CN102927978A - 芯片式原子陀螺仪及其测量转动的方法 - Google Patents

芯片式原子陀螺仪及其测量转动的方法 Download PDF

Info

Publication number
CN102927978A
CN102927978A CN201210421184XA CN201210421184A CN102927978A CN 102927978 A CN102927978 A CN 102927978A CN 201210421184X A CN201210421184X A CN 201210421184XA CN 201210421184 A CN201210421184 A CN 201210421184A CN 102927978 A CN102927978 A CN 102927978A
Authority
CN
China
Prior art keywords
atom
wire
chip
gyroscope
attitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210421184XA
Other languages
English (en)
Other versions
CN102927978B (zh
Inventor
颜辉
廖开宇
杜炎雄
李建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201210421184.XA priority Critical patent/CN102927978B/zh
Publication of CN102927978A publication Critical patent/CN102927978A/zh
Application granted granted Critical
Publication of CN102927978B publication Critical patent/CN102927978B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明公开了一种芯片式原子陀螺仪及其测量转动的方法,所述陀螺仪包括原子芯片、玻璃真空腔、离子泵、电流馈通、真空阀和四通接头;四通接头的四个开口分别与玻璃真空腔、离子泵、电流馈通和真空阀连接,原子芯片连接在玻璃真空腔上,原子芯片上的导线结构包括由若干沿y方向平行设置的导线组成的导线阵列、两根沿x方向的导线以及两组沿x方向的共面微波波导;所述方法使原子芯片表面产生三维原子囚禁势阱,并将冷原子装载到该囚禁势阱中,再利用导线阵列移动冷原子的同时利用两组共面微波波导分开和合并不同内态的冷原子,根据萨格奈克效应的理论计算转速。本发明的陀螺仪便于携带,其环路面积可以叠加,具有很高的灵敏度,有广阔的应用前景。

Description

芯片式原子陀螺仪及其测量转动的方法
技术领域
本发明涉及一种陀螺仪及其测量转动的方法,尤其是一种芯片式原子陀螺仪及其测量转动的方法,属于转速测量和惯性导航技术领域。
背景技术
目前,用于转动测量和惯性导航的陀螺仪主要是光学陀螺仪,其原理是利用光学干涉环路中由转动引起的萨格奈克(Sagnac)效应所造成干涉条纹的移动来测量转动速度:
Φ = 4 πm h S • Ω
其中,S为干涉环路包围的面积,Ω为转动的速度,m为光子或原子的质量。
光学陀螺仪可以很容易地实现小型化和实用化,但它的不足和缺点主要是测量精度不高。而利用原子的波动性来形成干涉,并进一步构成包围一定面积的干涉环路,同样利用萨格奈克效应来测量转动速度的原子陀螺仪的测量精度则远高于光学陀螺仪,原因是原子的质量比光子大得多,在相同环路面积下,很小的转动就可以引起相对于光学陀螺仪来说大很多的相位差,从而大大提高了陀螺仪的分辨率和精度。
而在国际上实现的此类原子陀螺仪通常有两种:热原子束陀螺仪和冷原子陀螺仪,测量精度比其它任何类型陀螺仪都高出好几个数量级,但是其缺点与不足是整体结构庞大复杂,要实现实用化往往会比较困难。
为了实现原子陀螺仪的小型化和实用化,现已提出利用原子芯片来实现陀螺仪,如中国专利号为200610125027.9的发明专利,它公开了一种微型原子陀螺仪,但由于其导引与内态无关,很难做到50%的相干分束,且初始内态相同,在干涉时没有办法消除共模相位,因此,只能在理想状态下测出转动速度,无法真正应用。
发明内容
本发明的目的,是为了解决上述现有技术的缺陷,提供一种结构简单、操作方便、测量精确、可行性强,且易于实用化的芯片式原子陀螺仪。
本发明的另一目的在于提供一种芯片式原子陀螺仪测量转动的方法。
本发明的目的可以通过采取如下技术方案达到:
芯片式原子陀螺仪,包括原子芯片、玻璃真空腔、离子泵、带碱金属释放剂的电流馈通、真空阀和四通接头;
所述四通接头的四个开口分别与玻璃真空腔、离子泵、电流馈通和真空阀连接,所述原子芯片作为玻璃真空腔的一个面连接在玻璃真空腔上,其特征在于:所述原子芯片上的导线结构包括
用于形成可沿x方向移动的一维原子导引、由若干沿y方向平行设置的导线组成的导线阵列;
两根沿x方向用于在y方向形成一维原子囚禁势阱的第一导线和第二导线;
以及两组沿x方向用于在y方向形成态选择双阱的第一共面微波波导和第二共面微波波导。
作为一种优选方案,所述原子芯片上的导线分为底层和顶层,所述导线阵列设置在底层,所述第一导线和第二导线、第一共面微波波导和第二共面微波波导设置在顶层。
作为一种优选方案,所述若干沿y方向平行设置的导线分别为g1、g2、g3...gn,其中n≥3。
作为一种优选方案,所述原子芯片采用真空胶粘接在玻璃真空腔上。
作为一种优选方案,所述玻璃真空腔通过金属法兰与四通接头的一个开口连接。
本发明的另一目的可以通过采取如下技术方案达到:
芯片式原子陀螺仪测量转动的方法,其特征在于包括以下步骤:
1)通过真空阀与前级真空泵连接,将陀螺仪内部抽到超高真空后,关闭真空阀,并利用离子泵将陀螺仪内部维持在超高真空状态;
2)采用电流馈通加热碱金属释放剂维持真空中待冷却原子的数量;
3)在导线阵列中的导线g1和g2通上同向电流,同时在第一导线和第二导线通上同向电流,在x方向施加均匀磁场,使原子芯片表面产生三维原子囚禁势阱,将预先制备的冷原子装载到该囚禁势阱中;
4)减小导线g1的电流大小,同时增加导线g3的电流大小,由导线阵列7形成的的一维原子导引沿x方向移动;同时增大第一共面微波波导和第二共面微波波导中的微波功率,在y方向的囚禁势阱从一个变为两个,从而实现不同内态原子的相干分束;当微波功率达到最大时,接着减少微波功率,在y方向的囚禁势阱从两个变为一个,从而实现原子的合束;
5)依次改变导线阵列中各导线的电流,让一维原子导引一直沿x方向运动;原子在y方向分束和合束的同时也在x方向移动,从而形成双Y型包围一定面积的闭合路径;
6)利用π/2拉曼脉冲消除路径信息,实现原子内态的干涉;接着对冷原子团基态布居进行相干探测后,得到原子干涉条纹,从干涉条纹的移动读出由转动所引起的原子干涉相位差;然后根据萨格奈克效应的理论计算出转动的速度。
作为一种优选方案,在步骤4)中,在冷原子团分束前,冷原子内态制备到相干叠加态
Figure BDA00002320419600031
冷原子团被分开后,不同内态的原子沿态选择微波导引运动,先分开经过不同的路径最后合并。
作为一种优选方案,所述相干叠加态
Figure BDA00002320419600032
的|1〉和|2〉选择的是原子内态的两个稳定基态。
本发明相对于现有技术具有如下的有益效果:
1、本发明的陀螺仪利用原子芯片来操纵冷原子,整体结构很小,便于携带,其环路面积可以像光纤陀螺仪一样叠加,具有很高的灵敏度,有广阔的应用前景。
2、本发明的陀螺仪利用原子芯片上的态选择微波导引来实现原子的分束和合束,利用可移动导引来移动原子,可以在很小的结构中得到很大的干涉环路,从而在实现小型化的同时,对原子陀螺仪的精度也不会构成影响。
3、本发明的陀螺仪利用原子内态的相干与态选择微波导引相结合来实现马赫-曾特(Mach-Zehnder)原子内态干涉仪,从而实现原子干涉的小型化和实用化,并进一步利用小型化的原子干涉环路来实现对转动的精确测量。
附图说明
图1为本发明芯片式原子陀螺仪的结构示意图。
图2为本发明芯片式原子陀螺仪的原子芯片导线结构示意图。
具体实施方式
实施例1:
如图1所示,本实施例的芯片式原子陀螺仪,包括原子芯片1、玻璃真空腔2、离子泵3、带碱金属释放剂的电流馈通4、真空阀5和四通接头6;所述四通接头6的四个开口分别与玻璃真空腔2、离子泵3、电流馈通4和真空阀5连接,所述玻璃真空腔2与四通接头6的一个开口之间通过金属法兰连接,所述原子芯片1采用真空胶粘接在玻璃真空腔2上,并作为玻璃真空腔2的一个面;从而使陀螺仪内部形成一个密闭的真空结构。
如图2所示,所述原子芯片1上的导线结构包括导线阵列7、两根沿x方向的第一导线8和第二导线9以及两组沿x方向的第一共面微波波导10和第二共面微波波导11;所述导线阵列7沿y方向平行设置的导线为g1、g2、g3...gn,其中n≥3。所述原子芯片1上的导线分为底层和顶层,所述导线阵列7设置在底层,所述第一导线8和第二导线9、第一共面微波波导10和第二共面微波波导11设置在顶层。
所述导线阵列7形成可沿x方向移动的一维原子导引,该一维原子导引在xz平面上。所述第一导线8和第二导线9在y方向形成一维原子囚禁势阱。所述第一共面微波波导10和第二共面微波波导11在y方向形成态选择双阱的。一维原子导引和一维原子囚禁势阱在芯片表面形成三维原子囚禁势阱。
本实施例的芯片式陀螺仪测量转动的方法如下:
1)通过真空阀5与前级真空泵连接,将陀螺仪内部抽到超高真空后,关闭真空阀5,并利用离子泵3将陀螺仪内部维持在超高真空状态;
2)采用电流馈通4加热碱金属释放剂维持真空中待冷却原子的数量,如铷原子;
3)在导线阵列7中的导线g1和g2通上同向电流,同时在第一导线8和第二导线9通上同向电流,在x方向施加均匀磁场,使原子芯片1表面产生三维原子囚禁势阱,将预先制备的冷原子装载到该囚禁势阱中;
4)在冷原子团分束前,利用π/2拉曼脉冲将已完成初态制备的冷原子制备到相干叠加态
Figure BDA00002320419600041
此处|1〉和|2〉可选择原子内态的两个稳定基态,如铷-87的5S基态F=1,mF=-1和F=2,mF=1;接着减小导线g1的电流大小,同时增加导线g3的电流大小,由导线阵列7形成的的一维原子导引将沿x方向移动,同时增大第一共面微波波导10和第二共面微波波导11中的微波功率,实现原子囚禁势阱的分开,即在y方向从一个势阱分为两个势阱,且势阱与原子内态有关,处于1和|2〉态的原子将囚禁在不同的势阱中,从而实现与内态有关的分束;当微波功率达到最大时,接着减少微波功率,在y方向的囚禁势阱将从两个变为一个,从而实现原子的合束;
5)依次改变导线阵列7中各导线的电流,让一维原子导引一直沿x方向运动;原子在y方向分束和合束的同时也在x方向移动,从而形成双Y型包围一定面积的闭合路径;
6)利用π/2拉曼脉冲消除路径信息,实现原子内态的干涉;接着对冷原子团基态布居进行相干探测后,得到原子干涉条纹,从干涉条纹的移动读出由转动所引起的原子干涉相位差;然后根据萨格奈克效应的理论,即采用公式
Figure BDA00002320419600051
计算出转动的速度Ω。
以上所述,仅为本发明优选的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明所公开的范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都属于本发明的保护范围。

Claims (8)

1.芯片式原子陀螺仪,包括原子芯片(1)、玻璃真空腔(2)、离子泵(3)、带碱金属释放剂的电流馈通(4)、真空阀(5)和四通接头(6);
所述四通接头(6)的四个开口分别与玻璃真空腔(2)、离子泵(3)、电流馈通(4)和真空阀(5)连接,所述原子芯片(1)作为玻璃真空腔(2)的一个面连接在玻璃真空腔(2)上,其特征在于:所述原子芯片(1)上的导线结构包括
用于形成可沿x方向移动的一维原子导引、由若干沿y方向平行设置的导线组成的导线阵列(7);
两根沿x方向用于在y方向形成一维原子囚禁势阱的第一导线(8)和第二导线(9);
以及两组沿x方向用于在y方向形成态选择双阱的第一共面微波波导(10)和第二共面微波波导(11)。
2.根据权利要求1所述的芯片式原子陀螺仪,其特征在于:所述原子芯片(1)上的导线分为底层和顶层,所述导线阵列(7)设置在底层,所述第一导线(8)和第二导线(9)、第一共面微波波导(10)和第二共面微波波导(11)设置在顶层。
3.根据权利要求2所述的芯片式原子陀螺仪,其特征在于:所述若干沿y方向平行设置的导线分别为g1、g2、g3...gn,其中n≥3。
4.根据权利要求3所述的芯片式原子陀螺仪,其特征在于:所述原子芯片(1)采用真空胶粘接在玻璃真空腔(2)上。
5.根据权利要求3所述的芯片式原子陀螺仪,其特征在于:所述玻璃真空腔(2)通过金属法兰与四通接头(6)的一个开口连接。
6.基于权利要求3所述陀螺仪测量转动的方法,其特征在于包括以下步骤:
1)通过真空阀(5)与前级真空泵连接,将陀螺仪内部抽到超高真空后,关闭真空阀(5),并利用离子泵(3)将陀螺仪内部维持在超高真空状态;
2)采用电流馈通(4)加热碱金属释放剂维持真空中待冷却原子的数量;
3)在导线阵列(7)中的导线g1和g2通上同向电流,同时在第一导线(8)和第二导线(9)通上同向电流,在x方向施加均匀磁场,使原子芯片(1)表面产生三维原子囚禁势阱,将预先制备的冷原子装载到该囚禁势阱中;
4)减小导线g1的电流大小,同时增加导线g3的电流大小,由导线阵列7形成的的一维原子导引沿x方向移动;同时增大第一共面微波波导(10)和第二共面微波波导(11)中的微波功率,在y方向的囚禁势阱从一个变为两个,从而实现不同内态原子的相干分束;当微波功率达到最大时,接着减少微波功率,在y方向的囚禁势阱从两个变为一个,从而实现原子的合束;
5)依次改变导线阵列(7)中各导线的电流,让一维原子导引一直沿x方向运动;原子在y方向分束和合束的同时也在x方向移动,从而形成双Y型包围一定面积的闭合路径;
6)利用π/2拉曼脉冲消除路径信息,实现原子内态的干涉;接着对冷原子团基态布居进行相干探测后,得到原子干涉条纹,从干涉条纹的移动读出由转动所引起的原子干涉相位差;然后根据萨格奈克效应的理论计算出转动的速度。
7.根据权利要求6所述的测量转动的方法,其特征在于:在步骤4)中,在冷原子团分束前,冷原子内态制备到相干叠加态
Figure FDA00002320419500021
冷原子团被分开后,不同内态的原子沿态选择微波导引运动,先分开经过不同的路径最后合并。
8.根据权利要求7所述的测量转动的方法,其特征在于:所述相干叠加态
Figure FDA00002320419500022
的|1〉和|2〉选择的是原子内态的两个稳定基态。
CN201210421184.XA 2012-10-29 2012-10-29 芯片式原子陀螺仪及其测量转动的方法 Expired - Fee Related CN102927978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210421184.XA CN102927978B (zh) 2012-10-29 2012-10-29 芯片式原子陀螺仪及其测量转动的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210421184.XA CN102927978B (zh) 2012-10-29 2012-10-29 芯片式原子陀螺仪及其测量转动的方法

Publications (2)

Publication Number Publication Date
CN102927978A true CN102927978A (zh) 2013-02-13
CN102927978B CN102927978B (zh) 2014-12-24

Family

ID=47642836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210421184.XA Expired - Fee Related CN102927978B (zh) 2012-10-29 2012-10-29 芯片式原子陀螺仪及其测量转动的方法

Country Status (1)

Country Link
CN (1) CN102927978B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296739A (zh) * 2014-10-30 2015-01-21 成都天奥电子股份有限公司 一种芯片级核磁共振原子陀螺仪表头
CN105066982A (zh) * 2015-07-27 2015-11-18 中国人民解放军装备学院 一种基于冷原子气体量子涡旋的超流体陀螺装置
WO2017089489A1 (fr) 2015-11-27 2017-06-01 Thales Capteur a atomes froids pieges sur puce permettant une mesure de vitesse de rotation
CN107289921A (zh) * 2017-05-31 2017-10-24 哈尔滨工业大学 一种基于椭圆拟合的对抛式冷原子干涉陀螺仪的转动角速度测量方法
CN109116275A (zh) * 2018-07-16 2019-01-01 北京航空航天大学 一种利用原子干涉仪精确测量相距微小距离下两处磁场一致性的方法
CN109785988A (zh) * 2018-11-26 2019-05-21 北京量子体系科技股份有限公司 一种原子导引装置
CN111561920A (zh) * 2019-02-13 2020-08-21 霍尼韦尔国际公司 圆形谐振器倏逝波捕集的原子陀螺仪
US10801840B1 (en) 2019-07-24 2020-10-13 Honeywell International Inc. Four port atomic gyroscope
CN113654545A (zh) * 2021-07-22 2021-11-16 广州中国科学院工业技术研究院 基于离子阱芯片的陀螺仪及其转动测量方法
WO2021228722A1 (fr) * 2020-05-14 2021-11-18 Thales Puce atomique pour capteur inertiel a atomes ultrafroids et capteur associe.
CN114413872A (zh) * 2021-12-10 2022-04-29 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种集成化式冷原子干涉陀螺仪敏感器
US11397085B1 (en) * 2018-10-07 2022-07-26 ColdQuanta, Inc. Shaken-lattice matter-wave gyro

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967145A (zh) * 2006-11-14 2007-05-23 中国科学院武汉物理与数学研究所 微型原子陀螺仪
US20070266784A1 (en) * 2006-05-18 2007-11-22 Honeywell International Inc. Chip scale atomic gyroscope
CN101774529A (zh) * 2010-01-26 2010-07-14 北京航空航天大学 一种mems原子腔芯片及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070266784A1 (en) * 2006-05-18 2007-11-22 Honeywell International Inc. Chip scale atomic gyroscope
CN1967145A (zh) * 2006-11-14 2007-05-23 中国科学院武汉物理与数学研究所 微型原子陀螺仪
CN101774529A (zh) * 2010-01-26 2010-07-14 北京航空航天大学 一种mems原子腔芯片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN HUI ETAL: "Production and guidance of pulsed atomic beams on chip", 《CHIN. PHYS. B》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296739A (zh) * 2014-10-30 2015-01-21 成都天奥电子股份有限公司 一种芯片级核磁共振原子陀螺仪表头
CN105066982A (zh) * 2015-07-27 2015-11-18 中国人民解放军装备学院 一种基于冷原子气体量子涡旋的超流体陀螺装置
WO2017089489A1 (fr) 2015-11-27 2017-06-01 Thales Capteur a atomes froids pieges sur puce permettant une mesure de vitesse de rotation
US10375813B2 (en) 2015-11-27 2019-08-06 Thales On-chip trapped ultracold atom sensor allowing rotational velocity to be measured
CN107289921A (zh) * 2017-05-31 2017-10-24 哈尔滨工业大学 一种基于椭圆拟合的对抛式冷原子干涉陀螺仪的转动角速度测量方法
CN109116275A (zh) * 2018-07-16 2019-01-01 北京航空航天大学 一种利用原子干涉仪精确测量相距微小距离下两处磁场一致性的方法
CN109116275B (zh) * 2018-07-16 2020-11-03 北京航空航天大学 一种精确测量相距微小距离下两处磁场一致性的方法
US11397085B1 (en) * 2018-10-07 2022-07-26 ColdQuanta, Inc. Shaken-lattice matter-wave gyro
CN109785988A (zh) * 2018-11-26 2019-05-21 北京量子体系科技股份有限公司 一种原子导引装置
CN109785988B (zh) * 2018-11-26 2020-11-20 重庆鲲量科技有限公司 一种原子导引装置
CN111561920A (zh) * 2019-02-13 2020-08-21 霍尼韦尔国际公司 圆形谐振器倏逝波捕集的原子陀螺仪
CN111561920B (zh) * 2019-02-13 2024-06-04 霍尼韦尔国际公司 圆形谐振器倏逝波捕集的原子陀螺仪
US10801840B1 (en) 2019-07-24 2020-10-13 Honeywell International Inc. Four port atomic gyroscope
FR3110231A1 (fr) * 2020-05-14 2021-11-19 Thales Puce atomique pour capteur inertiel à atomes ultrafroids et capteur associé
WO2021228722A1 (fr) * 2020-05-14 2021-11-18 Thales Puce atomique pour capteur inertiel a atomes ultrafroids et capteur associe.
CN113654545A (zh) * 2021-07-22 2021-11-16 广州中国科学院工业技术研究院 基于离子阱芯片的陀螺仪及其转动测量方法
CN114413872A (zh) * 2021-12-10 2022-04-29 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种集成化式冷原子干涉陀螺仪敏感器

Also Published As

Publication number Publication date
CN102927978B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN102927978A (zh) 芯片式原子陀螺仪及其测量转动的方法
CN103472495B (zh) 基于原子干涉效应的垂向重力梯度测量传感器
CN103837904B (zh) 基于多组份原子干涉仪的组合惯性传感器及其测量方法
Yunes et al. Modeling extreme mass ratio inspirals within the effective-one-body approach
FR3048085B1 (fr) Un accelerometre de levitation magnetique a haute precision
CN105674982A (zh) 一种六参数量子惯性传感器及其测量方法
CN112833879B (zh) 一种基于冷原子干涉技术的六轴惯性测量装置
CN203519846U (zh) 一种基于原子干涉效应的垂向重力梯度测量传感器
CN108169804A (zh) 基于二维交叉光栅的类金字塔结构型原子干涉重力梯度测量方法及装置
CN103256929A (zh) 具有原子惯性传感器的常规惯性传感器的误差估计
CN105066991A (zh) 基于冷原子干涉原理的惯性测量设备
CN108181663B (zh) 基于类金字塔结构型原子干涉重力加速度测量装置
CN105674972A (zh) 小型化组合单轴冷原子惯性传感器及其测量方法
CN105652335B (zh) 一种基于微晶玻璃腔体的重力测量装置及测量方法
CN203759269U (zh) 一种基于多组份原子干涉仪的组合惯性传感器
CN102944903B (zh) 芯片式原子重力仪及其测量重力的方法
CN108845355A (zh) 地震偏移成像方法及装置
CN104697512A (zh) 一种基于Aharonov-Anandan几何相的金刚石色心陀螺仪及角速度测量方法
CN105738653A (zh) 高精度光学位移磁悬浮加速度计
CN103134949B (zh) 星载冷原子囚禁式加速度测量方法
CN103335824A (zh) 大口径空间光学系统外场波前像差检测方法
CN110686663B (zh) 一种两自由度原子干涉陀螺仪
CN103149597B (zh) 基于光纤Fabry-Perot干涉仪的重力梯度测量方法
CN108227028A (zh) 基于类金字塔结构的原子干涉重力加速度测量装置
CN112229390A (zh) 一种三轴原子干涉陀螺仪及实现方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141224

Termination date: 20161029