CN102943479A - 分区卸荷控制深大基坑变形的系统及方法 - Google Patents

分区卸荷控制深大基坑变形的系统及方法 Download PDF

Info

Publication number
CN102943479A
CN102943479A CN2012105331923A CN201210533192A CN102943479A CN 102943479 A CN102943479 A CN 102943479A CN 2012105331923 A CN2012105331923 A CN 2012105331923A CN 201210533192 A CN201210533192 A CN 201210533192A CN 102943479 A CN102943479 A CN 102943479A
Authority
CN
China
Prior art keywords
foundation pit
protection
foundation ditch
deep
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105331923A
Other languages
English (en)
Inventor
贾坚
谢小林
翟杰群
张羽
刘传平
罗发扬
施佩文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Architecture Design and Research Institute of Tongji University Group Co Ltd
Original Assignee
Architecture Design and Research Institute of Tongji University Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Architecture Design and Research Institute of Tongji University Group Co Ltd filed Critical Architecture Design and Research Institute of Tongji University Group Co Ltd
Priority to CN2012105331923A priority Critical patent/CN102943479A/zh
Publication of CN102943479A publication Critical patent/CN102943479A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明涉及深大基坑施工领域,尤其涉及一种分区卸荷控制深大基坑变形的系统及方法。公开了一种分区卸荷控制深大基坑变形的系统和方法,通过增设一道临时分隔墙,将深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域分区卸荷,从而使深大基坑相对远离保护对象,先开挖远离保护对象的大基坑,通过快速施工完成大基坑底板浇筑,控制大坑卸荷产生的坑内隆起和坑外沉降。同时由于邻近保护对象的基坑为窄条基坑,坑内回弹及深层土体滑移较小,因此,窄条坑开挖时可以通过重点控制窄条基坑的侧向变形以控制保护紧邻窄条基坑的保护对象。从而达到减小和控制深大基坑开挖对保护对象变形影响的目标。

Description

分区卸荷控制深大基坑变形的系统及方法
技术领域
本发明涉及深大基坑施工领域,尤其涉及一种分区卸荷控制深大基坑变形的系统及方法。
背景技术
随着上海城市建设的快速发展,市中心土地资源的紧张、交通的拥挤、人口密度的过高等因素制约了城市的可持续发展。而大力开发利用地下空间则是建设节约型城市,走可持续发展道路的一个重要方面。在大力开发城市地下空间的同时又遇到了大量的深大基坑工程。这些位于城市中心的深大基坑四周密布各类地下管线,邻近各类建筑及地铁隧道等设施。由于城市中心深大基坑施工场地狭小、施工工期紧、基坑开挖深(深度一般为15~25m),基坑开挖面积大,施工条件复杂;加之工程所处的地层基本为饱和含水流塑或软塑粘土层,孔隙比及压缩性大、抗剪强度低、灵敏度高等特点。因此,深大基坑的卸荷将对其位移场、应力场产生较大的变化并对周边环境设施带来影响。
请参阅图1,图1所示是基坑开挖卸载后的变形特征示意图。由图1可见,深基坑的卸荷导致基坑及周围土体的应力场、位移场发生变化,基坑及基坑周围土体地层移动的结果,直观地表现为:基坑内的土体隆起b1、围护结构的侧向变形b2以及坑周的地表沉降b3。
而在软土地区的城市中开挖深基坑,除了满足深基坑本身的强度和安全稳定外,更主要的是控制深基坑开挖所带来的变形以及产生的坑外地层沉降,以满足周边环境的保护要求。
坑周的地表沉降及影响范围除了与工程所处的土层特性有关外,在基坑不发生大面积的渗漏水、漏泥、流砂的情况下,则其主要影响因素是围护结构的侧向位移和坑内的土体隆起。而坑内的土体隆起又主要与基坑的宽度、开挖面积和开挖深度大小有关。坑内土体的隆起主要由:卸荷后的土体回弹和卸荷后坑外土体向坑内滑移而产生坑底土体的向上隆起这两部分组成。
《基坑工程手册》(刘建航,侯学渊,中国建筑工业出版社,1997.4:10-16)及实测数据表明窄条基坑的坑周地表沉降与围护结构侧向变形的相关性较强。窄条基坑受两侧围护结构遮挡作用,围护结构底以下的深层土体滑移影响较小。其坑内隆起主要为基坑卸荷的土体回弹和被动区的挤压隆起。因此,窄条基坑坑外地表沉降范围一般为1.5~2.0倍开挖深度,在基坑围护结构不渗漏的情况下,地表沉降最大值δvs为围护结构最大侧向变形δhs的0.7倍左右,即δvs=0.7δhs。
对于深大基坑而言,由于基坑宽大、开挖深、一次性卸荷量大、工期长,基坑变形除了产生图2所示的I区朗金被动状态区和II区朗金主动状态区的变形影响外,还会产生III区、IV区的深层土体滑移变形影响。同时,坑底土体存在强回弹区(V区),其影响深度范围为坑底以下0.3倍开挖深度。V区产生的坑底土体回弹量为总卸荷回弹量的70%。
另通过室内K0试验、数值分析和工程实测得出上海软土地区深基坑卸荷其坑底以下的影响深度范围为开挖深度的2.5倍。当深大基坑宽度达到5倍开挖深度时,在围护结构底部至坑底以下2.5倍开挖深度范围内,存在深层土体滑移带。从而引起坑外地表沉降增大,并且地表沉降影响范围也扩大至3.5倍开挖深度以上。地表沉降最大值是围护结构侧向变形的1~2倍。与窄条深基坑相比,深大基坑卸荷引起的坑内土体隆起和坑周地表沉降影响越来越大。
从前述的软土深大基坑变形机理及特征分析可知,控制深大基坑坑外地表沉降变形,主要是控制围护结构的侧向变形和坑内的土体隆起。针对围护结构的侧向变形,可以通过围护结构的刚度、插入深度和支撑的道数及刚度的加强等措施来控制其侧向变形。但因基坑开挖深、面积大、一次性卸荷量多而产生深层土体滑移变形和坑底土体回弹而带来的地层沉降,则难以有效控制。
针对周边环境的保护要求,《基坑工程手册》(刘建航,侯学渊,中国建筑工业出版社,1997.4:10-16)根据周边建筑、设施、管线以及地铁隧道等在不同沉降差下的影响和变形控制要求,提出了基坑变形控制的保护等级标准。但由于一些深大基坑毗邻重要保护建筑和紧邻地铁隧道,基坑开挖过深、距离保护对象过近,而保护对象允许的变形又极其严格。因此,如何控制基坑变形,保护地铁隧道运营的安全和保护性建筑物的完好,已成为深基坑工程中迫切需要研究和解决的难题。
发明内容
本发明的目的在于提供一种分区卸荷控制深大基坑变形的系统和方法,通过增设一道临时分隔墙,将深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域分区卸荷,从而使深大基坑相对远离保护对象,先开挖远离保护对象的大基坑,通过快速施工完成大基坑底板浇筑,控制大坑卸荷产生的坑内隆起和坑外沉降。同时由于邻近保护对象的基坑为窄条基坑,坑内回弹及深层土体滑移较小,因此,窄条坑开挖时可以通过重点控制窄条基坑的侧向变形以控制保护紧邻窄条基坑的保护对象,从而达到减小和控制深大基坑开挖对保护对象变形影响的目标。
为了达到上述的目的,本发明采用如下技术方案:
一种分区卸荷控制深大基坑变形的系统,用于保护邻近深大基坑的保护对象,包括深大基坑围护结构和临时分隔墙,所述深大基坑邻近保护对象侧的坑内设置所述临时分隔墙,所述临时分隔墙将所述深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域。
优先地,在上述的分区卸荷控制深大基坑变形的系统中,还包括用于控制深基坑的围护结构侧向变形的钢支撑轴力伺服系统。
优先地,在上述的分区卸荷控制深大基坑变形的系统中,所述窄条基坑的宽度大于等于20米。
本发明还公开了一种分区卸荷控制深大基坑变形的方法,包括如下步骤:
先在深大基坑邻近保护对象侧的坑内增设一道临时分隔墙,将深大基坑一分为二,分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域;
开挖远离保护对象的大基坑,此步骤采用盆式对称开挖,按照“分层分块、限时开挖支撑”原则,边坡留土每分块土方开挖与支撑浇筑完成时间要求不超过36小时;
待大基坑开挖完成及时回筑底板和地下室后,开挖邻近保护对象的窄条基坑,此步骤采用抽条开挖,按照“分层分块、限时开挖支撑”原则,每分块土方开挖与支撑安装完成时间要求不超过12小时;
待窄条基坑的地下室完成至地面后,再凿除临时分隔墙,将地下室连成整体。
优先地,在上述的分区卸荷控制深大基坑变形的方法中,在开挖远离保护对象的大基坑前,先对窄条基坑内土体进行预加固。
优先地,在上述的分区卸荷控制深大基坑变形的方法中,所述的对窄条基坑内土体进行预加固是通过对窄条基坑内土体采用三轴搅拌和/或高压旋喷方法进行水泥土预加固。
优先地,在上述的分区卸荷控制深大基坑变形的方法中,在开挖邻近保护对象的窄条基坑时,采用钢支撑轴力伺服系统对窄条基坑的围护结构进行变形控制。
本发明的有益效果如下:
本发明提供的分区卸荷控制深大基坑变形的系统和方法,通过在深大基坑邻近保护对象侧的坑内设置一道临时分隔墙,将深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域,从而使深大基坑相对远离保护对象,先开挖远离保护对象的大基坑,通过快速施工完成大基坑底板浇筑,控制大坑卸荷产生的坑内隆起和坑外沉降,同时由于邻近保护对象的基坑为窄条基坑,坑内回弹及深层土体滑移较小,开挖时可以重点控制窄条基坑的围护结构的侧向变形。在开挖邻近保护对象的窄条基坑时,采用钢支撑轴力伺服系统对窄条基坑的围护结构进行变形控制,自动化程度高,可根据围护结构的实际变形情况实时调整钢支撑的轴力,分级控制深大基坑的围护结构的侧向变形,从而保护邻近深大基坑的保护对象的安全。
附图说明
本发明的分区卸荷控制深大基坑变形的系统由以下的实施例及附图给出。
图1是基坑开挖卸载后的变形特征示意图;
图2是深大基坑土层位移和影响范围示意图;
图3是本发明一实施例的深大基坑工程总平面图;
图4是本发明一实施例的深大基坑工程剖面图;
图5是深大基坑一次性整体卸荷位移场变化云图;
图6是深大基坑分区卸荷位移场变化云图。
具体实施方式
以下将对本发明的分区卸荷控制深大基坑变形的系统及方法作进一步的详细描述。
下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须作出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参阅图3和图4,其中,图3所示是本发明一实施例的深大基坑工程总平面图,图4所示是本发明一实施例的深大基坑工程剖面图。该深大基坑的北侧平行于一地铁隧道,该地铁隧道包括地铁隧道上行线1和地铁隧道下行线2。本工程基坑拟建一幢地面57层,地下4层,总高280m的甲级办公楼。本工程基坑东西向约93m,南北向约110m,基坑占地面积10000m2,基坑开挖深度17.5m~25.4m。
本工程基坑由围护结构3围成,其围护结构3与地铁隧道上行线1的净距为5.4m。地铁隧道顶部埋深为8.5m,该地铁隧道采用盾构法建造,地铁隧道内径5.5m,外径6.2m。环向通过12根螺栓将6片350mm厚的钢筋砼管片联接成一环。管片宽1m~1.2m,环与环纵向通过17根螺栓联接。地铁隧道管片采用通缝拼装。管片间的接缝防水采用弹性密封条。因此,环缝、纵缝的张开变形量只允许为3~5mm;地铁隧道结构设施绝对沉降量及水平变形控制要求≤20mm(包括各种加载和卸载的最终位移量),基坑施工期间运营隧道的允许变形按10mm控制;地铁隧道变形曲线的曲率半径R≥15000m;地铁隧道变形的相对弯曲≤1/2500,运营地铁隧道两轨道横向高差<4mm。
由于本工程紧邻地铁隧道侧的基坑开挖深度达17.5m,开挖深度已超过地铁隧道底部2.8m,因此邻地铁隧道侧深基坑开挖的稳定及产生的变形对地铁隧道安全造成威胁。为保证运营中的地铁隧道的安全,需要通过分区卸荷严格控制地铁隧道侧的深基坑变形,以将地铁隧道变形控制在允许的范围内。
本实施例的分区卸荷控制深大基坑变形的系统,用于保护邻近深大基坑的保护对象(本实施例中是地铁隧道),该系统包括由围护结构3围成的深大基坑和临时分隔墙6,所述深大基坑邻近保护对象侧的坑内设置所述临时分隔墙6,所述临时分隔墙6将所述深大基坑分成远离保护对象的大基坑4和邻近保护对象的窄条基坑5两个区域。
较佳地,在上述的分区卸荷控制深大基坑变形的系统中,还包括用于控制深基坑的围护结构3侧向变形的钢支撑轴力伺服系统。
请继续参阅图3和图4,本实施例采用的分区卸荷控制深大基坑变形的方法,包括如下步骤:
第一步、先在深大基坑邻近保护对象侧的坑内增设一道临时分隔墙6,将深大基坑一分为二,分成远离保护对象的大基坑4和邻近保护对象的窄条基坑5两个区域。具体地,可以根据拟建工程的塔楼和裙房布置,在邻地铁隧道侧的裙房区基坑内增设该临时分隔墙6,将深大基坑一分为二。分为临地铁隧道的窄条基坑(北坑)5和远离地铁隧道的大基坑(南坑)4。
第二步、开挖远离保护对象的大基坑4,即先开挖远离地铁隧道的南坑,在大基坑4大开挖过程中,根据时空效应法设定挖土支撑的施工参数,快速施工以减少软土基坑的土体流变变形。此步骤采用盆式对称开挖,严格实行“分层分块、限时开挖支撑”原则,边坡留土每分块土方开挖与支撑浇筑完成时间要求不超过36小时,从而可以实现快速施工,以减少软土基坑的土体流变变形。
第三步、待大基坑4开挖完成及时回筑底板和地下室后开挖邻近保护对象的窄条基坑5,即南坑地下室完成后再开挖临地铁隧道侧的窄条北坑,从而将深大基坑卸荷产生的围护结构侧向变形以及坑内土体隆起而带来的坑外地铁隧道变形,通过基坑的分区卸荷予以减弱和控制。在窄条基坑5开挖过程中,同样根据时空效应法设定挖土支撑的施工参数,快速施工以减少软土基坑的土体流变变形。此步骤采用抽条开挖,严格实行“分层分块、限时开挖支撑”原则,每分块土方开挖与支撑安装完成时间要求不超过12小时,从而实现快速施工以减少软土基坑的土体流变变形。具体为挖土8小时,支撑安装4小时。
第四步、待窄条基坑5的地下室完成至地面后,再凿除临时分隔墙6,将地下室连成整体。
较佳地,在开挖远离保护对象的大基坑4前,先对窄条基坑5内土体进行预加固。通过对窄条基坑5内土体的预加固,可以改善窄条基坑5内土体的土性,减少基坑开挖过程中围护结构3的下部变形,有效控制基坑开挖面下的土体变形,以保护紧邻的地铁隧道。本实施例中,所述的对窄条基坑5内土体进行预加固是通过对窄条基坑内土体采用三轴搅拌和/或高压旋喷方法进行水泥土预加固
较佳地,在开挖邻近保护对象的窄条基坑5时,采用钢支撑轴力伺服系统对窄条基坑5的围护结构进行变形控制。通过先期开挖的大基坑4变形实测数据反分析,根据地铁隧道变形的控制要求,预估计算分析窄条基坑5开挖的围护结构3变形。并将计算分析的围护结构3变形与支撑轴力予以耦合,确定每步序变形控制量和支撑轴力的初始设定值。通过信息化施工,及时调整支撑轴力,分级控制变形,从而达到最终的变形控制目标。
请继续参阅图3和图4,采用分区卸荷来控制深大基坑变形,保护邻近运营地铁隧道和重要保护性建筑设施的原理和作用在于:
(1)在深大基坑邻近保护对象侧的坑内设置临时分隔墙6,将基坑一分为二。分出一个宽度为20m左右的窄条基坑5,以便设置钢支撑满足快速开挖要求。同时也使得一分为二后先开挖的大基坑距离保护对象有20m以上。此外,在保护对象和大基坑4间所相隔的窄条基坑5因坑内的加固和前后二道插入较深的地墙(即围护结构3和临时分隔墙6)作用,从而在大基坑4开挖时,后开挖的窄条基坑5起到了大刚度的挡土坝作用。大基坑4开挖采用针对上海软弱土流变控制的“时空效应”开挖支撑施工技术。分层分块、留土挡墙、快速开挖、限时支撑,及时浇筑垫层形成底板。通过缩短坑底土体在卸荷状态下的暴露时间,从而可有效控制坑底土体隆起和坑外的地层沉降。因此,远离保护对象的大基坑4开挖时对保护对象的变形影响较小。
(2)远离保护对象的大基坑4内的地下室完成施工后,再开挖窄条基坑5时,由于窄条基坑5内土体的加固作用,坑内土体的回弹较小,加上窄条基坑5两侧较深地墙的遮挡作用,窄条基坑5卸荷状态下其深层土体滑移影响也较小。因此,窄条基坑5开挖卸荷对邻近保护对象的影响主要来之于窄条基坑5的侧向变形。而对于窄条基坑5的侧向变形控制,施工实施中可采用钢支撑轴力伺服系统,自动实时调整钢支撑的轴力,控制变形,同时,支撑体系不设围檩,一幅地墙两根钢支撑,省却砼支撑的养护时间,运用“时空效应”原理,快速开挖、限时支撑,尽早完成底板稳定基坑。从而控制和减少窄条深坑5的侧向变形,满足邻近保护对象的正常安全使用要求。
(3)待窄条基坑5的地下室完成至地面后,再凿除临时分隔墙6,将地下室连成整体。通常临时分隔墙位置6的设置结合主体结构后浇带,而大基坑4内塔楼区的土建结构封顶是工程的主要控制节点,裙房区的窄条基坑5施工工期基本不影响塔楼的关键工期。因此深大基坑通过分区卸荷可较好地控制和解决邻近保护对象的变形影响控制的工程难题,同对也保证了工程建设的顺利实施。
请参阅图图5和图6,其中,图5所示是深大基坑一次性整体卸荷位移场变化云图,图6所示是深大基坑分区卸荷位移场变化云图。由图5和图6可见,深大基坑分区卸荷可有效控制对邻近深大基坑的保护对象的变形影响。
综上所述,本发明提供的分区卸荷控制深大基坑变形的系统和方法,通过在深大基坑邻近保护对象侧的坑内设置一道临时分隔墙,将深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域,从而使深大基坑相对远离保护对象,先开挖远离保护对象的大基坑,通过快速施工完成大基坑底板浇筑,控制大坑卸荷产生的坑内隆起和坑外沉降。同时由于邻近保护对象的基坑为窄条基坑,坑内回弹及深层土体滑移较小,开挖时可以重点控制窄条基坑的围护结构的侧向变形。在开挖邻近保护对象的窄条基坑时,采用钢支撑轴力伺服系统对窄条基坑的围护结构进行变形控制,自动化程度高,可根据围护结构的实际变形情况实时调整钢支撑的轴力,分级控制深大基坑的围护结构的侧向变形,从而保护邻近深大基坑的保护对象的安全。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种分区卸荷控制深大基坑变形的系统,用于保护邻近深大基坑的保护对象,其特征在于,包括深大基坑围护结构和一临时分隔墙,所述深大基坑邻近保护对象侧的坑内设置所述临时分隔墙,所述临时分隔墙将所述深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域。
2.根据权利要求1所述的分区卸荷控制深大基坑变形的系统,其特征在于,还包括用于控制深基坑的围护结构侧向变形的钢支撑轴力伺服系统。
3.根据权利要求1所述的分区卸荷控制深大基坑变形的系统,其特征在于,所述窄条基坑的宽度大于等于20米。
4.一种分区卸荷控制深大基坑变形的方法,其特征在于,包括如下步骤:
先在深大基坑邻近保护对象侧的坑内设置一道临时分隔墙,将深大基坑分成远离保护对象的大基坑和邻近保护对象的窄条基坑两个区域;
开挖远离保护对象的大基坑,此步骤采用盆式对称开挖,按照“分层分块、限时开挖支撑”原则,边坡留土每分块土方开挖与支撑浇筑完成时间要求不超过36小时;
待大基坑开挖完成及时回筑底板和地下室后,开挖邻近保护对象的窄条基坑,此步骤采用抽条开挖,按照“分层分块、限时开挖支撑”原则,每分块土方开挖与支撑安装完成时间要求不超过12小时;
待窄条基坑的地下室完成至地面后,再凿除临时分隔墙,将地下室连成整体。
5.根据权利要求4所述的分区卸荷控制深大基坑变形的方法,其特征在于,在开挖远离保护对象的大基坑前,先对窄条基坑内土体进行预加固。
6.根据权利要求5所述的分区卸荷控制深大基坑变形的方法,其特征在于,所述的对窄条基坑内土体进行预加固是通过对窄条基坑内土体采用三轴搅拌和/或高压旋喷方法进行水泥土预加固。
7.根据权利要求4所述的分区卸荷控制深大基坑变形的方法,其特征在于,在开挖邻近保护对象的窄条基坑时,采用钢支撑轴力伺服系统对窄条基坑的围护结构进行变形控制。
CN2012105331923A 2012-12-11 2012-12-11 分区卸荷控制深大基坑变形的系统及方法 Pending CN102943479A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105331923A CN102943479A (zh) 2012-12-11 2012-12-11 分区卸荷控制深大基坑变形的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105331923A CN102943479A (zh) 2012-12-11 2012-12-11 分区卸荷控制深大基坑变形的系统及方法

Publications (1)

Publication Number Publication Date
CN102943479A true CN102943479A (zh) 2013-02-27

Family

ID=47726459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105331923A Pending CN102943479A (zh) 2012-12-11 2012-12-11 分区卸荷控制深大基坑变形的系统及方法

Country Status (1)

Country Link
CN (1) CN102943479A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205957A (zh) * 2013-03-19 2013-07-17 天津市市政工程设计研究院 基坑开挖下卧隧道及基底回弹估算法
CN103510520A (zh) * 2013-10-09 2014-01-15 上海市建工设计研究院有限公司 深大基坑的分区施工方法
CN105239579A (zh) * 2015-09-15 2016-01-13 河海大学 软土深基坑变形的封堵墙式控制方法
CN105421461A (zh) * 2015-10-26 2016-03-23 青岛理工大学 土岩地质条件下邻近既有隧道的建筑基坑开挖工法
CN107386296A (zh) * 2017-06-14 2017-11-24 上海建工建集团有限公司 紧邻同步施工保护对象的深大基坑的施工方法
CN107940102A (zh) * 2017-11-21 2018-04-20 上海建工四建集团有限公司 地下原水管道保护施工方法
CN112012219A (zh) * 2020-07-17 2020-12-01 广州市设计院 冠梁处的支撑接撑方法
CN112411556A (zh) * 2020-12-11 2021-02-26 中铁第四勘察设计院集团有限公司 一种基坑结构及其施工方法
CN113155052A (zh) * 2021-01-05 2021-07-23 上海建工装备工程有限公司 一种基坑变形智能预控与3d可视化方法
CN113356264A (zh) * 2021-06-24 2021-09-07 天津市地质工程勘察院 紧邻地铁基坑施工中地铁站体结构抗隆起施工方法
CN114164835A (zh) * 2021-12-09 2022-03-11 中铁十五局集团城市轨道交通工程有限公司 邻近既有建筑的基坑的支护结构及基坑施工方法
CN114922195A (zh) * 2022-05-23 2022-08-19 上海建工一建集团有限公司 一种紧邻保护对象的软土深大基坑施工方法
CN115182354A (zh) * 2022-08-19 2022-10-14 中国建筑第八工程局有限公司 近运营地铁两侧基坑群的施工方法
CN115795978A (zh) * 2023-02-01 2023-03-14 北京城建设计发展集团股份有限公司 考虑多种影响因子的基坑开挖导致既有隧道上浮的预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270579A (zh) * 2007-03-19 2008-09-24 上海市第一建筑有限公司 深基坑向浅基坑的扩展施工的基坑围护方法
KR20090036814A (ko) * 2007-10-10 2009-04-15 쌍용건설 주식회사 흙막이 벽체 공법용 어셈블리
CN101408025A (zh) * 2008-11-11 2009-04-15 广州市设计院 利用主体结构作为支撑点的基坑施工方法
CN201526052U (zh) * 2009-09-07 2010-07-14 上海市第一建筑有限公司 群坑施工临时支撑墙
CN102121253A (zh) * 2010-12-21 2011-07-13 上海市第一建筑有限公司 超大型地下结构阶梯型回筑施工方法
CN202954367U (zh) * 2012-12-11 2013-05-29 同济大学建筑设计研究院(集团)有限公司 分区卸荷控制深大基坑变形的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270579A (zh) * 2007-03-19 2008-09-24 上海市第一建筑有限公司 深基坑向浅基坑的扩展施工的基坑围护方法
KR20090036814A (ko) * 2007-10-10 2009-04-15 쌍용건설 주식회사 흙막이 벽체 공법용 어셈블리
CN101408025A (zh) * 2008-11-11 2009-04-15 广州市设计院 利用主体结构作为支撑点的基坑施工方法
CN201526052U (zh) * 2009-09-07 2010-07-14 上海市第一建筑有限公司 群坑施工临时支撑墙
CN102121253A (zh) * 2010-12-21 2011-07-13 上海市第一建筑有限公司 超大型地下结构阶梯型回筑施工方法
CN202954367U (zh) * 2012-12-11 2013-05-29 同济大学建筑设计研究院(集团)有限公司 分区卸荷控制深大基坑变形的系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾坚等: "控制深基坑变形的支撑轴力伺服系统", 《上海交通大学学报》, vol. 43, no. 10, 31 October 2009 (2009-10-31), pages 1589 - 1594 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205957A (zh) * 2013-03-19 2013-07-17 天津市市政工程设计研究院 基坑开挖下卧隧道及基底回弹估算法
CN103510520A (zh) * 2013-10-09 2014-01-15 上海市建工设计研究院有限公司 深大基坑的分区施工方法
CN105239579A (zh) * 2015-09-15 2016-01-13 河海大学 软土深基坑变形的封堵墙式控制方法
CN105421461A (zh) * 2015-10-26 2016-03-23 青岛理工大学 土岩地质条件下邻近既有隧道的建筑基坑开挖工法
CN105421461B (zh) * 2015-10-26 2018-05-04 青岛理工大学 土岩地质条件下邻近既有隧道的建筑基坑开挖工法
CN107386296A (zh) * 2017-06-14 2017-11-24 上海建工建集团有限公司 紧邻同步施工保护对象的深大基坑的施工方法
CN107940102B (zh) * 2017-11-21 2023-05-26 上海建工四建集团有限公司 地下原水管道保护施工方法
CN107940102A (zh) * 2017-11-21 2018-04-20 上海建工四建集团有限公司 地下原水管道保护施工方法
CN112012219A (zh) * 2020-07-17 2020-12-01 广州市设计院 冠梁处的支撑接撑方法
CN112411556A (zh) * 2020-12-11 2021-02-26 中铁第四勘察设计院集团有限公司 一种基坑结构及其施工方法
CN113155052A (zh) * 2021-01-05 2021-07-23 上海建工装备工程有限公司 一种基坑变形智能预控与3d可视化方法
CN113356264A (zh) * 2021-06-24 2021-09-07 天津市地质工程勘察院 紧邻地铁基坑施工中地铁站体结构抗隆起施工方法
CN114164835A (zh) * 2021-12-09 2022-03-11 中铁十五局集团城市轨道交通工程有限公司 邻近既有建筑的基坑的支护结构及基坑施工方法
CN114922195A (zh) * 2022-05-23 2022-08-19 上海建工一建集团有限公司 一种紧邻保护对象的软土深大基坑施工方法
CN115182354A (zh) * 2022-08-19 2022-10-14 中国建筑第八工程局有限公司 近运营地铁两侧基坑群的施工方法
CN115795978A (zh) * 2023-02-01 2023-03-14 北京城建设计发展集团股份有限公司 考虑多种影响因子的基坑开挖导致既有隧道上浮的预测方法
CN115795978B (zh) * 2023-02-01 2023-04-28 北京城建设计发展集团股份有限公司 考虑多种影响因子的基坑开挖导致既有隧道上浮的预测方法

Similar Documents

Publication Publication Date Title
CN102943479A (zh) 分区卸荷控制深大基坑变形的系统及方法
CN102704957B (zh) 一种用于浅埋大型地下结构建造的棚架法
Meng et al. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil
Cui et al. Mitigation of geohazards during deep excavations in karst regions with caverns: a case study
Kang et al. Combined freeze-sealing and New Tubular Roof construction methods for seaside urban tunnel in soft ground
Nikiforova et al. Geotechnical cut-off diaphragms for built-up area protection in urban underground development
CN103485790A (zh) 一种管幕-支护结构组合体系浅埋暗挖法
Liu et al. Geological investigation and treatment measures against water inrush hazard in karst tunnels: A case study in Guiyang, southwest China
Elbaz et al. Geohazards induced by anthropic activities of geoconstruction: a review of recent failure cases
CN111101540B (zh) 一种明挖隧道上穿既有电力隧道施工方法
CN110284497B (zh) 一种控制软土基坑下伏既有隧道结构变形的地基加固方法
CN107012871B (zh) 一种悬挂式围护深大长基坑装配式结构的逆作施工方法
CN105673025A (zh) 一种地下工程黄土隧道控制地表沉降施工工艺
CN111139837A (zh) 一种软土地区十字交叉地铁处多基坑同时开挖方法
CN111365020A (zh) 一种适用于较差地质条件下偏压进洞的反压回填施工方法
Yao et al. Numerical analysis of the influence of isolation piles in metro tunnel construction of adjacent buildings
Guan et al. Key Techniques and Risk Management for the Application of the Pile‐Beam‐Arch (PBA) Excavation Method: A Case Study of the Zhongjie Subway Station
CN202954367U (zh) 分区卸荷控制深大基坑变形的系统
Xie et al. Environmentally sustainable groundwater control during dewatering with barriers: A case study in Shanghai
Zheng et al. Environmental impact of ground deformation caused by underground construction in China
CN207331746U (zh) 一种地下管廊
CN103590424B (zh) 道路通行的地下工程施工法
Tao et al. Study on the restraint control of an isolation pile on an existing high-speed railway during the close passing of a shield machine
CN209704560U (zh) 修建超浅埋大型地下空间的棚架结构
Yang et al. Monitoring and controlling on surface settlement in sand and gravel strata caused by subway station construction applying pipe-roof pre-construction method (PPM)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130227