CN102978319B - 一种节能环保型红土镍矿冶炼设备及工艺 - Google Patents

一种节能环保型红土镍矿冶炼设备及工艺 Download PDF

Info

Publication number
CN102978319B
CN102978319B CN201210492747.4A CN201210492747A CN102978319B CN 102978319 B CN102978319 B CN 102978319B CN 201210492747 A CN201210492747 A CN 201210492747A CN 102978319 B CN102978319 B CN 102978319B
Authority
CN
China
Prior art keywords
reduction reaction
smelting
temperature
stove
separating still
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210492747.4A
Other languages
English (en)
Other versions
CN102978319A (zh
Inventor
杨敏
由勇
陈玉荣
张克强
王强
念大路
由佳
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fushun Hanwang DRI Co.,Ltd.
Original Assignee
HANKING INDUSTRIAL GROUP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANKING INDUSTRIAL GROUP Co Ltd filed Critical HANKING INDUSTRIAL GROUP Co Ltd
Priority to CN201210492747.4A priority Critical patent/CN102978319B/zh
Publication of CN102978319A publication Critical patent/CN102978319A/zh
Application granted granted Critical
Publication of CN102978319B publication Critical patent/CN102978319B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种节能环保型红土镍矿冶炼设备及工艺,属于镍铁生产领域。分为预处理区、还原反应区和分离釜三个区域,总高度7.2~15.3米,高径比3.4~6.3。预热区高度3~8.3M,容积1.6~38.7M3,预热区顶部温度为80~200℃;炉内采取负压9.5~9.0MPa操作;还原反应区高度2~4.2M,容积1.3~7.1M3,还原区温度1100℃~1300℃;分离釜高度0.4~0.8M,容积0.2~1.6M3,分离釜底部温度1050℃~1250℃,分离釜死铁层设置为70~300mm;出铁口与出渣口在轴向距离400~600mm分布,在径向成90°~180°分布。本发明生产成本低、环保效果好、还原效率高。

Description

一种节能环保型红土镍矿冶炼设备及工艺
技术领域
本发明属于镍铁生产领域,涉及一种节能环保型红土镍矿冶炼设备及工艺,适用于冶炼红土镍矿。
背景技术
含镍矿石类型主要有硫化镍矿和氧化镍矿(也称红土镍矿),以前各国主要以硫化镍矿为原料,通过电炉冶炼;近年来由于硫化镍矿资源已濒临枯竭,世界各国的镍冶炼企业纷纷把目光转移到氧化镍矿资源的开采和利用上来。
红土镍矿冶炼镍铁有两种方法,分别为湿法冶金工艺和火法冶炼工艺。由于湿法冶金工艺对环境污染严重、投资大,很少有企业采用此工艺。火法工艺冶炼镍铁主要有高炉冶炼工艺、回转窑+矿热炉工艺(RKEF)和回转窑熔融直接还原工艺。首先高炉冶炼工艺投资大、环境污染严重、焦炭消耗量大,也无法实现选择性还原,产品含镍一般在3~6%,市场需求量少,成本高。其次设备寿命短,其主要原因有还原区温度过高、还原时间过长、炉体采用整体设计,这样炉膛的某一部位一旦损坏,设备就要停产检修,自然使用寿命就短了。对于回转窑+矿热炉工艺(RKEF),该工艺投资大,建设期长,原料处理阶段成本高;由于含水分在35%左右的红土镍矿要经过烘干窑进行表面水处理后,再经过回转窑焙烧预还原,然后再投入矿热炉内进行镍铁冶炼,因此要消耗大量的焦煤、电力以及相当的人工成本,产品含镍在10%左右。三是回转窑熔融直接还原红土镍矿法,该工艺利用回转窖全程对镍团矿进行脱水、焙烧,NiO、FeO等氧化物还原,金属物聚集,最后生成融态海绵状夹渣镍铁粒,然后再进行磁选;熔炼过程热能来自煤粉(或重油)燃烧放出的热量。回转窑直接还原冶炼镍铁生产中,设备简单、此工艺在实际生产作业率相当较低,综合单位耗能耗高,虽投资小但镍金属回收率低,成本高,在冶炼技术方面还不太成熟,在国内并没有得到广泛的应用于实际生产当中。
发明内容
本发明的目的是提供一种以红土镍矿为原料,采用节能环保新型红土镍矿冶炼设备,实现控制性还原铁。生产工艺采用原矿直接投入炉内进行冶炼,并在生产过程中通过控制反应温度和反应时间来控制铁的还原度,以解决高炉工艺、回转窑+矿热炉(RKEF)、回转窑直接还原冶炼镍铁方法存在的投资大、生产成本高、见效慢、镍铁品位低等问题。
一种节能环保型红土镍矿冶炼设备,分为预处理区、还原反应区和分离釜三个区域,总高度7.2~15.3米,高径比3.4~6.3。高度低,容积小,装料量少,炉料从入炉到出镍铁的一个循环次时间为2.5~4小时,出镍铁频次在1.5~3小时左右。
预热区高度3~8.3M,容积1.6~38.7M3,预热区顶部温度一般在80~200度;炉内采取负压(9.5~9.0MPa)操作。
还原反应区高度2~4.2M,容积1.3~7.1M3左右,还原区温度1100℃~1300℃。
分离釜高度0.4~0.8M,容积0.2~1.6M3,分离釜底部温度1050℃~1250℃)。分离釜死铁层设置为70~300mm。
出铁口与出渣口在轴向距离400~600mm分布,在径向成90°~180°分布(具体角度依据炉子在生产现场的规划布局而定)。
还原反应区设有配风盘,可很好的将氧气与空气进行混合,形成均匀的富氧混合气体送入炉内,并可随时调节氧气的浓度以及送风量的大小,以达到控制炉内还原气氛的目的。
还原反应区与分离釜接触面采用5~10mm石棉板做垫圈,内表面用耐火喷涂料从还原反应区底部顺延至分离釜耐火砖表面(过度圆弧半径40~60mm,如图2所示)。
炉内配置了水循环温度测量传感器(布置于水循环内)、还原反应区温度测量传感器(布置于内炉壳外表面)、分离釜底部温度测量传感器(位于底层耐火材料下50~150mm处)。通过监视各温度测量器(水温不能超过75℃~100℃,反应区测量温度不应超过1100℃~1300℃,分离釜底部温度不应超过1050℃~1250℃)来调节风机的送风量、风速(进入炉内)、氧浓度、水冷却系统中水流速度,以控制炉内的反应温度。
分离釜底部温度测量传感器还为掌握分离釜底部温度以及间接反应炉内耐火材料的腐蚀情况提供信息。
在节能环保型红土镍矿冶炼设备的还原反应区域的下部配置了2-8个氧气送风口,风口角度为2°~8°,以便于更好更彻底的控制还原反应温度,提高镍铁产品的品位。还原反应区域炉内料柱存在密度分布不均匀,芯部炉料密度大于外围炉料密度,加上炉内的气流呈上升运动影响鼓风效果,容易导致料柱芯部与边缘气氛相差较大,将鼓风口角度设置在2°~8°之间,以此来平衡炉内高温气体向上运动和炉料芯部密度高所导致料柱芯部的气氛与边缘气氛相差较大的情况。
为便于更好更彻底的控制和调节还原反应气氛,本发明将还原反应区的炉腹角设置为3°~10°,能够减缓气流上升的速度,使还原反应更充分。
由于红土镍矿冶炼设备炉腹会因为温度、温度变化、化学侵蚀、氧化、炉渣酸碱度、机械破坏等遭受侵蚀。当金属冷却设备长期裸露在高炉内部炙热的煤气流或液态渣铁中,其工作面将遭受冲刷、磨损及侵蚀,使其命寿缩短。因此本设计考虑在冷却器工作面砌筑耐火喷涂料来保护冷却器,厚度为10mm~80mm,在保护冷却器的同时也增加了还原反应区内壁的挂渣能力,此外水循环系统对还原反应区炉腹进行降温的同时,也降低了渣的温度,增强了耐火层的挂渣能力,更好的保护了冷却器,延长炉子的寿命。
考虑到铁水的渗透力较强,我们在分离釜外耐火材料和炉壳之间设立了膨胀层6,能够有效缓解铁水对炉壳的压力。
本发明冶炼工艺采用湿球入炉、负压操作、部分还原的方式冶炼红土镍矿。球团矿含水量在20%-30%、强度为3kg~10kg/cm2,冶炼时间180min~300min,冶炼温度1260℃~1380℃,得到含镍大于13%粗镍生铁,整个冶炼过程炉内均采用负压操作,负压值在9.5~9.0Mpa。
预热区由于燃料在炉内燃烧,炉料与高温气流成逆流运动,因而热交换条件好。当炉料不断向下运动时炉内会产生有大量的水蒸气蒸发,对炉料向下运动时摩擦产生的粉尘起到了抑制作用,再加上炉内采取负压(9.5~9.0MPa)操作,可控制大量的粉尘不能向外溢出,从而达到降尘除尘的目的,环保效果好。由于炉料水分蒸发后体积缩小,同时水分蒸发后使得炉料变的疏松,增大了炉料与炉内气体接触的面积,提高了还原效率。
还原反应区与预处理区采用法兰连接。还原反应区炉料已成为熔融状态,大部分镍和一部分铁等其它金属基本都在此段开始还原成单质状态,流入至分离釜。主要的反应有:
NiO+C→Ni+CO↑T=420℃(1)
FeO+C→Fe+CO↑T=650℃(2)
Cr2O3+C→Cr+CO↑      (3)
SiO2+C→Si+CO↑       (4)
由反应式(1)、(2)可以看出Ni比Fe更容易还原,在Ni先基本还原完的情况下尽量控制低炉温1010℃~1400℃,减慢Fe的还原速度。
分离釜死铁层设置为70~300mm,能较好的保护炉底耐火材料和炉内温度的稳定性作用。为了提高产品镍含量,控制铁的深度还原,一是设计出铁口距出渣口距离400~600mm,在此段位置Ni的还原反应已经基本完毕,主要存约40%~65%的未还原的氧化铁和其他炉渣,渣口设置在此位置能达到较好的甩铁留镍的效果。
采用本发明节能环保型红土镍矿冶炼设备,能将主要含有Ni:1.52%~3.16%Fe:9.58%~39.58的红土镍矿设备内完成控制性还原,冶炼出含有Ni:13%~20%的镍铁合金产品。
生产工艺采用红土镍矿原矿压球后直接投入炉内冶炼,节省了烧结工艺环节,可大幅降低生产成本。因球团矿含有20~30%的水分,冶炼过程产生有大量的水蒸气蒸发,再加上炉内形成负压操作(负压值在9.5~9.0Mpa),可控制大量的粉尘不能向外溢出,从而达到降尘除尘的目的,环保效果好。同时由于水的蒸发使得炉料变的疏松,增大了炉料与炉内气体接触的面积,提高了还原效率。
附图说明
图1为本发明设备结构示意图,
1:分离釜2:还原反应区3:预处理区4:烟气回收放散机构5:配风盘6:膨胀层7:耐火砖8:炉底温度测量传感器9:水循环温度测量传感器10:还原反应区温度测量传感器。
图2为本发明分离釜与还原反应区的链接情况示意图。
具体实施方式
本发明设备结构由分离釜1、还原反应区2、预处理区3、烟气回收放散机构4、配风盘5、膨胀层6、耐火砖7、炉底温度测量传感器8、水循环温度测量传感器9、还原反应区温度测量传感器10组成。烟气回收放散机构位于设备顶部,预处理区位于设备中上部,还原反应区位于设备中部,分离釜位于设备底部,配风盘位于还原反应区外部,分离釜外面砌有耐火砖,耐火砖与炉壳之间设有膨胀层;水循环温度测量传感器(布置于水循环内)、还原反应区温度测量传感器(布置于内炉壳外表面)、分离釜底部温度测量传感器(位于底层耐火材料下50~150mm处)。
还原反应区与分离釜接触面采用5~10mm石棉板做垫圈,内表用耐火喷涂料从还原反应区底部顺延至分离釜耐火砖表面,过度圆弧半径40~60mm。还原反应区域的下部配置了2-8个氧气送风口,风口角度为2°~8°,分离釜死铁层设置为70~300mm,出铁口距出渣口距离400~600mm,
节能环保型红土镍矿冶炼设备在设计时考虑到事故停炉、维修方便等因素,将预处理区、还原反应区和分离釜分别制作成独立体,形成上下结构组合式,为维修提供便利条件。由于分离釜存在一定量的死铁层,分离釜底部耐材长期受到合金的侵蚀,因此在底部中心设置一个温度测量传感器及时观察分离釜底部温度变化,能够直接了解底部耐火材料的腐蚀情况。
本发明结构要点为:
A.设计发明总高度在7.2~15.3米。
B.预处理区高度3~8.3M,容积1.6~38.7M3
C.炉内操作负压值为9.5~9.0Mpa
D.还原反应区高度2~4.2米,容积1.37~7.1M3
E.鼓风口角度在2~8度
F.还原区炉腹角为3~10度
G.出铁口与出渣口在轴向距离400~600mm,在径向成90-180度分布。
本发明可将含Ni1.52%~3.16%的红土镍矿在节能环保型红土镍矿冶炼设备内冶炼出含Ni13%~20%的NiFe合金。
以上所述仅是本发明的最佳优选实施范围,在最佳优选实施范围附近延展正负若干个设计也属于该发明保护范围。

Claims (6)

1.一种节能环保型红土镍矿冶炼方法,其特征在于采用湿球入炉、负压操作、部分还原的方式冶炼红土镍矿;球团矿含水量在20%-30%、强度为3kg~10kg/cm2,冶炼时间180min~300min,冶炼温度1260℃~1380℃,得到含镍大于13%粗镍生铁,整个冶炼过程炉内均采用负压操作,负压值在9.5~9.0MPa;
实现本方法所采用的冶炼设备分为预热区、还原反应区和分离釜三个区域,总高度7.2~15.3米,高径比3.4~6.3;
预热区高度3~8.3m,容积1.6~38.7m3,预热区顶部温度为80~200℃;炉内采取负压9.5~9.0MPa操作;
还原反应区高度2~4.2m,容积1.3~7.1m3,还原区温度1100℃~1300℃;
分离釜高度0.4~0.8m,容积0.2~1.6m3,分离釜底部温度1050℃~1250℃,分离釜死铁层设置为70~300mm;
冶炼设备冷却器工作面砌筑有耐火喷涂料,厚度为10mm~80mm
出铁口与出渣口在轴向距离400~600mm分布,在径向成90°~180°分布。
2.如权利要求1所述一种节能环保型红土镍矿冶炼方法,其特征在于所述冶炼设备还原反应区设有配风盘,能很好的将氧气与空气进行混合,形成均匀的富氧混合气体送入炉内,并可随时调节氧气的浓度以及送风量的大小。
3.如权利要求1所述一种节能环保型红土镍矿冶炼方法,其特征在于所述冶炼设备还原反应区与分离釜接触面采用5~10mm石棉板做垫圈,内表面用耐火喷涂料从还原反应区底部顺延至分离釜耐火砖表面,过度圆弧半径40~60mm。
4.如权利要求1所述一种节能环保型红土镍矿冶炼方法,其特征在于所述冶炼设备炉内配置了水循环温度测量传感器、还原反应区温度测量传感器、分离釜底部温度测量传感器;水循环温度测量传感器布置于水循环内,还原反应区温度测量传感器布置于内炉壳外表面,分离釜底部温度测量传感器位于底层耐火材料下50~150mm处;通过监视各温度测量器来调节风机的送风量、进入炉内的风速、氧浓度、水冷却系统中水流速度,以控制炉内的反应温度。
5.如权利要求1所述一种节能环保型红土镍矿冶炼方法,其特征在于所述冶炼设备的还原反应区域的下部配置了2-8个氧气送风口,风口角度为2°~8°,以便于更好更彻底的控制还原反应温度,提高镍铁产品的品位。
6.如权利要求1所述一种节能环保型红土镍矿冶炼方法,其特征在于所述冶炼设备还原反应区的炉腹角设置为3°~10°。
CN201210492747.4A 2012-11-26 2012-11-26 一种节能环保型红土镍矿冶炼设备及工艺 Expired - Fee Related CN102978319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210492747.4A CN102978319B (zh) 2012-11-26 2012-11-26 一种节能环保型红土镍矿冶炼设备及工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210492747.4A CN102978319B (zh) 2012-11-26 2012-11-26 一种节能环保型红土镍矿冶炼设备及工艺

Publications (2)

Publication Number Publication Date
CN102978319A CN102978319A (zh) 2013-03-20
CN102978319B true CN102978319B (zh) 2014-08-13

Family

ID=47852653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210492747.4A Expired - Fee Related CN102978319B (zh) 2012-11-26 2012-11-26 一种节能环保型红土镍矿冶炼设备及工艺

Country Status (1)

Country Link
CN (1) CN102978319B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734153B2 (ja) * 2015-09-16 2020-08-05 三菱マテリアル株式会社 被測定物の温度、粉塵の温度及び粉塵の濃度を計測する方法
CN108707714A (zh) * 2018-08-17 2018-10-26 宝钢工程技术集团有限公司 一种废钢及含铁固废多功能熔炼炉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117314A (en) * 1978-03-03 1979-09-12 Sumitomo Metal Mining Co Treating of nickel containing ore
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
CN100519768C (zh) * 2006-01-26 2009-07-29 宝山钢铁股份有限公司 一种铬铁冶炼竖炉及冶炼方法
CN101603110A (zh) * 2009-07-10 2009-12-16 章宇 以红土镍矿为原料用竖炉直接还原镍铁的方法
CN101603140B (zh) * 2009-07-25 2011-07-20 山西太钢不锈钢股份有限公司 用红土矿冶炼含镍铁水的方法
CN101935794A (zh) * 2010-10-11 2011-01-05 北京科技大学 一种红土镍矿在竖炉-熔分炉中生产镍铁合金的方法

Also Published As

Publication number Publication date
CN102978319A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
JP6752542B2 (ja) 渦流撹拌による溶融還元製鉄方法
CN106609325B (zh) 富氧煤粉熔融还原红土镍矿工艺和熔融还原炉
CN101538631B (zh) 用低镍物料冶炼镍铁及含镍铁水工艺及设备
US9581387B2 (en) Method for iron-making with full oxygen and hydrogen-rich gas and equipment thereof
CN101538629A (zh) 用粉铬矿冶炼铬铁合金及含铬铁水工艺及设备
CN102140585B (zh) 一种使用熔炼炉熔炼镍精矿的方法
CN103451344B (zh) 一种ceo复合型熔融还原炼铁装置及其工艺
CN103993116B (zh) 双塔闪速炼铁炉及炼铁方法
CN106011341A (zh) 高炉冶炼钒钛矿提高煤比的方法
CN205313650U (zh) 一种熔池熔炼红土镍矿获得镍铁的装置
CN101250598A (zh) 一种高炉护炉方法
CN202912992U (zh) 一种节能环保型红土镍矿冶炼设备
CN102816885A (zh) 炼铁炼钢直接熔融还原一体化高炉工艺
CN106086281A (zh) 一种闪速炼铁与煤制气的一体化装置及方法
CN202912994U (zh) 一种节能环保型红土镍矿冶炼竖炉
CN101875985A (zh) 节能减排、集约化高炉工艺
CN105420515A (zh) 采用富氧强化熔池熔炼红土镍矿获得镍铁的工艺及其装置
CN101956035B (zh) 一种含铁物料渣浴熔融还原炼钢工艺方法及装置
CN102978319B (zh) 一种节能环保型红土镍矿冶炼设备及工艺
CN206580851U (zh) 粉矿全氧熔融还原炼铁装置
CN103352097A (zh) 还原炉及煤基外预热含煤球团直接还原工艺
CN103276278B (zh) 一种用于红土镍矿冶炼的熔融还原炉
CN109536663B (zh) 一种回转窑气基还原-全氧熔池熔炼炼铁方法
CN103937959A (zh) 一种低成本低能耗处理红土镍矿的新方法
CN202836150U (zh) 一种深炉缸岩棉冲天炉

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151203

Address after: 113122 Liaoning city in Fushun Province Economic Development Zone Economic Zone Lagucun Laguna

Patentee after: Fushun Hanwang DRI Co.,Ltd.

Address before: Shenhe Youth Street District of Shenyang City, Liaoning province 110016 No. 227 building Hanking

Patentee before: Hanking Industrial Group Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140813

Termination date: 20161126