CN102956415A - Ray representation method of gyrotron quasi-optical output system - Google Patents
Ray representation method of gyrotron quasi-optical output system Download PDFInfo
- Publication number
- CN102956415A CN102956415A CN2011102497265A CN201110249726A CN102956415A CN 102956415 A CN102956415 A CN 102956415A CN 2011102497265 A CN2011102497265 A CN 2011102497265A CN 201110249726 A CN201110249726 A CN 201110249726A CN 102956415 A CN102956415 A CN 102956415A
- Authority
- CN
- China
- Prior art keywords
- gyrotron
- ray
- quasi
- light
- specular reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 17
- 238000013461 design Methods 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 241000931526 Acer campestre Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
- Microwave Tubes (AREA)
Abstract
Description
技术领域 technical field
本发明涉及微波技术,特别涉及高功率回旋管毫米波源,是一种回旋管准光输出系统的射线表示法。 The invention relates to microwave technology, in particular to a high-power gyrotron millimeter-wave source, and is a ray representation of a gyrotron quasi-light output system. the
背景技术 Background technique
回旋管是一类以电子回旋脉塞为机理而发展起来的快波器件,其工作机理可理解为利用电子在磁场中回旋频率的变化及电子的相对论效应发生群聚,使电子与同步电磁波相互作用,激发产生高能微波辐射。回旋管的结构相对简单,在毫米和亚毫米波段能以多种方式产生高脉冲峰值功率与连续波功率,填补了传统微波管和激光器在此波段的空白。目前,回旋管已广泛应用于受控热核聚变的等离子体加热、高能粒子加速器、毫米波定向能武器、材料处理及等离子体化学等领域。 Gyrotron is a kind of fast-wave device developed based on the mechanism of electron gyrotron maser. Its working mechanism can be understood as using the change of gyrotron frequency of electrons in the magnetic field and the grouping of electrons through the relativistic effect to make electrons interact with synchronous electromagnetic waves. role, excited to produce high-energy microwave radiation. The structure of the gyrotron is relatively simple, and it can generate high pulse peak power and continuous wave power in various ways in the millimeter and submillimeter wave bands, filling the gap of traditional microwave tubes and lasers in this wave band. At present, gyrotrons have been widely used in plasma heating of controlled thermonuclear fusion, high-energy particle accelerators, millimeter-wave directed energy weapons, material processing, and plasma chemistry. the
随着回旋管向着高频率、高功率发展,其工作模式大多采用低损耗的高阶腔体模式,最典型的工作模式有TE0n角向对称模、TEmn边廊模(m>>n且n=1或2)以及TEmn不对称体模(m>>1且n>2)。由于腔体内高阶模式在传输过程中存在严重的衍射和极化损耗,实际上并不适合于自由空间的传输,必须将腔体内的高阶模式转换为利于传输的低阶波导模式或自由空间的高斯波束。为了直接将回旋管内高阶工作模式的复杂场结构转换为线极化的高斯波束,可以由准光模式变换器来实现。一般而言,准光模式变换器由一个终端开口的电大尺寸波导辐射器和两个曲面反射镜面系统组合而成(如图1所示)。图1中标示1为腔体,标示2为辐射器,标示3为第一镜面反射器,标示4为第二镜面反射器,标示5为输出窗,标示6为微波束,标示7为电子束。对于毫米波或亚毫米波而言,准光模式变换器无论是横向结构尺寸还是纵向结构尺寸都属于电大尺寸,应用高频模拟仿真软件对准光模式变换器进行全三维的高频模拟计算时需要巨大的计算资源和计算机时,很难有效快捷地指导准光模式变换器的设计工作。 With the development of gyrotrons towards high frequency and high power, most of their working modes adopt low-loss high-order cavity modes, and the most typical working modes are TE 0n angular symmetric mode, TE mn side gallery mode (m>>n and n=1 or 2) and TE mn asymmetric phantoms (m>>1 and n>2). Due to the serious diffraction and polarization loss of the high-order mode in the cavity during transmission, it is actually not suitable for the transmission in free space. The high-order mode in the cavity must be converted into a low-order waveguide mode or free space that is convenient for transmission. Gaussian beam. In order to directly convert the complex field structure of the high-order working mode in the gyrotron into a linearly polarized Gaussian beam, it can be realized by a quasi-optical mode converter. In general, a quasi-optical mode converter is composed of an electrically large waveguide radiator with an open end and two curved mirror systems (as shown in Figure 1). In Figure 1, the mark 1 is the cavity, the mark 2 is the radiator, the mark 3 is the first specular reflector, the mark 4 is the second specular reflector, the mark 5 is the output window, the mark 6 is the microwave beam, and the mark 7 is the electron beam . For millimeter waves or submillimeter waves, the quasi-optical mode converter is electrically large in both horizontal and vertical dimensions. When high-frequency simulation software is used to perform full three-dimensional high-frequency simulation calculations on the quasi-optical mode converter It is difficult to effectively and quickly guide the design work of quasi-optical mode converters when huge computing resources and computers are required.
发明内容 Contents of the invention
本发明的目的是公开一种回旋管准光输出系统的射线表示法,以解决现有技术存在的问题。 The purpose of the invention is to disclose a ray representation method of a quasi-light output system of a gyrotron to solve the problems in the prior art. the
为达到上述目的,本发明的技术解决方案是: For achieving the above object, technical solution of the present invention is:
一种回旋管准光输出系统的射线表示法,其包括步骤: A ray representation of a gyrotron quasi-light output system, which comprises the steps of:
a)确定入射光线角度; a) Determine the incident light angle;
b)选择两镜面反射器的曲面形状; b) Select the curved surface shape of the two specular reflectors;
c)将第一镜面反射器、第二镜面反射器顺序放置于回旋管辐射器的输出光路上; c) placing the first specular reflector and the second specular reflector on the output light path of the gyrotron radiator in sequence;
d)依据从回旋管辐射器产生的毫米波束与光射线等效的原理,将毫米波束在第一镜面反射器和第二镜面反射器上的传播特性等效为光射线在第一镜面反射器和第二镜面反射器上的光线传播过程; d) According to the principle that the millimeter wave beam generated from the gyrotron radiator is equivalent to the light ray, the propagation characteristics of the millimeter wave beam on the first specular reflector and the second specular reflector are equivalent to the light ray passing through the first specular reflector and the light propagation process on the second specular reflector;
e)根据光学反射定律并用CAD制图工具软件,将光射线在第一镜面反射器和第二镜面反射器转换系统中的反射传播路径制图,清晰地表达出来; e) According to the law of optical reflection and using CAD drawing tool software, the reflection propagation path of the light ray in the conversion system of the first specular reflector and the second specular reflector is clearly expressed;
f)根据步骤e)的传播路径图,了解和掌握毫米波束在整个转换系统中的传播路径,若符合要求,即指导准光模式变换器反射镜曲面的设计和曲面修正,完成。 f) According to the propagation path diagram in step e), understand and grasp the propagation path of the millimeter wave beam in the entire conversion system, if it meets the requirements, guide the design of the quasi-optical mode converter mirror surface and surface correction, and complete. the
所述步骤b)中的镜面反射器的曲面形状为抛物面、柱面、椭球面、球面或双曲面。 The curved surface shape of the specular reflector in the step b) is a paraboloid, a cylinder, an ellipsoid, a sphere or a hyperboloid. the
所述的回旋管准光输出系统的射线表示法,其所述步骤f)中,若步骤 The ray representation of the quasi-light output system of the gyrotron, in the step f), if the step
e)的传播路径图不符合要求,返回步骤b),重新进行。 If the propagation path diagram in e) does not meet the requirements, return to step b) and proceed again. the
所述的回旋管准光输出系统的射线表示法,其用于回旋管准光输出系统应用射线、回旋管准光谐振腔应用射线或光学器件应用射线的表示。 The ray representation of the gyrotron quasi-optical output system is used to represent the application ray of the gyrotron quasi-optical output system, the application ray of the gyrotron quasi-optical resonant cavity or the application ray of optical devices. the
本发明表示法,精确简单实用,成本低,可以指导准光模式变换器反射镜曲面的设计和曲面修正。 The representation method of the invention is accurate, simple, practical and low in cost, and can guide the design and correction of the curved surface of the reflector of the quasi-light mode converter. the
附图说明 Description of drawings
图1是一种内置准光模式变换器的回旋管; Figure 1 is a gyrotron with a built-in quasi-optical mode converter;
图2a-图2e是一面抛物面镜面反射器,用于演示回旋管准光输出系统的射线表示法在镜面反射器上的分步实施过程;其中: Figure 2a-Figure 2e is a parabolic mirror reflector, used to demonstrate the step-by-step implementation process of the ray representation of the gyrotron quasi-light output system on the mirror reflector; where:
图2a是应用CAD制图软件生成的抛物面镜面反射器; Figure 2a is a parabolic specular reflector generated by CAD drawing software;
图2b是给出了由抛物面镜面反射器的光源(置于焦点O位置上)发出的一束光射线; Fig. 2b has provided a bundle of light rays sent by the light source (placed on the focus O position) of the parabolic specular reflector;
图2c是经过光射线和抛物面镜面反射器的顶点存在一个平面,该平面与抛物面镜面反射器存在相交线,相交线为抛物曲线;过a点作基准面,同时基准面垂直于抛物曲线; Fig. 2c is that there is a plane passing through the vertex of the light ray and the parabolic specular reflector, and there is an intersection line between the plane and the parabolic specular reflector, and the intersecting line is a parabolic curve; the point a is used as the datum plane, and the datum plane is perpendicular to the parabolic curve;
图2d是以基准面为对称面,作光射线的镜像,则形成反射光线,至此完成了由光源(O点)发射的光线在抛物面镜面反射器上的一次反射过程; Figure 2d takes the datum plane as a symmetrical plane, and makes a mirror image of the light ray to form a reflected ray, and thus completes a reflection process of the light emitted by the light source (point O) on the parabolic mirror reflector;
图2e是作另外的五条光射线(标示分别为11-15)及其相应的反射光线; Figure 2e is another five light rays (marked as 11-15 respectively) and their corresponding reflected rays;
图3是本发明的一种回旋管准光输出系统的射线表示法流程图。 Fig. 3 is a ray representation flow chart of a gyrotron quasi-light output system of the present invention. the
图中标号: Labels in the figure:
腔体-1 辐射器-2 第一镜面反射器-3 Cavity-1 Radiator-2 First specular reflector-3
第二镜面反射器-4 输出窗-5 微波束-6 Second Specular Reflector-4 Output Window-5 Microwave Beam-6
电子束-7 光射线-8 反射光射线-8a Electron Beam-7 Light Ray-8 Reflected Light Ray-8a
相交线-9 基准面-10 Intersection line-9 Datum plane-10
五条光射线-11、12、13、14、15 Five Rays of Light - 11, 12, 13, 14, 15
五条反射光线-11a、12a、13a、14a、15a. Five reflected rays - 11a, 12a, 13a, 14a, 15a.
具体实施方式 Detailed ways
本发明的一种回旋管准光输出系统的射线表示方法,是根据毫米波或亚毫米波的类光线特性,将从回旋管辐射器产生的毫米波束等效为光射线,将毫米波束在第一镜面反射器和第二镜面反射器上的传播特性等效为光射线在第一镜面反射器和第二镜面反射器上的光线传播过程;根据光学反射定律并借助于CAD制图工具软件可以将光射线在第一镜面反射器和第二镜面反射器转换系统中的反射传播路径清晰地表达出来,从而了解和掌 握毫米波束在整个转换系统中的传播路径,用以指导准光模式变换器反射镜曲面的设计和曲面修正。 A ray representation method of a gyrotron quasi-light output system of the present invention is based on the ray-like characteristics of millimeter waves or submillimeter waves, the millimeter wave beam generated from the gyrotron radiator is equivalent to an optical ray, and the millimeter wave beam is first The propagation characteristics on the first specular reflector and the second specular reflector are equivalent to the ray propagation process of light rays on the first specular reflector and the second specular reflector; according to the law of optical reflection and by means of CAD drawing tool software, the The reflection propagation path of the light ray in the conversion system of the first specular reflector and the second specular reflector is clearly expressed, so as to understand and grasp the propagation path of the millimeter wave beam in the entire conversion system to guide the optical mode converter Design and surface modification of mirror surfaces. the
下面将结合附图描述本发明的实施方案。 Embodiments of the present invention will be described below with reference to the accompanying drawings. the
图1是一种内置准光模式变换器的回旋管。该准光模式变换器包括一个辐射器和两个镜面反射器(镜面反射器的数量与输出窗处高斯波束的变换质量和模式转换效率有关)。在回旋管互作用腔体内高阶工作模式与回旋电子束相互作用产生高功率毫米波,毫米波由辐射器辐射发出,先后经镜面反射器3和镜面反射器4的反射调整,高阶模式分布的毫米波转换成高斯分布的毫米波,最后经由输出窗输送出去。 Figure 1 is a gyrotron with a built-in quasi-optical mode converter. The quasi-optical mode converter includes a radiator and two specular reflectors (the number of specular reflectors is related to the conversion quality and mode conversion efficiency of the Gaussian beam at the output window). In the gyrotron interaction cavity, the high-order working mode interacts with the cyclotron beam to generate high-power millimeter waves. The millimeter waves are radiated by the radiator and adjusted by the reflection of the mirror reflector 3 and the mirror reflector 4 successively. The distribution of high-order modes The millimeter wave is converted into a Gaussian distributed millimeter wave, and finally sent out through the output window. the
根据毫米波或亚毫米波的类光线特性,将从辐射器产生的毫米波束在镜面反射器3和镜面反射器4组成的转换系统上的传播特性等效为光射线在该转换系统上的光线传播过程;根据光学反射定律并借助于CAD制图工具可以将光射线在转换系统中的反射传播路径清晰地表达出来,从而了解和掌握毫米波束在整个转换系统中的传播特性。 According to the light-like characteristics of the millimeter wave or submillimeter wave, the propagation characteristics of the millimeter wave beam generated from the radiator on the conversion system composed of the specular reflector 3 and the specular reflector 4 are equivalent to the light rays of the light rays on the conversion system Propagation process: According to the law of optical reflection and with the help of CAD drawing tools, the reflection propagation path of light rays in the conversion system can be clearly expressed, so as to understand and master the propagation characteristics of the millimeter wave beam in the entire conversion system. the
为了说明回旋管准光输出系统射线表示法的实施过程,以一面镜面反射器是抛物曲面为例来演示光射线的传播过程。为了清楚地描述光射线形成及其制图描述的过程,采用了每个步骤每幅图的方式来阐述。图2a-图2e给出了根据光学反射定律并借助于CAD制图工具将由光源(置于焦点O位置上)发出的光射线在抛物面镜面反射器上的反射及制图过程。图2a是应用CAD制图软件生成的抛物面镜面反射器。图2b是给出了由抛物面镜面反射器的光源(置于焦点O位置上)发出的一束光射线8,光射线8与抛物面镜面反射器相交于a点。经过光射线8和抛物面镜面反射器的顶点存在一个平面,该平面与抛物面镜面反射器存在相交线9,相交线9为抛物曲线;过a点作基准面10,同时基准面10垂直于抛物曲线9,如图2c所示。以基准面10为对称面,作光射线8的镜像,则形成反射光线8a,至此完成了由光源(O点)发射的光线在抛物面镜面反射器上的一次反射过程,如图2d所示。同理,可以作另外的五条光射线(标示分别为11-15)及其相应的反射光线(标示分别为11a-15a),如图2e所示。由图可以看出:由于光源置于抛物面镜面反射器的焦点位置,因此反射光线(编号:11a-15a)彼此平行,也就是说由焦点发出的光线,经过抛物面镜面反射 器反射后的出射光线为平行光,从而也验证了该制图方法及过程的正确性。在图2a-图2e中入射光线虽然是由焦点发出,而在实际的准光模式变化器中镜面反射器的入射光线是以特定角度入射的光线(角度由辐射器确定),但光线在镜面反射器上的反射及其制图过程与图2a-图2e完全相同,由镜面反射器反射出的光线为下一级镜面反射器上的入射光线,其反射及其制图过程也依然相同,因此图2a-图2e完全表述了回旋管准光输出系统的射线表示法。
In order to illustrate the implementation process of the ray representation of the quasi-light output system of the gyrotron, the propagation process of the light ray is demonstrated by taking a specular reflector as a parabolic surface as an example. In order to clearly describe the process of light ray formation and its drawing description, each step and each figure are used to illustrate. Figures 2a-2e show the reflection and drawing process of the light rays emitted by the light source (placed at the focal point O) on the parabolic mirror reflector according to the law of optical reflection and by means of CAD drawing tools. Figure 2a is a parabolic specular reflector generated by CAD drawing software. Fig. 2b shows a beam of
本发明的一种回旋管准光输出系统的射线表示法,流程如图3所示。包括步骤: A ray representation method of a quasi-light output system of a gyrotron according to the present invention, the process flow is shown in FIG. 3 . Include steps:
a)确定入射光线角度; a) Determine the incident light angle;
b)选择两镜面反射器的曲面形状,该曲面形状为抛物面、柱面、椭球面、球面或双曲面; b) Select the curved surface shape of the two specular reflectors, the curved surface shape is a paraboloid, a cylinder, an ellipsoid, a sphere or a hyperboloid;
c)将第一镜面反射器、第二镜面反射器顺序放置于回旋管辐射器的输出光路上; c) placing the first specular reflector and the second specular reflector on the output light path of the gyrotron radiator in sequence;
d)依据从回旋管辐射器产生的毫米波束与光射线等效的原理,将毫米波束在第一镜面反射器和第二镜面反射器上的传播特性等效为光射线在第一镜面反射器和第二镜面反射器上的光线传播过程; d) According to the principle that the millimeter wave beam generated from the gyrotron radiator is equivalent to the light ray, the propagation characteristics of the millimeter wave beam on the first specular reflector and the second specular reflector are equivalent to the light ray passing through the first specular reflector and the light propagation process on the second specular reflector;
e)根据光学反射定律并用CAD制图工具软件,将光射线在第一镜面反射器和第二镜面反射器转换系统中的反射传播路径制图,清晰地表达出来; e) According to the law of optical reflection and using CAD drawing tool software, the reflection propagation path of the light ray in the conversion system of the first specular reflector and the second specular reflector is clearly expressed;
f)根据步骤e)的传播路径图,了解和掌握毫米波束在整个转换系统中的传播路径,若符合要求,即指导准光模式变换器反射镜曲面的设计和曲面修正,完成; f) According to the propagation path diagram in step e), understand and grasp the propagation path of the millimeter wave beam in the entire conversion system, if it meets the requirements, that is to guide the design of the quasi-optical mode converter mirror surface and surface correction, and complete;
若不符合要求,返回步骤b),重新进行。 If the requirements are not met, return to step b) and proceed again. the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110249726.5A CN102956415B (en) | 2011-08-29 | 2011-08-29 | A design method for the curved surface of the reflector of the quasi-light output system of the gyrotron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110249726.5A CN102956415B (en) | 2011-08-29 | 2011-08-29 | A design method for the curved surface of the reflector of the quasi-light output system of the gyrotron |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102956415A true CN102956415A (en) | 2013-03-06 |
CN102956415B CN102956415B (en) | 2015-11-04 |
Family
ID=47765095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110249726.5A Active CN102956415B (en) | 2011-08-29 | 2011-08-29 | A design method for the curved surface of the reflector of the quasi-light output system of the gyrotron |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102956415B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412983A (en) * | 2013-07-22 | 2013-11-27 | 电子科技大学 | Quasi-optical phase correction surface design method |
CN104466324A (en) * | 2014-11-14 | 2015-03-25 | 华中科技大学 | Electron cyclotron resonance heating millimeter wave emitter |
CN104795299A (en) * | 2015-05-07 | 2015-07-22 | 电子科技大学 | Quasi-optical mode converter capable of realizing double frequency separation |
CN106450595A (en) * | 2016-11-21 | 2017-02-22 | 山东省科学院海洋仪器仪表研究所 | Quasi-optical mode conversion device with double-beam output |
CN109712853A (en) * | 2018-12-25 | 2019-05-03 | 中国工程物理研究院应用电子学研究所 | Harmonic wave gyrotron of the DC coil for magnetic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661744A (en) * | 1983-03-11 | 1987-04-28 | Thomson-Csf | Electromagnetic energy generators having resonating cavity with reflecting zones |
EP0281858A1 (en) * | 1987-03-03 | 1988-09-14 | Centre de Recherches en Physique des Plasmas | High-power gyrotron for generating electromagnetic millimeter or submillimeter waves |
CH670728A5 (en) * | 1986-09-08 | 1989-06-30 | En Physiquedes Plasmas Crpp Ce | Quasi-optical gyrotron with aspherical concave mirror resonator - improves efficiency of helical electron beam interaction with alternating magnetic field midway between elliptical mirror halves |
JPH07254371A (en) * | 1994-03-15 | 1995-10-03 | Toshiba Corp | Gyrotron device |
-
2011
- 2011-08-29 CN CN201110249726.5A patent/CN102956415B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661744A (en) * | 1983-03-11 | 1987-04-28 | Thomson-Csf | Electromagnetic energy generators having resonating cavity with reflecting zones |
CH670728A5 (en) * | 1986-09-08 | 1989-06-30 | En Physiquedes Plasmas Crpp Ce | Quasi-optical gyrotron with aspherical concave mirror resonator - improves efficiency of helical electron beam interaction with alternating magnetic field midway between elliptical mirror halves |
EP0281858A1 (en) * | 1987-03-03 | 1988-09-14 | Centre de Recherches en Physique des Plasmas | High-power gyrotron for generating electromagnetic millimeter or submillimeter waves |
JPH07254371A (en) * | 1994-03-15 | 1995-10-03 | Toshiba Corp | Gyrotron device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412983A (en) * | 2013-07-22 | 2013-11-27 | 电子科技大学 | Quasi-optical phase correction surface design method |
CN103412983B (en) * | 2013-07-22 | 2016-05-11 | 电子科技大学 | A kind of quasi-optical phase place tru(e)ing face method for designing |
CN104466324A (en) * | 2014-11-14 | 2015-03-25 | 华中科技大学 | Electron cyclotron resonance heating millimeter wave emitter |
CN104466324B (en) * | 2014-11-14 | 2017-07-07 | 华中科技大学 | A kind of Electron Cyclotron Resonance Heating millimeter wave launcher |
CN104795299A (en) * | 2015-05-07 | 2015-07-22 | 电子科技大学 | Quasi-optical mode converter capable of realizing double frequency separation |
CN106450595A (en) * | 2016-11-21 | 2017-02-22 | 山东省科学院海洋仪器仪表研究所 | Quasi-optical mode conversion device with double-beam output |
CN106450595B (en) * | 2016-11-21 | 2021-08-17 | 山东省科学院海洋仪器仪表研究所 | A quasi-optical mode conversion device with dual beam output |
CN109712853A (en) * | 2018-12-25 | 2019-05-03 | 中国工程物理研究院应用电子学研究所 | Harmonic wave gyrotron of the DC coil for magnetic |
CN109712853B (en) * | 2018-12-25 | 2021-05-14 | 中国工程物理研究院应用电子学研究所 | Harmonic gyrotron for supplying magnetism to direct current coil |
Also Published As
Publication number | Publication date |
---|---|
CN102956415B (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3259772B1 (en) | Gyrotron whispering gallery mode coupler for direct coupling of rf into he11 waveguide | |
CN102956415A (en) | Ray representation method of gyrotron quasi-optical output system | |
Martinez et al. | Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens | |
CN108134163B (en) | Quasi-optical mode conversion device and method for terahertz multi-mode frequency tunable gyrotron | |
CN101026264A (en) | Horn feed | |
CN104297825B (en) | Light laser vortex reflecting mirror | |
CN103558655A (en) | Design method of conical surface reflector of full-plane structure on basis of metamaterial | |
CN107086376B (en) | Mixed-shaped large-axial-ratio elliptical beam antenna and design method thereof | |
CN111291458B (en) | A Method for Determining 3D Coordinates of ECRH System Antenna Focusing Mirror Profile | |
CN107781781A (en) | Reflection-type beam condenser, car light and automobile | |
Vernon | High-power microwave transmission and mode conversion program | |
CN102116934B (en) | Design Method of Reflective Optical Integrator Based on Parabolic Mirror Array | |
Xia et al. | Asymmetrical mirror optimization for a 140 GHz TE22, 6 quasi-optical mode converter system | |
Zhang et al. | Design of a 220GHz Vlasov (antenna) mode converter | |
CN106602275A (en) | Electromagnetic vortex horn antenna | |
CN105954872B (en) | Optimization design method of extension pyramid | |
徐寿喜 et al. | Design of a quasi-optical mode converter for a 170 GHz gyrotron | |
Perkins et al. | A high efficiency launcher and mirror system for use in a 110 GHz TE 22, 6 mode gyrotron | |
Lorbeck | Focusing dual-reflector quasi-optical antenna for whispering-gallery-mode gyrotrons | |
CN102981275A (en) | Optical system for generating approximate non- diffracted ray structure light | |
Zhu et al. | Discussion on the Phase-Correction Mirror in the Quasi-Optical Mode Converter | |
CN102269832A (en) | Terahertz wave positive focusing mirror | |
He et al. | 3D-Printed Sub-Terahertz Lens for Manipulation of Deflective Quasi-Non-Diffractive OAM Waves | |
JIN et al. | On the design of high conversion efficiency quasi-optical mode converter for 140 GHz high-power gyrotron applications | |
CN102122070B (en) | Design method of reflective optical integrator based on planar mirror array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |