sections with the long girder of single angle truss 16 again, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss; Single angle truss secondary beam 17 is connected to the other end of the described long girder 16 of two single angle truss, relative with double angle truss girder 15 level, top-bottom chord and the beam-ends shrouding of single angle truss end, secondary beam 17 one end and single angle truss long girder 16 the other end are weldingly connected respectively, and are connected by two the junction plate I18 being connected to top-bottom chord place between single angle truss secondary beam 17 with the long girder 16 of single angle truss again; Two junction plate II20 by being connected to top-bottom chord place between single angle truss secondary beam 17 other end end with the long girder 16 of single angle truss are connected; Described double angle truss girder 15, the two long girders 16 of single angle truss, single angle truss secondary beams 17 form a rectangular frame; Two described rectangular frames carry out the under(-)chassis connecting and composing a splicing; Single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and the relative two long girders of single angle truss 16 of the rectangular frame level two piece single angle truss long girder 16 relative with another length direction framework level lays respectively on straight line; The upper and lower side of two long girders 16 of single angle truss all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node 13 two relative directions, and two described single angle truss secondary beams 17 are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node 13; Described under(-)chassis is connected with two pieces of floors 19 by girder truss upper chord upper anchoring; All components prefabricated and assembling all in the factory of described C plate;
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, described A plate and B plate, by A plate and the alignment of B plate level, one end of junction plate I18 there are to be spliced by beam-ends shrouding bolt one end not connecting column base of the double angle truss girder 15 of A plate and the double angle truss girder 15 of B plate; Beam-ends shrouding is spliced by bolt by the one end of junction plate I18 that has of one end not connecting column base of the single angle truss secondary beam 17 of A plate and the single angle truss secondary beam 17 of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss 16 of A plate and the single angle truss long girder 16 gusset plate place of B plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of A plate and B plate;
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, described B plate and C plate, by B plate and C plate level alignment, by the double angle truss girder 15 of B plate have one end of junction plate II20 and the three-dimensional column base node 13 of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; By the single angle truss secondary beam 17 of B plate have one end of junction plate II20 and the four-way column base node 13 of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; All adopt bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node 13 two relative directions the upper and lower side of two of B plate long girders 16 of single angle truss, adopt bolt to be connected with the described vertical channel-section steel connecting plate of channel-section steel that exposes by beam-ends shrouding with on the three-dimensional column base node 13 of C plate respectively by beam-ends shrouding the other end of the long girder of single angle truss 16 of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss 16 of B plate and the single angle truss long girder 16 gusset plate place of C plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of B plate and C plate.
Described assembling truss plate is connected by bolt with assembling flange post up and down respectively at column base Nodes, forms frame construction; Described prestressing force accentric support component is made up of prestressed cable 26 and otic placode, otic placode is connected to column bottom or the girder truss 21 top-bottom chord place of steel framed structure in factory by welding or bolt, prestressed cable 26 is connected by bolt at the construction field (site) with the otic placode of every floor top and bottom, beam forms active beam link, forms framework-eccentrically braces structure; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, involved beam splices by top-bottom chord, web member 2 and gusset plate 3 girder truss formed, wherein top-bottom chord uses angle steel, or use U-steel, or user's steel pipe, web member 2 uses angle steel, and web member becomes 30 degree of-60 angle spent with chord member; And be divided into single-beam and twin beams, single-beam arranges connecting hole every one section of fixed range, and being convenient to be spliced by two panels single-beam with bolt when the splicing of plate and plate becomes twin beams, for twin beams, web member 2, top-bottom chord use bolt be connected or use welding with the connection of gusset plate 3, all complete in factory process;
Or use and splice by angle steel and fill plate the girder truss formed, comprise top-bottom chord, web member 2 and fill plate 4, wherein top-bottom chord and web member 2 all adopt angle steel, and web member becomes 30 degree of-60 angle spent with chord member; And be divided into single-beam and twin beams, single-beam arranges connecting hole every one section of fixed range, and being convenient to be spliced by two panels single-beam with bolt when the splicing of plate and plate becomes twin beams, for twin beams, angle steel uses bolt be connected or use welding with the connection of fill plate, all completes in factory process.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, its column base has three kinds of forms, is respectively two to column base, three-dimensional column base and four-way column base; Flanged plate I7 is located welding at box column about 8, then two panels channel-section steel 9 is welded in the adjacent both sides of box column 8 thus forms two to column base; Flanged plate I7 is located welding at box column about 8, then three channel-section steels 9 is welded in box column 8 three limit thus forms three-dimensional column base; Flanged plate I7 is located welding at box column about 8, then four channel-section steels 9 is welded in box column 8 four limit thus forms four-way column base; Wherein channel-section steel 9 web has bolt hole, convenient and beam upper-end closing plate bolt splices.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, its assembling flange post is made up of with flanged plate II10, flanged plate III11, flanged plate IV12 respectively box column 8, common flanged plate is extended to both direction and is flanged plate II10, extend to three directions and be flanged plate III11, extend to four direction and be flanged plate IV12; The flange post of 3 kinds of forms can be divided into according to the difference of the shape of its flanged plate, be respectively bilateral flange post, three limit flange posts and four limit flange posts; Flanged plate II10 is located welding at box column about 8, thus forms bilateral flange post; Flanged plate III11 is located welding at box column about 8, thus forms three limit flange posts; Flanged plate IV12 is located welding at box column about 8, thus forms four limit flange posts; Described three kinds of assembling flange posts all complete at produce in factory.
The invention has the beneficial effects as follows, in the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of above-mentioned industrialization, the beam adopted is all girder truss, because the belly space of beam is comparatively large, is convenient to pipeline and passes, effectively add the clear height in room.
The how high-rise assembling type steel structure framework-prestressing force eccentrical braces of described industrialization, bolt is adopted to carry out site assembly completely, eliminate traditional Site Welding mode and concreting mode, effectively ensure that construction quality, completely avoid the environment pollution that concreting and welded steel cause, realize " anhydrous, without fire, dustless " of site operation three without standard, decrease the generation of the hazardous accidents such as fire.And prestressing force Lateral Resistant System effectively can improve the lateral rigidity of structure, improves the deformation performance of structure, structure is made to have larger safety reservior.The present invention, when component is removed, can recycle efficiently, decrease building waste, the real theory achieving environmental protection, is the steel structure system of a kind of green, sustainable development.
Accompanying drawing explanation
Below in conjunction with drawings and Examples, the present invention is further described.
Fig. 1 is assembling truss plate of the present invention splicing layout plan
Fig. 2 is assembling truss strip gusset plate truss of angle steel beam schematic diagram of the present invention
Fig. 3 is that gusset plate truss of angle steel beam schematic diagram is not with by assembling truss plate of the present invention
Fig. 4 is assembling truss strip gusset plate channel-section steel girder truss schematic diagram of the present invention
Fig. 5 is assembling truss strip gusset plate Square Steel Tubes Truss beam schematic diagram of the present invention
Fig. 6 is that assembling truss plate two of the present invention is to column base schematic diagram
Fig. 7 is assembling truss plate three-dimensional column base schematic diagram of the present invention
Fig. 8 is assembling truss plate four-way column base schematic diagram of the present invention
Fig. 9 is assembling flange post schematic diagram of the present invention
Figure 10 is assembling truss plate A unit decomposition figure of the present invention
Figure 11 is that assembling truss plate A unit splicing of the present invention completes figure
Figure 12 is assembling truss plate unit B exploded view of the present invention
To be that assembling truss plate unit B of the present invention is assembled complete figure to Figure 13
Figure 14 is assembling truss plate C unit decomposition figure of the present invention
Figure 15 is that assembling truss plate C unit splicing of the present invention completes figure
Figure 16 is that assembling truss plate A, B and C unit splicing of the present invention completes figure
Figure 17 is assembling truss plate node 1 exploded view of the present invention
Figure 18 is assembling truss plate node 2 exploded view of the present invention
Figure 19 is assembling truss plate node 3 exploded view of the present invention
Figure 20 is assembling truss plate node 4 exploded view of the present invention
Figure 21 is assembling truss plate node 5 exploded view of the present invention
Figure 22 is assembling truss plate node 6 exploded view of the present invention
Figure 23 is assembling truss plate node 7 exploded view of the present invention
Figure 24 is assembling truss plate node 8 exploded view of the present invention
Figure 25 is assembling truss plate node 9 exploded view of the present invention
Figure 26 is assembling truss plate node 10 exploded view of the present invention
Figure 27 is assembling truss plate node 11 exploded view of the present invention
Figure 28 is assembling truss plate node 12 exploded view of the present invention
Figure 29 is the type of attachment exploded view of bilateral flange post of the present invention and node
Figure 30 is the type of attachment exploded view of three limit flange posts of the present invention and node
Figure 31 is the type of attachment exploded view of four limit flange posts of the present invention and node
Figure 32 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force di-axis door posture support system I schematic diagram
Figure 33 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force di-axis door posture support system II schematic diagram
Figure 34 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentric timbering with rafter arch sets's system schematic diagram
Figure 35 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentric V-shaped support system schematic diagram
Figure 36 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentric monocline flow resistance of rod-support system schematic diagram
Figure 37 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentrical braces otic placode I24 detail drawing
Figure 38 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentrical braces otic placode II25 detail drawing
Figure 39 is the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentrical braces otic placode III27 detail drawing
Figure 40 is that the how high-rise assembling type steel structure framework of industrialization of the present invention-prestressing force eccentrical braces otic placode column bottom connects detail drawing
1. top-bottom chord I, 2. web member, 3. gusset plates in figure, 4. fill plate, 5. top-bottom chord II, 6. top-bottom chord III,, 7. flanged plate I, 8. box column, 9. channel-section steel, 10. flanged plate II, 11. flanged plate III, 12. flanged plate IV, 13. column bases, the long girder of 14. double angle truss, 15. double angle truss girders, the long girder of 16. single angle truss, 17. single angle truss secondary beams, 18. junction plate I, 19. floors, 20. junction plate II, 21. girder trusses, 22. adapter sleeves, 23. assembling flange posts, 24. otic placode I, 25. otic placode II, 26. prestressed cables, 27. otic placode III.
Detailed description of the invention
Below in conjunction with accompanying drawing, the present invention is described in detail:
As shown in Figure 1, the stitching position of assembling truss plate of the present invention is arranged on the middle part of girder, this position shearing and moment of flexure relatively little, from the angle of structural mechanics, arranging of stitching position is very reasonable.
As shown in Figure 2, in the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, involved beam splices by angle steel and gusset plate the girder truss formed, comprise top-bottom chord I1, web member 2 and gusset plate 3, wherein top-bottom chord I1 and web member 2 all adopt angle steel, and be divided into single angle beam and double angle beam, single angle beam arranges connecting hole every one section of fixed range, be convenient to two panels single angle beam be spliced with bolt when the splicing of plate and plate become double angle beam, for double angle beam, angle steel uses bolt be connected or use welding with the connection of gusset plate, all complete in factory process,
As shown in Figure 3, or use and splice by angle steel and fill plate the girder truss formed, comprise top-bottom chord I1, web member 2 and fill plate 4, wherein top-bottom chord I1 and web member 2 all adopt angle steel, and are divided into single angle beam and double angle beam, and single angle beam arranges connecting hole every one section of fixed range, be convenient to two panels single angle beam be spliced with bolt when the splicing of plate and plate become double angle beam, for double angle beam, angle steel uses bolt be connected or use welding with the connection of fill plate, all completes in factory process;
As shown in Figure 4, or use and splice by angle steel, channel-section steel and gusset plate the girder truss formed, comprise top-bottom chord II5, web member 2 and gusset plate 3, wherein top-bottom chord II5 adopts channel-section steel, web member 2 adopts angle steel, and be divided into single steel channel beam and double flute girder steel, single steel channel beam arranges connecting hole every one section of fixed range, be convenient to two panels list steel channel beam be spliced with bolt when the splicing of plate and plate become double flute girder steel, for double flute girder steel, angle steel, channel-section steel use bolt to be connected with the connection of gusset plate, or use welding, all complete in factory process;
As shown in Figure 5, or use by angle steel, the girder truss of square steel pipe and gusset plate splicing composition, comprise top-bottom chord III6, web member 2 and gusset plate 3, wherein top-bottom chord III6 adopts square steel pipe, web member 2 adopts angle steel, and be divided into folk prescription steel tubular beam and both sides' steel tubular beam, folk prescription steel tubular beam arranges connecting hole every one section of fixed range, be convenient to two panels folk prescription steel tubular beam be spliced with bolt when the splicing of plate and plate become both sides' steel tubular beam, for both sides' steel tubular beam, angle steel, square steel pipe uses bolt to be connected with the connection of gusset plate, or use welding, all complete in factory process,
For above four kinds of section forms of beams, the connecting method that single-beam is spliced into twin beams by bolt has good rigidity and stability.Because the belly space of girder truss is comparatively large, is convenient to pipeline and passes, effectively add the clear height in room.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in accompanying drawing 6-8, its column base has three kinds of forms, is respectively two to column base, three-dimensional column base and four-way column base; Flanged plate I7 is located welding at box column about 8, then two panels channel-section steel 9 is welded in the adjacent both sides of box column 8 thus forms two to column base; Flanged plate I7 is located welding at box column about 8, then three channel-section steels 9 is welded in box column 8 three limit thus forms three-dimensional column base; Flanged plate I7 is located welding at box column about 8, then four channel-section steels 9 is welded in box column 8 four limit thus forms four-way column base; Wherein channel-section steel 9 web has bolt hole, splice with beam upper-end closing plate bolt.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in Figure 9, assembling flange post is made up of with flanged plate II10, flanged plate III11, flanged plate IV12 respectively box column 8, common flanged plate is extended to both direction and is flanged plate II10, extend to three directions and be flanged plate III11, extend to four direction and be flanged plate IV12; The flange post of 3 kinds of forms can be divided into according to the difference of the shape of its flanged plate, be respectively bilateral flange post, three limit flange posts and four limit flange posts; Flanged plate II10 is located welding at box column about 8, thus forms bilateral flange post; Flanged plate III11 is located welding at box column about 8, thus forms three limit flange posts; Flanged plate IV12 is located welding at box column about 8, thus forms four limit flange posts; Described three kinds of assembling flange posts all complete at produce in factory.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, as shown in accompanying drawing 10-11, described A plate comprises column base node 13, the long girder 14 of double angle truss, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, it is characterized in that: double angle truss girder 15 is mutually vertical with the long girder of double angle truss 14, and all by beam-ends shrouding, bolt is adopted to be connected with the channel-section steel connecting plate on two-way column block node 13, and the upper and lower end face place of junction is welded with a plate II20 respectively, the two ends of junction plate II20 are connected on the top-bottom chord of double angle truss girder 15 and the long girder 14 of double angle truss, the other end of double angle truss girder 15 is connected with the long girder 16 of single angle truss with double angle truss long girder 14 level, top-bottom chord and the beam-ends shrouding of end described in double angle truss girder 15 and single angle truss long girder 16 end are weldingly connected respectively, and double angle truss girder 15 is connected by the junction plate I18 of upper and lower two sections with the long girder of single angle truss 16 again, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss, single angle truss secondary beam 17 is connected to the other end of the described long girder of double angle truss 14 and the long girder 16 of single angle truss, relative with double angle truss girder 15 level, top-bottom chord and the beam-ends shrouding of single angle truss end, secondary beam 17 one end and single angle truss long girder 16 the other end are weldingly connected respectively, and are connected by two the junction plate I18 being connected to top-bottom chord place between single angle truss secondary beam 17 with the long girder 16 of single angle truss again, two junction plate II20 by being connected to top-bottom chord place between single angle truss secondary beam 17 other end end with the long girder 14 of double angle truss are connected, the described long girder of double angle truss 14, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17 form a rectangular frame, two described rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and two long girders 14 of double angle truss are positioned on straight line, and two long girders 16 of single angle truss are positioned on straight line, the upper and lower side of two long girders 14 of double angle truss all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and three-dimensional column base node 13 two relative directions, and two described single angle truss secondary beams 17 are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node 13, described under(-)chassis is connected with two pieces of floors 19 by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described A plate,
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, as shown in Figure 12-13, described B plate comprises double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, double angle truss girder 15 is mutually vertical with the long girder of single angle truss 16, top-bottom chord and the beam-ends shrouding of double angle truss girder 15 end and single angle truss long girder 16 end are weldingly connected respectively, and be connected by the junction plate I18 of upper and lower two sections again, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss, the other end of double angle truss girder 15 is connected with the long girder 16 of another root single angle truss with described single angle truss long girder 16 level by the junction plate II20 of upper and lower two sections, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate II20 with the top-bottom chord of the long girder 16 of single angle truss, single angle truss secondary beam 17 is connected to the other end of two described two long girders 16 of single angle truss, relative with double angle truss girder 15 level, single angle truss secondary beam 17 is identical with the type of attachment of described double angle truss girder 15 and two long girders of single angle truss 16 with the type of attachment of two long girders of single angle truss 16, described double angle truss girder 15, the two long girders 16 of single angle truss, single angle truss secondary beams 17 form a rectangular frame, two described rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and the relative two long girders of single angle truss 16 of the rectangular frame level two piece single angle truss long girder 16 relative with another length direction framework level lays respectively on straight line, described under(-)chassis is connected with two pieces of floors 19 by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described B plate,
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization, as shown in accompanying drawing 14-15, described C plate comprises column base node 13, double angle truss girder 15, the long girder 16 of single angle truss, single angle truss secondary beam 17, junction plate I18, junction plate II20 and floor 19, double angle truss girder 15 is mutually vertical with the long girder of single angle truss 16, and all by beam-ends shrouding, the channel-section steel connecting plate adjacent with two on three-dimensional column base node 13 adopts bolt to be connected, and the upper and lower end face place of junction is welded with a plate II20 respectively, the two ends of junction plate II20 are connected on the top-bottom chord of double angle truss girder 15 and the long girder 16 of single angle truss, the other end of double angle truss girder 15 is by being welded to connect the long girder 16 of another root single angle truss with single angle truss long girder 16 level, top-bottom chord and the beam-ends shrouding of double angle truss girder 15 end and this root single angle truss long girder 16 end are weldingly connected respectively, and double angle truss girder 15 is connected by the junction plate I18 of upper and lower two sections with the long girder of single angle truss 16 again, and double angle truss girder 15 is all weldingly connected with two pieces of junction plate I18 with the top-bottom chord of the long girder 16 of single angle truss, single angle truss secondary beam 17 is connected to the other end of the described long girder 16 of two single angle truss, relative with double angle truss girder 15 level, top-bottom chord and the beam-ends shrouding of single angle truss end, secondary beam 17 one end and single angle truss long girder 16 the other end are weldingly connected respectively, and are connected by two the junction plate I18 being connected to top-bottom chord place between single angle truss secondary beam 17 with the long girder 16 of single angle truss again, two junction plate II20 by being connected to top-bottom chord place between single angle truss secondary beam 17 other end end with the long girder 16 of single angle truss are connected, described double angle truss girder 15, the two long girders 16 of single angle truss, single angle truss secondary beams 17 form a rectangular frame, two described rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam 17 in two rectangular frames is alignd and is connected by bolt, and the relative two long girders of single angle truss 16 of the rectangular frame level two piece single angle truss long girder 16 relative with another length direction framework level lays respectively on straight line, the upper and lower side of two long girders 16 of single angle truss all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node 13 two relative directions, and two described single angle truss secondary beams 17 are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node 13, described under(-)chassis is connected with two pieces of floors 19 by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described C plate,
In industrialization of the present invention how high-rise assembling type steel structure frame pre-stress eccentrical braces, as shown in Figure 16, described A plate and B plate, by A plate and the alignment of B plate level, one end of junction plate I18 there are to be spliced by beam-ends shrouding bolt one end not connecting column base of the double angle truss girder 15 of A plate and the double angle truss girder 15 of B plate; Beam-ends shrouding is spliced by bolt by the one end of junction plate I18 that has of one end not connecting column base of the single angle truss secondary beam 17 of A plate and the single angle truss secondary beam 17 of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss 16 of A plate and the single angle truss long girder 16 gusset plate place of B plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of A plate and B plate;
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in Figure 16, described B plate and C plate, by B plate and C plate level alignment, by the double angle truss girder 15 of B plate have one end of junction plate II20 and the three-dimensional column base node 13 of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; By the single angle truss secondary beam 17 of B plate have one end of junction plate II20 and the four-way column base node 13 of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; All adopt bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node 13 two relative directions the upper and lower side of two of B plate long girders 16 of single angle truss, adopt bolt to be connected with the described vertical channel-section steel connecting plate of channel-section steel that exposes by beam-ends shrouding with on the three-dimensional column base node 13 of C plate respectively by beam-ends shrouding the other end of the long girder of single angle truss 16 of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss 16 of B plate and the single angle truss long girder 16 gusset plate place of C plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of B plate and C plate.
In sum, the formed overall floor of A, B, C splicing has node 9, node 10, node 11 and node 12 4 kinds different joint form in stitching portion, its interior joint 9 and node 10 place can at the upper and lower overlay of splicing node to strengthen connection stiffness.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of above-mentioned industrialization, as shown in accompanying drawing 17-24, make the exploded detail of assembling truss plate node 1-8 respectively; As shown in accompanying drawing 25-28, make the exploded detail of assembling truss plate node 9-12 respectively; Accompanying drawing 29-31 is the type of attachment exploded detail of three kinds of different assembling flange posts and its corresponding node;
In industrialization of the present invention how high-rise assembling type steel structure frame pre-stress eccentrical braces, as shown in Figure 32, its gantry type lateral resistant member I is made up of prestressed cable 26, adapter sleeve 22, otic placode I24 and otic placode II25; Otic placode I24 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode I24 are bolted; Otic placode II25 is connected on column bottom by welding or bolt, and prestressed cable 26 and otic placode II25 are bolted; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in Figure 33, its gantry type lateral resistant member II is made up of prestressed cable 26, adapter sleeve 22 and otic placode I24; Otic placode I24 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode I24 are bolted; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in Figure 34, its herringbone lateral resistant member is made up of prestressed cable 26, adapter sleeve 22, otic placode I24 and otic placode III27; Otic placode I24 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode I24 are bolted; Otic placode III27 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode III27 are bolted; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of industrialization of the present invention, as shown in Figure 35, its V-shaped lateral resistant member is made up of prestressed cable 26, adapter sleeve 22, otic placode I24 and otic placode III27; Otic placode I24 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode I24 are bolted; Otic placode III27 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode III27 are bolted; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In industrialization of the present invention how high-rise assembling type steel structure frame pre-stress eccentrical braces, as shown in Figure 36, its monocline rod-type lateral resistant member is made up of prestressed cable 26, adapter sleeve 22 and otic placode I24; Otic placode I24 is connected on girder truss 21 by welding or bolt, and prestressed cable 26 and otic placode I24 are bolted; Prestressed cable 26 is by tightening Shi Hanzhang by adapter sleeve 22; Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper.
In the how high-rise assembling type steel structure framework-prestressing force eccentrical braces of above-mentioned industrialization, as shown in accompanying drawing 37-40, make the exploded detail at otic placode and cable body connected node place respectively.

Claims (5)

1. an industrialization how high-rise assembling type steel structure frame frame ?prestressing force eccentrical braces, comprises assembling truss plate, assembling flange post and prestressing force accentric support component, it is characterized in that:
Described assembling truss plate comprises lattice truss beam, column base node and the floor of being furnished with angle steel web member, described lattice truss beam is by beam-ends shrouding, be connected with other lattice truss beams or column base node, form truss plate under(-)chassis, again form bracing is connected in the truss plate under(-)chassis, form assembling truss plate; Described assembling truss plate is prefabricated in the factory, and is mutually spliced, as frame structural beam flaggy by assembling truss plate at the construction field (site) by its beam-ends shrouding or column base node; Described frame structural beam flaggy is connected to form composite steel frame construction up and down by assembling flange post, and described assembling flange post is positioned on the column base node on assembling truss plate; On the basis of described steel framed structure, prestressing force accentric support component is connected to girder truss in frame structural beam flaggy or column bottom as lateral resistant member; Described assembling truss plate, assembling flange post and prestressing force accentric support component are all prefabricated in the factory, and job site is assembled by bolt;
Described assembling truss plate is connected by bolt with assembling flange post up and down respectively at column base Nodes, forms frame construction; Described prestressing force accentric support component is made up of prestressed cable (26) and otic placode, otic placode is connected to column bottom or girder truss (21) the top-bottom chord place of steel framed structure in factory by welding or bolt, prestressed cable (26) is connected by bolt at the construction field (site) with the otic placode of every floor top and bottom, beam forms active beam link, formed Kuang Jia ?eccentrically braces structure; Prestressed cable (26) is by tightening Shi Hanzhang by adapter sleeve (22); Described prestressed cable is high strength rod iron, or uses high strength steel strand, high strength type steel beam column, or uses high strength rod iron, high strength steel strand or the high strength type steel beam column of being with damper;
Industrialization how high-rise assembling type steel structure Kuang Jia ?beam involved by prestressing force eccentrical braces splice by top-bottom chord, web member (2) and gusset plate (3) girder truss formed, wherein top-bottom chord uses angle steel, or use U-steel, or user's steel pipe, web member (2) uses angle steel, web member become with chord member 30 Dus ?the angle of 60 degree; And be divided into single-beam and twin beams, single-beam arranges connecting hole every one section of fixed range, be convenient to two panels single-beam be spliced with bolt when the splicing of plate and plate become twin beams, for twin beams, web member (2), top-bottom chord use bolt be connected or use welding with the connection of gusset plate (3), all complete in factory process;
Or use and splice by angle steel and fill plate the girder truss formed, comprise top-bottom chord, web member (2) and fill plate (4), wherein top-bottom chord and web member (2) all adopt angle steel, web member become with chord member 30 Dus ?the angle of 60 degree; And be divided into single-beam and twin beams, single-beam arranges connecting hole every one section of fixed range, and being convenient to be spliced by two panels single-beam with bolt when the splicing of plate and plate becomes twin beams, for twin beams, angle steel uses bolt be connected or use welding with the connection of fill plate, all completes in factory process.
2. a kind of industrialization according to claim 1 how high-rise assembling type steel structure Kuang Jia ?prestressing force eccentrical braces, it is characterized in that: described assembling truss plate comprises three kinds of specifications, is respectively A plate, B plate and C plate;
Described A plate comprises column base node (13), the long girder of double angle truss (14), double angle truss girder (15), the long girder of single angle truss (16), single angle truss secondary beam (17), junction plate I (18), junction plate II (20) and floor (19), it is characterized in that: double angle truss girder (15) is mutually vertical with the long girder of double angle truss (14), and all by beam-ends shrouding, bolt is adopted to be connected with the channel-section steel connecting plate on two-way column block node (13), and the upper and lower end face place of junction is welded with a plate II (20) respectively, the two ends of junction plate II (20) are connected on the top-bottom chord of double angle truss girder (15) and the long girder of double angle truss (14), the other end of double angle truss girder (15) is connected with the long girder of single angle truss (16) with the long girder of double angle truss (14) level, top-bottom chord and the beam-ends shrouding of double angle truss girder (15) described end and the long girder of single angle truss (16) end are weldingly connected respectively, and double angle truss girder (15) and the long girder of single angle truss (16) are connected by the junction plate I (18) of upper and lower two sections again, and double angle truss girder (15) is all weldingly connected with two pieces of junction plate I (18) with the top-bottom chord of the long girder of single angle truss (16), single angle truss secondary beam (17) is connected to the described long girder of double angle truss (14) and the other end of the long girder of single angle truss (16), relative with double angle truss girder (15) level, top-bottom chord and the beam-ends shrouding of single angle truss secondary beam (17) end, one end and the long girder of single angle truss (16) the other end are weldingly connected respectively, and are connected by two the junction plate I (18) being connected to top-bottom chord place between single angle truss secondary beam (17) with the long girder of single angle truss (16) again, two junction plate II (20) by being connected to top-bottom chord place between single angle truss secondary beam (17) other end end with the long girder of double angle truss (14) are connected, the described long girder of double angle truss (14), double angle truss girder (15), the long girder of single angle truss (16), single angle truss secondary beam (17) form a rectangular frame, two identical rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam (17) alignment in two identical rectangular frames is also connected by bolt, and two long girders of double angle truss (14) are positioned on straight line, two long girders of single angle truss (16) are positioned on straight line, the upper and lower side of two long girders of double angle truss (14) all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and three-dimensional column base node (13) two relative directions, and two described single angle truss secondary beams (17) are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node (13), described under(-)chassis is connected with two pieces of floors (19) by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described A plate,
Described B plate comprises double angle truss girder (15), the long girder of single angle truss (16), single angle truss secondary beam (17), junction plate I (18), junction plate II (20) and floor (19), double angle truss girder (15) is mutually vertical with the long girder of single angle truss (16), top-bottom chord and the beam-ends shrouding of double angle truss girder (15) end and the long girder of single angle truss (16) end are weldingly connected respectively, and be connected by the junction plate I (18) of upper and lower two sections again, and double angle truss girder (15) is all weldingly connected with two pieces of junction plate I (18) with the top-bottom chord of the long girder of single angle truss (16), the other end of double angle truss girder (15) is connected with another the long girder of root single angle truss (16) with described single angle truss long girder (16) level by the junction plate II (20) of upper and lower two sections, and double angle truss girder (15) is all weldingly connected with two pieces of junction plate II (20) with the top-bottom chord of the long girder of single angle truss (16), single angle truss secondary beam (17) is connected to the other end of two described two long girders of single angle truss (16), relative with double angle truss girder (15) level, single angle truss secondary beam (17) is identical with the type of attachment of two long girders of single angle truss (16) with described double angle truss girder (15) with the type of attachment of two long girders of single angle truss (16), described double angle truss girder (15), the two long girders of single angle truss (16), single angle truss secondary beams (17) form a rectangular frame, two identical rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam (17) alignment in two identical rectangular frames is also connected by bolt, and the relative two long girders of single angle truss (16) of rectangular frame level two piece single angle truss long girders (16) relative with another length direction framework level lay respectively on straight line, described under(-)chassis is connected with two pieces of floors (19) by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described B plate,
Described C plate comprises column base node (13), double angle truss girder (15), the long girder of single angle truss (16), single angle truss secondary beam (17), junction plate I (18), junction plate II (20) and floor (19), double angle truss girder (15) is mutually vertical with the long girder of single angle truss (16), and all by beam-ends shrouding, the channel-section steel connecting plate adjacent with two on three-dimensional column base node (13) adopts bolt to be connected, and the upper and lower end face place of junction is welded with a plate II (20) respectively, the two ends of junction plate II (20) are connected on the top-bottom chord of double angle truss girder (15) and the long girder of single angle truss (16), the other end of double angle truss girder (15) is by being welded to connect another the long girder of root single angle truss (16) with the long girder of single angle truss (16) level, top-bottom chord and the beam-ends shrouding of double angle truss girder (15) end and this root single angle truss long girder (16) end are weldingly connected respectively, and double angle truss girder (15) and the long girder of single angle truss (16) are connected by the junction plate I (18) of upper and lower two sections again, and double angle truss girder (15) is all weldingly connected with two pieces of junction plate I (18) with the top-bottom chord of the long girder of single angle truss (16), single angle truss secondary beam (17) is connected to the other end of two described long girders of single angle truss (16), relative with double angle truss girder (15) level, top-bottom chord and the beam-ends shrouding of single angle truss secondary beam (17) end, one end and the long girder of single angle truss (16) the other end are weldingly connected respectively, and are connected by two the junction plate I (18) being connected to top-bottom chord place between single angle truss secondary beam (17) with the long girder of single angle truss (16) again, two junction plate II (20) by being connected to top-bottom chord place between single angle truss secondary beam (17) other end end with the long girder of single angle truss (16) are connected, described double angle truss girder (15), the two long girders of single angle truss (16), single angle truss secondary beams (17) form a rectangular frame, two identical rectangular frames carry out the under(-)chassis connecting and composing a splicing, single angle truss secondary beam (17) alignment in two identical rectangular frames is also connected by bolt, and the relative two long girders of single angle truss (16) of rectangular frame level two piece single angle truss long girders (16) relative with another length direction framework level lay respectively on straight line, the upper and lower side of two long girders of single angle truss (16) all adopts bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node (13) two relative directions, and two described single angle truss secondary beams (17) are connected on the channel-section steel connecting plate vertical with described both direction on three-dimensional column base node (13), described under(-)chassis is connected with two pieces of floors (19) by girder truss upper chord upper anchoring, all components prefabricated and assembling all in the factory of described C plate,
Industrialization how high-rise assembling type steel structure Kuang Jia ?in prestressing force eccentrical braces, described A plate and B plate, by A plate and the alignment of B plate level, one end of junction plate I (18) there are to be spliced by beam-ends shrouding bolt one end not connecting column base of the double angle truss girder (15) of A plate and the double angle truss girder (15) of B plate; Beam-ends shrouding is spliced by bolt by the one end of junction plate I (18) that has of one end not connecting column base of the single angle truss secondary beam (17) of A plate and the single angle truss secondary beam (17) of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss (16) of A plate and the long girder of single angle truss (16) the gusset plate place of B plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of A plate and B plate;
Industrialization how high-rise assembling type steel structure Kuang Jia ?in prestressing force eccentrical braces, described B plate and C plate, by B plate and C plate level alignment, by the double angle truss girder (15) of B plate have one end of junction plate II (20) and the three-dimensional column base node (13) of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; By the single angle truss secondary beam (17) of B plate have one end of junction plate II (20) and the four-way column base node (13) of C plate expose channel-section steel connecting plate by beam-ends shrouding adopt bolt be connected; All adopt bolt to be connected by the channel-section steel connecting plate in beam-ends shrouding and four-way column base node (13) two relative directions the upper and lower side of two of B plate long girders of single angle truss (16), adopt bolt to be connected with the described vertical channel-section steel connecting plate of channel-section steel that exposes by beam-ends shrouding with on the three-dimensional column base node (13) of C plate respectively by beam-ends shrouding the other end of the long girder of single angle truss (16) of B plate; By bolt, single-beam is spliced every one section of fixed range at the long girder of single angle truss (16) of B plate and the long girder of single angle truss (16) the gusset plate place of C plate, make two panels single-beam be connected to become twin beams; Then cover plate is added at splicing node upper and lower surface bolt; Thus complete the splicing of B plate and C plate.
3. industrialization according to claim 1 how high-rise assembling type steel structure Kuang Jia ?in prestressing force eccentrical braces, it is characterized in that: the column base of column base Nodes has three kinds of forms, be respectively two to column base, three-dimensional column base and four-way column base; Flanged plate I (7) is located welding up and down at box column (8), then two panels channel-section steel (9) is welded in box column (8) adjacent both sides thus forms two to column base; Flanged plate I (7) is located welding up and down at box column (8), then three channel-section steels (9) is welded in box column (8) three limit thus forms three-dimensional column base; Flanged plate I (7) is located welding up and down at box column (8), then four channel-section steels (9) is welded in box column (8) four limit thus forms four-way column base; Wherein channel-section steel (9) web has bolt hole, splice with beam upper-end closing plate bolt.
4. industrialization according to claim 1 how high-rise assembling type steel structure Kuang Jia ?in prestressing force eccentrical braces, it is characterized in that: assembling flange post is made up of with flanged plate II (10), flanged plate III (11), flanged plate IV (12) respectively box column (8), common flanged plate is extended to both direction and is flanged plate II (10), extend to three directions and be flanged plate III (11), extend to four direction and be flanged plate IV (12); The flange post of 3 kinds of forms can be divided into according to the difference of the shape of its flanged plate, be respectively bilateral flange post, three limit flange posts and four limit flange posts; Flanged plate II (10) is located welding up and down at box column (8), thus forms bilateral flange post; Flanged plate III (11) is located welding up and down at box column (8), thus forms three limit flange posts; Flanged plate IV (12) is located welding up and down at box column (8), thus forms four limit flange posts; Described three kinds of assembling flange posts all complete at produce in factory.
5. industrialization according to claim 1 how high-rise assembling type steel structure Kuang Jia ?in prestressing force eccentrical braces, it is characterized in that: described floor uses profiled steel sheet combination floor, or reinforced concrete floor, or OSB shaving board.
CN201210487074.3A 2012-11-26 2012-11-26 Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system Active CN102979175B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210487074.3A CN102979175B (en) 2012-11-26 2012-11-26 Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210487074.3A CN102979175B (en) 2012-11-26 2012-11-26 Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system

Publications (2)

Publication Number Publication Date
CN102979175A CN102979175A (en) 2013-03-20
CN102979175B true CN102979175B (en) 2015-01-14

Family

ID=47853498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210487074.3A Active CN102979175B (en) 2012-11-26 2012-11-26 Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system

Country Status (1)

Country Link
CN (1) CN102979175B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206010B (en) * 2013-03-23 2015-11-25 北京工业大学 A kind of assembling type steel structure prestressing force accentric support frame system
CN103266660B (en) * 2013-05-23 2015-08-12 北京工业大学 A kind of industrialization assembling post through beam steel flanged beam steel structure frame prestressing force eccentrical braces
CN103290922B (en) * 2013-05-23 2015-11-25 北京工业大学 A kind of industrialization assembling post through beam steel flanged beam steel structure frame system
CN103276792B (en) * 2013-05-23 2015-10-28 北京工业大学 A kind of industrialization assembling post through steel structure frame prestressing force eccentrical braces
CN103410217B (en) * 2013-05-29 2015-10-14 北京工业大学 A kind of assembling many Tall Steels shaped pile frame-prestressing force eccentrical braces
CN103276798B (en) * 2013-06-08 2016-01-13 北京工业大学 A kind of hollow irregular column high-rise assembled steel framework-prestressing force eccentrical braces
CN103276806B (en) * 2013-06-10 2015-08-26 北京工业大学 A kind of industrialization assembling hetermorphiscal column steel work prestressing force eccentrical braces
CN103334488B (en) * 2013-06-24 2015-07-15 北京工业大学 Assembled steel structure deformed column framework support system
CN103410222A (en) * 2013-07-26 2013-11-27 北京工业大学 Fabricated multistory and high-rise prestressed self-resetting steel frame structure system provided with special-shaped columns
CN103410218A (en) * 2013-07-26 2013-11-27 北京工业大学 Fabricated multistory and high-rise prestressed steel frame-sway brace system provided with special-shaped columns
CN103821232A (en) * 2013-12-08 2014-05-28 北京工业大学 Prestressed steel structure steel supported joint device
CN103711204A (en) * 2013-12-08 2014-04-09 北京工业大学 Welding-free cable support joint device in prestressed steel structure field
CN103726612A (en) * 2014-01-23 2014-04-16 长安大学 PBL stiffening rectangular steel tube concrete space truss
CN103898966B (en) * 2014-03-20 2016-11-02 北京工业大学 The assembling type steel structure accentric support occlusion splicing system that a kind of node has just connect
CN104018574A (en) * 2014-03-20 2014-09-03 北京工业大学 Modularization multi-high-rise assembly type steel structure occlusion steel beam prestress eccentric support system
CN103882948B (en) * 2014-03-20 2016-04-27 北京工业大学 Industrialized modular how high-rise assembling type steel structure prestressing force eccentrical braces
CN104032829A (en) * 2014-03-20 2014-09-10 北京工业大学 Modularized high-rise assembled steel structure pre-stressed eccentric support system
CN103882983B (en) * 2014-03-20 2016-06-29 北京工业大学 The modular assembly formula steel construction prestressing force eccentrical braces that a kind of node has just connect
CN103938708A (en) * 2014-04-11 2014-07-23 北京工业大学 Self-restoring prestressed anti-buckling central supporting system for two frame plates of industrial assembly type multi-layer high-rise steel structure
CN104164941B (en) * 2014-07-23 2016-06-08 华北水利水电大学 Steel frame prestressing force junked tire dwelling house system
CN107989180B (en) * 2017-11-15 2023-11-21 华侨大学 Eccentric supporting frame
CN112282212A (en) * 2020-10-23 2021-01-29 长安大学 Column assembly type node with double steel structure with inner circle and outer square, connection and generation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038586A (en) * 2006-07-12 2008-02-21 Arcreate:Kk Method of integrating joint part of pile, column and footing beam of steel frame structure
CN101922183A (en) * 2010-04-13 2010-12-22 河南奥斯派克科技有限公司 Standardized node connector of steel structure
CN201991099U (en) * 2010-07-02 2011-09-28 北京工业大学 Externally applied shock-absorbing steel frame for shock resistance and reinforcement
CN202157411U (en) * 2011-06-22 2012-03-07 同济大学 Double lateral force resisting structure of fabricated buckling-restrained brace steel frame
CN102561510A (en) * 2011-12-29 2012-07-11 筑巢(北京)科技有限公司 Factory assembled latticed light steel structure and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038586A (en) * 2006-07-12 2008-02-21 Arcreate:Kk Method of integrating joint part of pile, column and footing beam of steel frame structure
CN101922183A (en) * 2010-04-13 2010-12-22 河南奥斯派克科技有限公司 Standardized node connector of steel structure
CN201991099U (en) * 2010-07-02 2011-09-28 北京工业大学 Externally applied shock-absorbing steel frame for shock resistance and reinforcement
CN202157411U (en) * 2011-06-22 2012-03-07 同济大学 Double lateral force resisting structure of fabricated buckling-restrained brace steel frame
CN102561510A (en) * 2011-12-29 2012-07-11 筑巢(北京)科技有限公司 Factory assembled latticed light steel structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN102979175A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
CN102979175B (en) Industrialized multi-story high-rise assembled steel structure frame - prestressed eccentrically-braced system
CN102979178B (en) Industrialized multi-story high-rise assembled steel structure frame - eccentrically-braced system
CN102995744B (en) Industrialized multi-high-rise assembly type steel structure frame-pre-stressed center support system
CN102979168B (en) Industrialized multi-story high-rise assembled steel structure frame - centrally-braced system
CN103206010B (en) A kind of assembling type steel structure prestressing force accentric support frame system
CN103290920B (en) A kind of assembling type steel structure center support frame system
CN102979176B (en) Industrialized multi-story high-rise assembled steel structure system
CN103276833B (en) A kind of industrialization assembling shaped pile frame-steel plate shear force wall steel structure system
CN103206015B (en) A kind of assembling type steel structure accentric support frame system
CN103276806B (en) A kind of industrialization assembling hetermorphiscal column steel work prestressing force eccentrical braces
CN103276804B (en) A kind of industrialization assembling hetermorphiscal column steel work prestressing force center support system
CN103276809B (en) A kind of assembled many Tall Steels shaped pile frame-steel plate shear wall structure system
CN103266660B (en) A kind of industrialization assembling post through beam steel flanged beam steel structure frame prestressing force eccentrical braces
CN103276802B (en) A kind of many Tall Steels of industrialization assembled Framed Structure with Special-Shaped Columns system
CN103410220A (en) Industrially assembled multiple high-rise steel special-shaped column frame-eccentric supporting system
CN103290921B (en) A kind of through steel structure frame system of industrialization assembled post
CN103290925B (en) The through steel structure frame eccentrical braces of a kind of industrialization assembling post
CN103276832A (en) Hollow irregular column multi-layer high-rise assembling steel frame-steel plate shear wall system
CN103276799A (en) Industrialized assembly type pillar-running-through beam solid-web steel structure frame eccentric support system
CN103410217B (en) A kind of assembling many Tall Steels shaped pile frame-prestressing force eccentrical braces
CN103195164A (en) Assembly prestress center support system for steel structure
CN103276839B (en) The how high-rise assembled steel framework-eccentrical braces of a kind of hollow irregular column
CN103290922A (en) Industrial prefabricated solid-web steel structural frame system with columns penetrating beams
CN103276801B (en) A kind of assembling many Tall Steels shaped pile frame-prestressing force center support system
CN103276796B (en) Industrialized assembly type special-shaped column steel structure frame-eccentric support system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181017

Address after: 100000 Shijingshan Road, Shijingshan District, Shijingshan District, Beijing

Co-patentee after: China Railway Construction Group Beijing Engineering Co., Ltd.

Patentee after: Zhongtie Construction Group Corporation Limited

Address before: No. 100, Chaoyang District flat Park, Beijing, Beijing

Patentee before: Beijing University of Technology

TR01 Transfer of patent right