CN102944918B - Faraday rotation mirror structure - Google Patents
Faraday rotation mirror structure Download PDFInfo
- Publication number
- CN102944918B CN102944918B CN 201210447348 CN201210447348A CN102944918B CN 102944918 B CN102944918 B CN 102944918B CN 201210447348 CN201210447348 CN 201210447348 CN 201210447348 A CN201210447348 A CN 201210447348A CN 102944918 B CN102944918 B CN 102944918B
- Authority
- CN
- China
- Prior art keywords
- lens
- light
- optical fiber
- faraday rotator
- reflective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 44
- 230000010287 polarization Effects 0.000 claims abstract description 21
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明公开了一种法拉第旋转镜结构,包括同轴设置的光纤、准直透镜、法拉第旋转器、反射式透镜以及磁环,光纤的端面设置于准直透镜的焦点处,准直透镜的后焦面和反射式透镜的前焦面重合,反射式透镜的后端面镀有高反射膜,且反射面设置于反射式透镜的后焦面,磁环是套设于法拉第旋转器的外部,并能在两端通电后产生固定不变的电磁场,光纤用于接收来自外部的光,并通过其端面发射到光线准直透镜的斜面上,准直透镜用于对来自光纤的光线进行准直,法拉第旋转器用于使来自准直透镜的平行光线在磁环产生的电磁场作用下实现光偏振状态的偏转。本发明能够免去反射光路的调试,直接进行机械装配。
The invention discloses a structure of a Faraday rotating mirror, which comprises a coaxially arranged optical fiber, a collimating lens, a Faraday rotator, a reflective lens and a magnetic ring. The focal plane coincides with the front focal plane of the reflective lens, the rear end surface of the reflective lens is coated with a high reflection film, and the reflective surface is arranged on the back focal plane of the reflective lens, the magnetic ring is sleeved on the outside of the Faraday rotator, and It can generate a fixed electromagnetic field after electrification at both ends. The optical fiber is used to receive light from the outside and emit it to the slope of the light collimating lens through its end face. The collimating lens is used to collimate the light from the optical fiber. The Faraday rotator is used to deflect the parallel light from the collimating lens under the action of the electromagnetic field generated by the magnetic ring to achieve the polarization state of the light. The invention can eliminate the debugging of the reflected light path, and directly carry out mechanical assembly.
Description
技术领域technical field
本发明属于光纤传感领域,更具体地,涉及一种法拉第旋转镜结构。The invention belongs to the field of optical fiber sensing, and more specifically relates to a Faraday rotating mirror structure.
背景技术Background technique
近年来,传感器在朝着灵敏,精确,适应性强,小巧和智能化的方向发展。在这一过程中,光纤传感器倍受青睐。光纤传感器主要由光纤以及光探测器组成。其基本工作原理是将来自光源的光经过光纤,在传输过程中,受到外部扰动(如振动,压力,温度,电场,磁场或声波振动等),导致光的光学性质(如强度,波长,频率,相位,偏振态等)发生变化,称为被调制的信号光,这些被调制的信号光被送入光探测器,经解调后,获得被测参数。然而,光信号在单模光纤中传播时极有可能发生双折射现象,引起光信号偏振态的改变,导致误差。为避免上述问题,引入法拉第旋转镜,消除光信号因双折射引起的偏振态的变化,保持光信号偏振态不变。In recent years, sensors are developing in the direction of sensitivity, precision, adaptability, compactness and intelligence. In this process, fiber optic sensors are favored. Optical fiber sensors are mainly composed of optical fibers and light detectors. Its basic working principle is that the light from the light source passes through the optical fiber, and during the transmission process, it is subjected to external disturbances (such as vibration, pressure, temperature, electric field, magnetic field or acoustic vibration, etc.), resulting in the optical properties of the light (such as intensity, wavelength, frequency, etc.) , phase, polarization state, etc.) changes, called the modulated signal light, these modulated signal light is sent to the photodetector, and after demodulation, the measured parameters are obtained. However, when an optical signal propagates in a single-mode fiber, birefringence is very likely to occur, which will cause a change in the polarization state of the optical signal and cause errors. In order to avoid the above problems, a Faraday rotator is introduced to eliminate the change of the polarization state of the optical signal due to birefringence and keep the polarization state of the optical signal unchanged.
图1是现有技术中采用的法拉第旋转镜结构截面视图,该法拉第旋转镜11包括光纤12、C-Lens 13、法拉第旋转器14、反射镜15和磁铁16。光纤12是单模光纤,光纤端面(一般为斜8°,增大回损)位于C-Lens 13的焦点处,信号光从光纤12输入,通过C-Lens 13准直转换为平行光线,该平行光线偏离主光轴且有一定偏转角,经过法拉第旋转器14后,在确定的磁场下,光的偏振状态旋转一定角度ψ,垂直入射到反射镜15,反射光按原路返回再次经过法拉第旋转器14、C-Lens 13,从光纤12输出,此时光的偏振状态旋转2ψ。因此使用法拉第旋转镜11可补偿光纤传感系统中偏振状态的偏差,从而实现系统稳定工作。基于上述工作原理,需保证反射镜的镜面与准直的平行光线相互垂直,需要精密的光学调试,如此大大增加了制作工艺的复杂程度,从而需要较长的装配时间。1 is a cross-sectional view of a Faraday rotating mirror used in the prior art. The Faraday rotating mirror 11 includes an
发明内容Contents of the invention
针对现有技术的缺陷,本发明的目的在于提供一种法拉第旋转镜结构,可免去反射光路的调试,直接进行机械装配。Aiming at the defects of the prior art, the purpose of the present invention is to provide a Faraday rotating mirror structure, which can avoid the debugging of the reflected light path and directly carry out mechanical assembly.
为实现上述目的,本发明提供了一种法拉第旋转镜结构,包括同轴设置的光纤、准直透镜、法拉第旋转器、反射式透镜以及磁环,光纤的端面设置于准直透镜的焦点处,准直透镜的后焦面和反射式透镜的前焦面重合,反射式透镜的后端面镀有高反射膜,且反射面设置于反射式透镜的后焦面,磁环是套设于法拉第旋转器的外部,并能在两端通电后产生固定不变的电磁场,光纤用于接收来自外部的光,并通过其端面发射到光线准直透镜的斜面上,准直透镜用于对来自光纤的光线进行准直,并将准直后的平行光线发射到法拉第旋转器,法拉第旋转器用于使来自准直透镜的平行光线在磁环产生的电磁场作用下实现光偏振状态偏转角度ψ,并将偏振状态偏转后的光线发射到反射式透镜,反射式透镜用于将来自法拉第旋转器的光线原路返回到法拉第旋转器,法拉第旋转器还用于使来自反射式透镜的光线在磁环产生的电磁场作用下实现光偏振状态再次偏转角度ψ,并将偏振状态偏振后的光线发射到准直透镜,在准直透镜的后焦面上,经准直透镜准直后的平行光线的高度r和角度θ如下:To achieve the above object, the present invention provides a Faraday rotator structure, comprising coaxially arranged optical fiber, collimating lens, Faraday rotator, reflective lens and magnetic ring, the end face of the optical fiber is arranged at the focal point of the collimating lens, The rear focal plane of the collimator lens coincides with the front focal plane of the reflective lens. The rear end surface of the reflective lens is coated with a high reflection film, and the reflective surface is set on the back focal plane of the reflective lens. The magnetic ring is set on the Faraday rotation The outside of the device, and can generate a fixed electromagnetic field after the two ends are energized, the optical fiber is used to receive the light from the outside, and emit it to the slope of the light collimating lens through its end face, and the collimating lens is used to collimate the light from the optical fiber The light is collimated, and the collimated parallel light is sent to the Faraday rotator. The Faraday rotator is used to make the parallel light from the collimating lens realize the light polarization state deflection angle ψ under the action of the electromagnetic field generated by the magnetic ring, and polarize The light after the state deflection is sent to the reflective lens. The reflective lens is used to return the light from the Faraday rotator to the Faraday rotator. The Faraday rotator is also used to make the electromagnetic field generated by the light from the reflective lens Under the action, the light polarization state is deflected by an angle ψ again, and the polarized light is emitted to the collimator lens. On the rear focal plane of the collimator lens, the height r and angle of the parallel light rays collimated by the collimator lens θ is as follows:
其中α为光纤与竖直轴线的夹角,为准直透镜与竖直轴线的夹角,nf为光纤的纤芯折射率,nc为准直透镜的折射率,f为准直透镜的焦距且其中R为准直透镜的后端面的球面半径,反射式透镜接收到来自法拉第旋转器的光线与反射式透镜返回到法拉第旋转器的光线的关系如下:Where α is the angle between the fiber and the vertical axis, is the angle between the collimating lens and the vertical axis, n f is the core refractive index of the optical fiber, n c is the refractive index of the collimating lens, f is the focal length of the collimating lens and Where R is the spherical radius of the rear end surface of the collimating lens, the relationship between the light received by the reflective lens from the Faraday rotator and the light returned by the reflective lens to the Faraday rotator is as follows:
r2=-r1 r 2 =-r 1
θ2=-θ1 θ 2 = -θ 1
其中r1和θ1分别是反射式透镜前焦面处入射的光线的高度和角度,r2和θ2分别是反射回到反射式透镜前焦面处的光线的高度和角度。where r1 and θ1 are the height and angle, respectively, of the light rays incident on the front focal plane of the reflective lens, and r2 and θ2 are the height and angle, respectively, of the light rays reflected back to the front focal plane of the reflective lens.
准直透镜为C-Lens透镜。The collimating lens is a C-Lens lens.
反射式透镜为后端面镀高反射膜的C-Lens透镜。The reflective lens is a C-Lens lens coated with a high reflective film on the back end.
准直透镜还用于将来自法拉第旋转器的光线原路发射回光纤,光纤还用于将来自准直透镜的光线发射到外部。The collimating lens is also used to send the light from the Faraday rotator back to the optical fiber, and the optical fiber is also used to send the light from the collimating lens to the outside.
通过本发明所构思的以上技术方案,与现有技术相比,本发明具有以下的有益效果:本发明的法拉第旋转镜结构通过设置光纤端面和准直透镜端面的角度,保证准直的平行光线与准直透镜同轴,改用后端面镀有高反射膜的反射式透镜代替反射镜,平行光线从反射式透镜光轴射入,原光路返回,可免去反射光路的调试,直接进行机械装配,从而提高器件的装配效率,更加适合批量生产,能广泛应用于光纤通信和光纤传感系统中。Through the above technical solutions conceived by the present invention, compared with the prior art, the present invention has the following beneficial effects: the Faraday rotating mirror structure of the present invention ensures collimated parallel light rays by setting the angle between the end face of the optical fiber and the end face of the collimating lens It is coaxial with the collimating lens, and the reflective lens coated with a high-reflection film on the rear end is used instead of the reflector. Assembly, so as to improve the assembly efficiency of devices, is more suitable for mass production, and can be widely used in optical fiber communication and optical fiber sensing systems.
附图说明Description of drawings
图1是现有技术中的法拉第旋转镜结构的截面视图。FIG. 1 is a cross-sectional view of a Faraday rotating mirror structure in the prior art.
图2是本发明法拉第旋转镜结构的截面视图。Fig. 2 is a cross-sectional view of the Faraday rotating mirror structure of the present invention.
图3是光线通过法拉第旋转镜各元件后光偏振状态变化的示意图。Fig. 3 is a schematic diagram of the change of the polarization state of the light after the light passes through each element of the Faraday rotating mirror.
图4是本发明中准直透镜的光路示意图。Fig. 4 is a schematic diagram of the optical path of the collimator lens in the present invention.
图5是本发明中反射式透镜的光路示意图。Fig. 5 is a schematic diagram of the optical path of the reflective lens in the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图2所示,本发明的法拉第旋转镜结构包括同轴设置的光纤111、准直透镜112、法拉第旋转器113、反射式透镜114以及磁环115。As shown in FIG. 2 , the Faraday rotator structure of the present invention includes a coaxially arranged
光纤111的端面设置于准直透镜112的焦点处。The end face of the
准直透镜112的后焦面和反射式透镜114的前焦面重合。The rear focal plane of the
反射式透镜114的后端面镀有高反射膜,且反射面设置于该反射式透镜114的后焦面。在本实施方式中,准直透镜112为C-Lens透镜,反射式透镜114为后端面镀高反射膜的C-Lens透镜。The back surface of the
磁环115是套设于法拉第旋转器113的外部,并能在两端通电后产生固定不变的电磁场。The
光纤111用于接收来自外部的光,并通过其端面发射到光线准直透镜112的斜面上。The
准直透镜112用于对来自光纤111的光线进行准直,并将准直后的平行光线发射到法拉第旋转器113。The
法拉第旋转器113用于使来自准直透镜112的平行光线在磁环115产生的电磁场作用下实现光偏振状态偏转角度ψ(在图示中是以45°为例),并将偏振状态偏转后的光线发射到反射式透镜114。The Faraday
反射式透镜114用于将来自法拉第旋转器113的光线原路返回到法拉第旋转器113。The
法拉第旋转器113还用于使来自反射式透镜114的光线在磁环115产生的电磁场作用下实现偏振状态再次偏转角度ψ,并将偏振状态偏振后的光线发射到准直透镜112。由于法拉第效应的旋光方向决定于外加磁场方向,与光的传播方向无关,此时光的偏振状态旋转2ψ(即在此例中为90°)The Faraday
准直透镜112还用于将来自法拉第旋转器113的光线原路发射回光纤111。The
光纤111还用于将来自准直透镜112的光线发射到外部。The
本发明的结构保证了准直的平行光线与准直透镜同轴,免去了反射光路的调试,实现直接机械装配。光线通过本发明法拉第旋转镜各元件后偏振状态的改变参考图3,需要注意的是,该图中箭头仅表示光信号传播方向。The structure of the invention ensures that the collimated parallel light rays are coaxial with the collimating lens, avoids the debugging of the reflected light path, and realizes direct mechanical assembly. The change of the polarization state of the light after passing through the elements of the Faraday rotating mirror of the present invention refers to FIG. 3 . It should be noted that the arrows in this figure only indicate the propagation direction of the optical signal.
如图4所示,在准直透镜的后焦面上,准直后的平行光线的高度r和角度θ如下:As shown in Figure 4, on the rear focal plane of the collimating lens, the height r and angle θ of the collimated parallel rays are as follows:
其中α为光纤与竖直轴线的夹角,为准直透镜与竖直轴线的夹角,nf为光纤的纤芯折射率,nc为准直透镜的折射率,f为准直透镜的焦距且其中R为准直透镜的后端面的球面半径。Where α is the angle between the fiber and the vertical axis, is the angle between the collimating lens and the vertical axis, n f is the core refractive index of the optical fiber, n c is the refractive index of the collimating lens, f is the focal length of the collimating lens and Where R is the spherical radius of the rear end surface of the collimating lens.
从上式可以看到,当α和角度满足可将准直光线的离轴消除,保证准直的平行光线与准直透镜同轴。It can be seen from the above formula that when α and angle satisfy The off-axis of the collimated light can be eliminated to ensure that the collimated parallel light is coaxial with the collimating lens.
在本实施方式中,准直透镜的材料为SF11型材料,它的折射率为nc=1.7447,光纤采用SMF-28型光纤,其纤芯折射率为nf=1.4682,通常光纤的光纤头角度为8°,则通过上式可获得角度为5°,这样不会影响准直器的回波损耗,且保证准直的平行光线与准直透镜同轴,而光线偏角亦减小很多。In this embodiment, the material of the collimating lens is SF11 type material, its refractive index n c =1.7447, the optical fiber adopts SMF-28 type optical fiber, and its core refractive index n f =1.4682, usually the optical fiber head of the optical fiber The angle is 8°, then the angle can be obtained by the above formula It is 5°, which will not affect the return loss of the collimator, and ensure that the collimated parallel light is coaxial with the collimator lens, and the deflection angle of the light is also greatly reduced.
如图5所示,光线从反射式透镜的前焦面入射,反射平面位于后焦面,即2f系统,根据矩阵光学计算得出反射式透镜的传输矩阵为:
根据上述传输矩阵,反射光线与入射光线(具体而言,反射式透镜接收到来自法拉第旋转器的光线为入射光线,反射式透镜返回到法拉第旋转器的光线为反射光线)的关系如下:According to the above transmission matrix, the relationship between the reflected light and the incident light (specifically, the light received by the reflective lens from the Faraday rotator is the incident light, and the light returned to the Faraday rotator by the reflective lens is the reflected light) is as follows:
r2=-r1 r 2 =-r 1
θ2=-θ1 θ 2 = -θ 1
其中r1和θ1分别是反射式透镜前焦面处入射的光线的高度和角度,r2和θ2分别是反射回到反射式透镜前焦面处的光线的高度和角度。where r1 and θ1 are the height and angle, respectively, of the light rays incident on the front focal plane of the reflective lens, and r2 and θ2 are the height and angle, respectively, of the light rays reflected back to the front focal plane of the reflective lens.
从上式可以说明,反射光必然与入射光平行,如果光线入射在透镜轴线上,则反射光线将与入射光线完全重合,因此完全不需光路调试,直接进行机械装配即可。It can be shown from the above formula that the reflected light must be parallel to the incident light. If the light is incident on the lens axis, the reflected light will completely coincide with the incident light. Therefore, there is no need for optical path adjustment at all, and mechanical assembly can be performed directly.
在上述理论知识的基础上,本发明提出的法拉第旋转镜结构,适当设计光纤端面和准直透镜端面的角度,可保证准直的平行光线与准直透镜同轴,改用后端面镀有高反射膜的反射式透镜代替反射镜,平行光线从反射式透镜光轴射入,而不论入射角度如何改变,反射光线均可原光路返回,可免去反射光路的调试,直接进行机械装配。On the basis of the above theoretical knowledge, the structure of the Faraday rotating mirror proposed by the present invention properly designs the angle between the end face of the optical fiber and the end face of the collimator lens, which can ensure that the collimated parallel light rays are coaxial with the collimator lens, and the rear end face is coated with high The reflective lens of the reflective film replaces the reflector, and the parallel light enters from the optical axis of the reflective lens. No matter how the incident angle changes, the reflected light can return to the original optical path, which can eliminate the adjustment of the reflected optical path and directly carry out mechanical assembly.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210447348 CN102944918B (en) | 2012-11-10 | 2012-11-10 | Faraday rotation mirror structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210447348 CN102944918B (en) | 2012-11-10 | 2012-11-10 | Faraday rotation mirror structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102944918A CN102944918A (en) | 2013-02-27 |
CN102944918B true CN102944918B (en) | 2013-12-25 |
Family
ID=47727879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210447348 Expired - Fee Related CN102944918B (en) | 2012-11-10 | 2012-11-10 | Faraday rotation mirror structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102944918B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412371B (en) * | 2013-07-29 | 2015-07-22 | 华中科技大学 | Faraday rotary mirror capable of simultaneously carrying out polarization state conversion on multiple paths of optical signals |
CN106646928A (en) * | 2016-10-28 | 2017-05-10 | 京东方科技集团股份有限公司 | Anti-dazzling device and control method thereof |
CN106772916A (en) * | 2016-12-14 | 2017-05-31 | 上海伟钊光学科技股份有限公司 | Miniature Faraday speculum |
CN106707414B (en) * | 2016-12-26 | 2024-01-19 | 上海毫米星光光学有限公司 | Optical fiber isolator |
CN106940387B (en) * | 2017-04-10 | 2023-10-27 | 三峡大学 | A kind of Michelson interference type fiber optic acceleration sensor |
CN107121876B (en) * | 2017-05-26 | 2022-08-19 | 中国科学院西安光学精密机械研究所 | Folding-axis mirror system capable of being positioned |
CN107193137A (en) * | 2017-07-24 | 2017-09-22 | 上海伟钊光学科技股份有限公司 | A kind of fibre optic isolater |
CN113495321A (en) * | 2020-03-18 | 2021-10-12 | 福州高意通讯有限公司 | Circulator with single-ended output |
CN111830646A (en) * | 2020-05-12 | 2020-10-27 | 上海交通大学 | Optical fiber coupling packaging structure, coupling packaging method and coupling array |
CN112904490A (en) * | 2021-03-23 | 2021-06-04 | 广东亿源通科技股份有限公司 | Reflective optical circulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375910A (en) * | 1979-09-25 | 1983-03-08 | Nippon Electric Co., Ltd. | Optical isolator |
CN101017252A (en) * | 2006-02-09 | 2007-08-15 | 青岛招金光电子科技有限公司 | Minisize magneto-optical shutter |
CN201331599Y (en) * | 2008-12-29 | 2009-10-21 | 飞康技术(深圳)有限公司 | Optical fiber connecting device |
CN202351552U (en) * | 2011-12-26 | 2012-07-25 | 上海中科光纤通讯器件有限公司 | 1064nm high-power optical isolator |
-
2012
- 2012-11-10 CN CN 201210447348 patent/CN102944918B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375910A (en) * | 1979-09-25 | 1983-03-08 | Nippon Electric Co., Ltd. | Optical isolator |
CN101017252A (en) * | 2006-02-09 | 2007-08-15 | 青岛招金光电子科技有限公司 | Minisize magneto-optical shutter |
CN201331599Y (en) * | 2008-12-29 | 2009-10-21 | 飞康技术(深圳)有限公司 | Optical fiber connecting device |
CN202351552U (en) * | 2011-12-26 | 2012-07-25 | 上海中科光纤通讯器件有限公司 | 1064nm high-power optical isolator |
Non-Patent Citations (2)
Title |
---|
万助军等.在线式双级光隔离器的隔离度分析.《中国激光》.2002,第29卷(第11期),第995-999页. |
在线式双级光隔离器的隔离度分析;万助军等;《中国激光》;20021130;第29卷(第11期);第995-999页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102944918A (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102944918B (en) | Faraday rotation mirror structure | |
CN101852613B (en) | Light transceiving integrated device applied to fiber sensing | |
JP5621861B2 (en) | Optical device | |
CN201984180U (en) | Fiber Fabry-Perot tunable filter | |
JP2010156842A (en) | Optical modulator | |
EP2385403B1 (en) | Polarization maintaining optical rotary joint | |
WO2019153181A1 (en) | Low-crosstalk single-core bidirectional optical component | |
US9915786B2 (en) | Transmissive photonic crystal fiber ring resonator employing single optical beam-splitter | |
CN114964203A (en) | Depolarization method and system for hollow-core microstructure fiber optic gyroscope | |
CN103869506A (en) | Device and method for achieving light polarization state rotation by utilizing reflection method | |
CN111884029A (en) | Polarization beam combiner and laser | |
CN103412371B (en) | Faraday rotary mirror capable of simultaneously carrying out polarization state conversion on multiple paths of optical signals | |
CN106154424B (en) | A dual-port Faraday mirror and circulator | |
CN211653337U (en) | Polarization-maintaining magneto-optical attenuator | |
CN102902014B (en) | Optical isolator | |
CN1912648B (en) | Laser encoder optical system | |
CN209343053U (en) | A kind of faraday rotation mirror unrelated with wavelength and temperature | |
CN109613724B (en) | Magneto-optical adjustable optical attenuator | |
CN102156356B (en) | Optical isolator and isolation method thereof | |
JP4854251B2 (en) | Optical isolator | |
CN106207733B (en) | Nonlinear phase bias loop mode-locking device and its laser | |
CN221960283U (en) | Detection device | |
US20230049757A1 (en) | Multimode Coupling for Fiber Waveguide | |
CN219610994U (en) | Light source device and module | |
JP3077554B2 (en) | Optical isolator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131225 Termination date: 20141110 |
|
EXPY | Termination of patent right or utility model |