CN102966438B - 混合模式功率发生结构 - Google Patents

混合模式功率发生结构 Download PDF

Info

Publication number
CN102966438B
CN102966438B CN201210317600.1A CN201210317600A CN102966438B CN 102966438 B CN102966438 B CN 102966438B CN 201210317600 A CN201210317600 A CN 201210317600A CN 102966438 B CN102966438 B CN 102966438B
Authority
CN
China
Prior art keywords
electromotor
frequency
random source
output
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210317600.1A
Other languages
English (en)
Other versions
CN102966438A (zh
Inventor
M.J.塞格尔
T.A.斯皮尔林
D.S.贝林
C.R.勒格罗斯
B.M.格雷尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of CN102966438A publication Critical patent/CN102966438A/zh
Application granted granted Critical
Publication of CN102966438B publication Critical patent/CN102966438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • F05D2220/764Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05D2220/7642Application in combination with an electrical generator of the alternating current (A.C.) type of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • F05D2220/768Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及混合模式功率发生结构。具体地,一种电功率发生系统(EPGS)采用了随意源发电机和可变和/或恒定频率发电机二者。所述随意源发电机被联接成从飞机发动机上的低压力转子接收机械功率并且响应性地产生随意源输出以供电压和频率耐受负载使用。所述可变和/或恒定频率发电机被联接成从所述飞机发动机上的高压力转子接收机械功率并且响应性地产生可变和/或恒定频率输出以供电压和频率不耐受负载使用。

Description

混合模式功率发生结构
技术领域
本发明涉及电功率发生系统(EPGS)。
背景技术
在飞机应用中,所产生的电功率大部分源自飞机发动机所供应的机械功率,机械功率由发电机转换为交流(AC)电功率。飞机发动机速度的变化导致发电机所产生的输出电压和频率的变化。然而,一些负载对于电压和频率的变化敏感,因此,现代飞机上采用的大多数发电机提供稳定输出电压以及恒定的输出频率或者在所附接的负载可接受的限定范围内的可变频率。例如,恒定频率发电机使用机械联轴器以提供恒定频率AC输出,而不论发动机速度的变化如何。然而,机械联轴器增加了发电机的成本和重量。可变频率发电机是恒定频率发电机的替代方案,但是仍然必须能够提供在严格限定的范围(例如,350Hz-800Hz)内的AC输出。该要求也增加了可变频率发电机的重量和成本。通过使用发电机场控制或功率转换电子器件来实现对于发电机输出电压的调节,这二者均增加了功率发生系统的成本和重量。
稳定电压、恒定频率和可变频率发电机的更便宜的替代方案是随意源(wild-source generator)发电机,其提供可变电压、可变频率的AC输出,尤其在相比可变电压发电机中看到的输出频率范围更大的输出频率范围的情况下。传统上,随意源发电机无法应用在飞机应用中,因为它们不能提供飞机上的大多数负载所需的高质量(即,稳定的频率)类型的功率。
发明内容
一种电功率发生系统(EPGS)采用了随意源发电机和稳定电压发电机二者,所述稳定电压发电机产生可变的或恒定的频率。所述随意源发电机被联接成从飞机发动机上的低压力转子(spool)接收机械功率并且响应性地产生随意源输出以供频率和电压耐受负载使用。所述具有可变和/或恒定频率输出的稳定电压发电机被联接成从所述飞机发动机上的高压力转子接收机械功率并且响应性地产生具有可变和/或恒定频率输出的稳定电压以供电压和频率不耐受负载使用。
附图说明
附图是根据本发明一个实施例的混合模式电功率发生系统(EPGS)的功能框图。
具体实施方式
本发明提供了一种混合模式电功率发生系统(EPGS),其利用随意源发电机来产生用于电压和频率耐受负载的功率。本发明的一个益处在于可用由随意源发电机产生的功率来供应功率质量要求较低的负载(即,电压和频率耐受负载),随意源发电机相比可变/恒定频率发电机通常重量较轻,从而较为便宜。
附图是根据本发明一个实施例的混合模式电功率发生系统(EPGS)的功能框图。混合模式EPGS从飞机发动机10获得动力,飞机发动机10包括低压力(LP)转子12(被示作为前部12a和后部12b)和高压力(HP)转子14。LP转子12包括风扇16、LP压缩机18和LP涡轮20,其全部经由LP轴22连接。HP转子14包括HP压缩机24和HP涡轮26,其经由HP轴28连接。燃烧器30位于HP压缩机24和HP涡轮26之间。混合模式EPGS包括随意源发电机32以及可变和/或恒定频率发电机34。
高压力(HP)转子14位于发动机的内部中,并且包括由HP轴28连接到彼此的HP压缩机24和HP涡轮26。当旋转时,HP压缩机24压缩空气并且将其推入燃烧器30中,由此产生从前到后流过燃烧器30的气体路径。在燃烧器30中,由HP压缩机24提供的经压缩的空气与燃料混合并且被点燃以产生推力。HP涡轮26从燃烧器(即,从膨胀的气体)提取能量并且经由HP轴28将所提取的能量传输到HP压缩机24,由此维持经压缩的空气进入燃烧器30的流动,使得发动机10是自持的(一旦被启动)。
低压力转子12包括位于HP转子14的任一侧(即,前侧和后侧)上的元件,所述元件包括经由LP轴22连接到彼此的风扇16、LP压缩机18和LP涡轮20。飞机发动机10内的燃烧所产生的能量被LP涡轮20提取并经由LP轴22被传输到LP压缩机18和风扇16,LP压缩机18和风扇16响应性地将空气流供应到HP压缩机24中。LP转子12上的部件大于(即,在直径上大于)HP转子14上的部件,并且相比HP转子14上的对应部件以低得多且更加可变的速度旋转。
通常,发电机出于多个原因而被连接到HP转子。HP转子的速度相比LP转子的速度可变性较小,从而与HP转子相关联的发电机提供更一致的输出频率或者需要更少的速度控制措施来提供期望的输出频率。另外,在许多飞机发动机中,HP转子必须旋转以便产生启动发动机所需的气体路径。如果发电机也被用作启动马达,则其必须被连接到HP转子以便进行发动机启动操作。
本发明利用了不是飞机上的所有负载均需要高质量的功率(即,稳定电压以及恒定或受控的频率)的事实。在附图所示的实施例中,电压和频率耐受负载40是那些不需要严密受控的电压和/或频率的负载。一般地,电压和频率耐受负载40是电阻性负载(即,不包含电容性或电感性元件的负载)。在飞机应用中,电压和频率耐受负载可包括用在除冰器中的电阻性加热器。随意源发电机32经由电分配总线44向电压和频率耐受负载40提供随意源输出,而可变/恒定频率发电机34产生更高质量的功率,以便经由电分配总线46供高质量的、随意源不耐受的或频率不耐受的负载42使用。
在附图所示的实施例中,由低压力转子12产生的动力经由LP塔轴36传输到随意源发电机32。在其他实施例中,可采用其他公知的将功率传输到随意源发电机32的手段。例如,随意源发电机32可以经由直接驱动从低压力转子12的轴(未示出)接收机械能,可以经由机械齿轮箱联接或者其他公知手段被安装在低压力转子12周围(其中,转子的轴充当随意源发电机的定子或转子)。类似地,由HP转子14产生的动力通过HP塔轴38传输到可变/恒定频率发电机34。再一次地,在其他实施例中,可采用其他公知的将机械能传输到可变/恒定频率发电机34的手段。
取决于应用,随意源发电机32可被实施为永磁体发电机(PMG)、绕线磁极式同步发电机或者其他公知的发电机构造。然而,由于随意源发电机32的输出被提供给电压和频率耐受负载,所以该发电机不需要电压调节、速度补偿或其他用于提供高质量(即,稳定电压、一致的频率)输出的机制。结果,随意源发电机32的成本和/或重量小于其他被连接成从低压力转子12提取功率的发电机的成本和/或重量。
随意源发电机32将低压力转子12所供应的机械能转换成可变频率、可变电压的AC输出,以经由电分配总线44分配到电压和频率耐受负载40。随意源发电机32由于发电机所产生的频率和/或电压的范围而被称为是“随意的”,其可被限定为大于与可变频率发电机相关的电压和频率范围的电压和/或频率范围。例如,各种规格(例如,军用规格MIL-STD-704F)定义了可变频率发电机所产生的最大可允许电压和频率范围。所提供的电压和/或频率范围大于关于可变频率发电机所定义的频率范围的发电机被分类为随意源发电机。在一个实施例中,可变频率发电机提供在350Hz-800Hz的频率范围内的AC输出。因而,随意源发电机所提供的AC输出在大于关于可变频率发电机限定的频率范围的频率范围内。
这样,本发明采用了随意源发电机和可变/恒定频率发电机二者来满足飞机的功率要求。该布置的一个益处在于随意源发电机通常比可变和/或恒定频率发电机更为便宜(在重量上)。因此,用来自成本高效的随意源发电机的功率来供应频率耐受负载是高效的。
尽管已经参照(一个或多个)示范实施例描述了本发明,但本领域技术人员将会理解的是,在不背离本发明范围的情况下可作出各种改变并可用等同物替换其元件。另外,在不背离本发明的实质范围的情况下,可作出许多修改以使具体情况或材料适应本发明的教导。因此,所意图的是,本发明不限于所公开的(一个或多个)具体实施例,而是本发明将会包括落在所附权利要求的范围内的所有实施例。

Claims (9)

1.一种电功率发生系统(EPGS),包括:
随意源发电机,所述随意源发电机被联接成从飞机发动机上的低压力转子接收机械功率并且响应性地产生随意源输出以供电压和频率耐受负载使用,其中所述随意源输出未经电压调节和未经速度调节;和
具有稳定电压输出的可变频率和/或恒定频率发电机,所述可变频率和/或恒定频率发电机被联接成从所述飞机发动机上的高压力转子接收机械功率并且响应性地产生可变和/或恒定频率输出以供电压和频率不耐受负载使用。
2.如权利要求1所述的EPGS,其中,所述随意源发电机是永磁体发电机(PGM)。
3.如权利要求1所述的EPGS,其中,所述随意源发电机是绕线磁极式同步电机。
4.如权利要求1所述的EPGS,其中,所述可变频率发电机是启动马达,其被联接成向所述高压力转子提供机械能以启动所述飞机发动机。
5.一种电功率发生和分配系统(EPGDS),包括:
飞机发动机,所述飞机发动机具有低压力转子和高压力转子;
随意源发电机,所述随意源发电机被联接成从所述低压力转子接收机械功率并且响应性地产生未经电压调节和未经速度调节的随意源输出;
可变频率和/或恒定频率发电机,所述可变频率和/或恒定频率发电机被联接成从所述高压力转子接收机械功率并且响应性地产生具有可变/恒定频率的稳定电压输出;
至少一个电压和/或频率耐受负载,所述至少一个电压和/或频率耐受负载被连接成接收由所述随意源发电机产生的随意源输出;和
至少一个随意源不耐受负载,所述至少一个随意源不耐受负载被连接成接收由所述可变频率和/或恒定频率发电机产生的具有可变/恒定频率输出的稳定电压。
6.如权利要求5所述的EPGDS,其中,所述随意源发电机是永磁体发电机(PGM)。
7.如权利要求5所述的EPGDS,其中,所述随意源发电机是绕线磁极式同步电机。
8.如权利要求5所述的EPGDS,其中,所述可变频率发电机是启动马达,其被联接成向所述高压力转子提供机械能以启动所述飞机发动机。
9.如权利要求5所述的EPGDS,其中,所述频率耐受负载是电阻性负载。
CN201210317600.1A 2011-08-31 2012-08-31 混合模式功率发生结构 Active CN102966438B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/222395 2011-08-31
US13/222,395 2011-08-31
US13/222,395 US8928166B2 (en) 2011-08-31 2011-08-31 Mixed mode power generation architecture

Publications (2)

Publication Number Publication Date
CN102966438A CN102966438A (zh) 2013-03-13
CN102966438B true CN102966438B (zh) 2016-12-21

Family

ID=47693113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210317600.1A Active CN102966438B (zh) 2011-08-31 2012-08-31 混合模式功率发生结构

Country Status (3)

Country Link
US (1) US8928166B2 (zh)
CN (1) CN102966438B (zh)
FR (1) FR2979498B1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105584473B (zh) * 2014-10-22 2017-10-03 广州汽车集团股份有限公司 一种四驱混合动力汽车前、后驱动系统的匹配方法及装置
US10000293B2 (en) 2015-01-23 2018-06-19 General Electric Company Gas-electric propulsion system for an aircraft
US10000296B2 (en) 2015-02-18 2018-06-19 Hamilton Sundstrand Corporation Electrical control system
GB2539035A (en) * 2015-06-04 2016-12-07 Airbus Operations Ltd Aircraft brake cooling fan control system
US9938853B2 (en) 2015-10-23 2018-04-10 General Electric Company Torsional damping for gas turbine engines
US10447169B2 (en) 2016-01-20 2019-10-15 General Electric Company Independent power factor and frequency control of electrical power generator
US10377498B2 (en) * 2016-01-21 2019-08-13 The Boeing Company Aircraft and associated method for providing electrical energy to an anti-icing system
US9764848B1 (en) 2016-03-07 2017-09-19 General Electric Company Propulsion system for an aircraft
US10071811B2 (en) 2016-08-22 2018-09-11 General Electric Company Embedded electric machine
US10487839B2 (en) 2016-08-22 2019-11-26 General Electric Company Embedded electric machine
US10308366B2 (en) 2016-08-22 2019-06-04 General Electric Company Embedded electric machine
US10093428B2 (en) 2016-08-22 2018-10-09 General Electric Company Electric propulsion system
US10822103B2 (en) 2017-02-10 2020-11-03 General Electric Company Propulsor assembly for an aircraft
US11149578B2 (en) 2017-02-10 2021-10-19 General Electric Company Propulsion system for an aircraft
US10793281B2 (en) 2017-02-10 2020-10-06 General Electric Company Propulsion system for an aircraft
US10762726B2 (en) 2017-06-13 2020-09-01 General Electric Company Hybrid-electric propulsion system for an aircraft
US11465759B2 (en) * 2018-07-13 2022-10-11 The Boeing Company Multi-mode generator for ice protection on aircraft
US11156128B2 (en) 2018-08-22 2021-10-26 General Electric Company Embedded electric machine
US11097849B2 (en) 2018-09-10 2021-08-24 General Electric Company Aircraft having an aft engine
US11539316B2 (en) 2019-07-30 2022-12-27 General Electric Company Active stability control of compression systems utilizing electric machines
US11448135B2 (en) 2020-07-23 2022-09-20 Ge Aviation Systems Llc Systems and methods of power allocation for turboprop and turboshaft aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456830A (en) * 1982-04-22 1984-06-26 Lockheed Corporation AC Motor-starting for aircraft engines using APU free turbine driven generators

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447737A (en) * 1980-12-29 1984-05-08 Lockheed Corporation Variable frequency induction generator
US4401938A (en) * 1980-12-29 1983-08-30 Lockheed Corporation Variable-speed drive for control of induction generators
US4382188A (en) * 1981-02-17 1983-05-03 Lockheed Corporation Dual-range drive configurations for synchronous and induction generators
US4908565A (en) * 1987-02-18 1990-03-13 Sundstrand Corporation Power generating system
US4967097A (en) * 1989-03-08 1990-10-30 Mehl Bryon R Hybrid power system
US7285871B2 (en) * 2004-08-25 2007-10-23 Honeywell International, Inc. Engine power extraction control system
US7690186B2 (en) * 2005-11-09 2010-04-06 Pratt & Whitney Canada Corp. Gas turbine engine including apparatus to transfer power between multiple shafts
US7468561B2 (en) * 2007-03-27 2008-12-23 General Electric Company Integrated electrical power extraction for aircraft engines
US7882691B2 (en) * 2007-07-05 2011-02-08 Hamilton Sundstrand Corporation High to low pressure spool summing gearbox for accessory power extraction and electric start
US7990112B2 (en) * 2008-08-14 2011-08-02 Honeywell International Inc. Adaptive field control of a variable frequency synchronous generator
US8063501B2 (en) * 2009-06-10 2011-11-22 Hamilton Sundstrand Corporation Gas turbine bleed energy recovery via counter rotating generator
US8966911B2 (en) * 2009-12-29 2015-03-03 Rolls-Royce North American Technologies, Inc. Turbofan engine with HP and LP power off-takes
US8575900B2 (en) * 2010-09-03 2013-11-05 Hamilton Sundstrand Corporation Rotor based air gap heating for air driven turbine
US8561413B2 (en) * 2010-12-29 2013-10-22 Ge Aviation Systems, Llc System for powering a vehicle
US8773101B2 (en) * 2011-08-04 2014-07-08 Hamilton Sundstrand Corporation Power management for loads supplied with power from wild sources
US20140197681A1 (en) * 2012-07-30 2014-07-17 The Boeing Company Electric system stabilizing system for aircraft
US20140202170A1 (en) * 2012-11-20 2014-07-24 United Technologies Corporation Composite Articles and Methods
US8975876B2 (en) * 2013-03-15 2015-03-10 Hamilton Sunstrand Corporation Method of controlling rotating main field converter
US9054610B2 (en) * 2013-03-15 2015-06-09 United Technologies Corporation Generator architecture with main field rotating power converter
US8836293B1 (en) * 2013-03-15 2014-09-16 Hamilton Sundstrand Corporation Variable speed constant frequency system with generator and rotating power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456830A (en) * 1982-04-22 1984-06-26 Lockheed Corporation AC Motor-starting for aircraft engines using APU free turbine driven generators

Also Published As

Publication number Publication date
CN102966438A (zh) 2013-03-13
US8928166B2 (en) 2015-01-06
FR2979498A1 (fr) 2013-03-01
US20130049366A1 (en) 2013-02-28
FR2979498B1 (fr) 2018-10-05

Similar Documents

Publication Publication Date Title
CN102966438B (zh) 混合模式功率发生结构
US20130031912A1 (en) Gas turbine start architecture
CN105339597B (zh) 带有发电机的涡轮风扇发动机
EP2801719B1 (en) Aircraft electrical system
US10526975B2 (en) Power extraction system and method for a gas turbine engine of a vehicle
CN101479153B (zh) 利用燃料电池的用于航空器的发电机系统
EP2733312B1 (en) Gas turbine engine optimization by electric power transfer
EP2657457B1 (en) Electricity generation system
US7468561B2 (en) Integrated electrical power extraction for aircraft engines
US7936086B2 (en) Paralleled HVDC bus electrical power system architecture
US20170107910A1 (en) Method and apparatus for starting an aircraft engine and operating a power architecture for an aircraft
CN101915128B (zh) 包括多转子发电机的系统
JP6130689B2 (ja) タービンエンジンの低圧スプールから入力動力を取り出すための装置
CN104426444B (zh) 一种用于涡轮发动机的恒频起动器/发电机
US7584600B2 (en) Gas turbine, in particular aircraft engine and method for generating electrical energy in a gas turbine
US8093747B2 (en) Aircraft electrical power system architecture using auxiliary power unit during approach and taxi
US8310076B2 (en) Gearless turbo-generator
US9810155B2 (en) Method for starting aircraft engines
ZA200801001B (en) An electrical power supply circuit in an aircraft for electrical equipment including a de-icing circuit
US20100026089A1 (en) Electrically controlled frequency-based power system architecture for aircraft
CN104302547B (zh) 将空气供应到飞机的辅助动力设备的装置和相关飞机
JP2013537599A (ja) 航空機の推進ユニットの操作性を最適化する方法およびそれを実施するための自給式パワーユニット
CN103795307A (zh) 用于启动电机的方法
CN104781522A (zh) 用于为飞行器提供非推进功率的设备和方法
Faleiro Summary of the European power optimised aircraft (POA) project

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant