CN102916340B - Phase-shift electric-control sampling grating semiconductor laser and setting method therefor - Google Patents

Phase-shift electric-control sampling grating semiconductor laser and setting method therefor Download PDF

Info

Publication number
CN102916340B
CN102916340B CN201210370711.9A CN201210370711A CN102916340B CN 102916340 B CN102916340 B CN 102916340B CN 201210370711 A CN201210370711 A CN 201210370711A CN 102916340 B CN102916340 B CN 102916340B
Authority
CN
China
Prior art keywords
grating
sampling
laser
phase shift
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210370711.9A
Other languages
Chinese (zh)
Other versions
CN102916340A (en
Inventor
周亚亭
陈向飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201210370711.9A priority Critical patent/CN102916340B/en
Publication of CN102916340A publication Critical patent/CN102916340A/en
Application granted granted Critical
Publication of CN102916340B publication Critical patent/CN102916340B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

The invention proposes a phase-shift electric-control sampling grating semiconductor laser. A DFB (distributed feed back) semiconductor laser consists of a first sampling grating area, a second sampling grating area and a phase-shift area, wherein gratings in the two sampling grating areas are sampling bragg gratings (SBG), the phase-shift area is positioned in the middle, and the sampling period is 1-10 micrometers; electrodes of the two sampling grating areas are connected together and are isolated from an electrode of the phase-shift area; the effective refractive index and the length of the sampling grating areas are expressed by nSBG and nP, and the effective refractive index and the length of the phase-shift area are expressed by LSBG and LP; and the primary control on the hot-shot wavelength of the laser can be realized only by changing the sampling period P, so as to form the phase-shift electric-control SBG DFB semiconductor laser.

Description

相移电控制取样光栅半导体激光器及其设置方法Phase shift electrically controlled sampling grating semiconductor laser and its setting method

技术领域 technical field

本发明属于光电子技术领域,涉及光纤通信,光子集成,光电传感以及其他光电信息处理;是一种波长在一定范围内连续可调的取样光栅半导体激光器及设置方法。 The invention belongs to the technical field of optoelectronics, and relates to optical fiber communication, photon integration, photoelectric sensing and other photoelectric information processing; it is a sampling grating semiconductor laser with continuously adjustable wavelength within a certain range and a setting method.

背景技术 Background technique

由于现在对光通信网络传输容量的需求急剧增长,密集波分复用(Dense wavelength division multiplexing, WDM)系统复用的信道数越来越多,这种通信系统需要用不同激射波长的激光器作光源。为减少由此带来的能耗和维护成本急剧上升问题,光子集成(Photonic integration circuit, PIC)是必然的选择。但是,目前这种大规模集成的PIC芯片中所使用的高性能光源——激光器阵列,还只能依赖于高精度电子束刻写技术来制造。对于满足ITU-T标准波长的真实相移光栅,这种电子束刻写技术需要至少0.1纳米量级以上的加工精度,只能采用经过特别改造后的电子束曝光设备来进行加工,其加工工艺缓慢费时,加工成本非常高昂,不能用于激光器的大规模商业化生产。 Due to the rapid increase in the demand for the transmission capacity of optical communication networks, the number of multiplexed channels in Dense wavelength division multiplexing (WDM) systems is increasing. This communication system needs to use lasers with different lasing wavelengths as lasers. light source. In order to reduce the resulting sharp rise in energy consumption and maintenance costs, photonic integration circuit (PIC) is an inevitable choice. However, the high-performance light source used in this large-scale integrated PIC chip, the laser array, can only be manufactured by high-precision electron beam writing technology. For real phase-shift gratings that meet the ITU-T standard wavelength, this electron beam writing technology requires a processing accuracy of at least 0.1 nanometers, and can only be processed by specially modified electron beam exposure equipment, and its processing technology is slow. Time-consuming, processing costs are very high, and cannot be used for large-scale commercial production of lasers.

此外,ITU-T标准对激光器的激射波长提出了严格的要求,而实际的半导体激光器制作过程中,存在各种偶然因素使得激光器激射波长偏离这个要求。因而在制作多波长激光器阵列时,常采用波长调谐装置如热调谐或改变注入电流、以及多电极注入等方式,来控制激光器的激射波长严格对准ITU-T标准。这些波长调谐装置使得激光器的结构变得复杂,加工难度增大,它们也会导致多波长激光器阵列中各个激光器输出激光功率不均衡问题。 In addition, the ITU-T standard puts forward strict requirements on the lasing wavelength of the laser, but in the actual semiconductor laser manufacturing process, there are various accidental factors that make the lasing wavelength of the laser deviate from this requirement. Therefore, when making a multi-wavelength laser array, wavelength tuning devices such as thermal tuning or changing the injection current, and multi-electrode injection are often used to control the lasing wavelength of the laser to strictly align with the ITU-T standard. These wavelength tuning devices complicate the structure of the laser and increase the difficulty of processing, and they also cause the problem of unbalanced output laser power of each laser in the multi-wavelength laser array.

对于激光器激射波长的初步控制,南京大学陈向飞教授发明的重构-等效啁啾(Reconstruction-equivalent chirp,REC)技术有很大的优势。利用这种取样光栅技术,能用微米量级加工工艺来代替原本需要纳米量级工艺才能实现的波长控制,制作成本有很大的降低,特别适合制作PIC设备中的多波长半导体激光器阵列。对于激光器激射波长的精细调节,T. Numai等人提出的在DFB激光器中间引入相移区的方法则有很大的优点,实验报道显示通过改变注入相移区电流的大小,能连续调节激光器激射波长达2.1nm。我们的理论研究表明,在现有工艺条件下这种激光器的激射波长连续可调范围能高达5~6nm。这种激光器的优点是在激射波长连续调节的过程中,激光器的域值电流和正常工作电流(两倍到三倍域值电流)时输出的激光功率变化不大,它的不足是难以用这种方法制成多波长激光器阵列。 For the preliminary control of the lasing wavelength of the laser, the reconstruction-equivalent chirp (REC) technology invented by Professor Chen Xiangfei of Nanjing University has great advantages. Using this sampling grating technology, micron-level processing technology can be used to replace the wavelength control that originally required nano-level technology, and the production cost is greatly reduced. It is especially suitable for the production of multi-wavelength semiconductor laser arrays in PIC equipment. For the fine adjustment of the lasing wavelength of the laser, the method of introducing a phase shift region in the middle of the DFB laser proposed by T. Numai et al. has great advantages. Experimental reports show that the laser can be continuously adjusted by changing the current injected into the phase shift region. The lasing wavelength reaches 2.1nm. Our theoretical research shows that under the existing technological conditions, the continuously adjustable range of the lasing wavelength of this laser can be as high as 5-6nm. The advantage of this kind of laser is that in the process of continuous adjustment of the lasing wavelength, the output laser power of the laser threshold current and normal operating current (two to three times the threshold current) does not change much. This method makes multi-wavelength laser arrays.

主要参考文献 main reference

[1]              Tingye, L., Advances in optical fiber communications: an historical perspective. IEEE Journal on Selected Areas in Communications, 1983. 1(3): 356-371. [1] Tingye, L., Advances in optical fiber communications: an historical perspective. IEEE Journal on Selected Areas in Communications, 1983. 1(3): 356-371.

[2]              Ishio, H., J. Minowa, and K. Nosu, Review and status of wavelength-division-multiplexing technology and its application. Journal of Lightwave Technology, 1984. 2(4): 448-463. [2] Ishio, H., J. Minowa, and K. Nosu, Review and status of wavelength-division-multiplexing technology and its application. Journal of Lightwave Technology, 1984. 2(4): 448-463.

[3]              Keiser, G.E., A Review of WDM Technology and Applications. Optical Fiber Technology, 1999. 5: p. 37. [3] Keizer, G.E., A Review of WDM Technology and Applications. Optical Fiber Technology, 1999. 5: p. 37.

[4]              Chen, X.F., et al., Photonic integrated technology for multi-wavelength laser emission. Chinese Science Bulletin, 2011. 56(28-29): 3064-3071. [4] Chen, X.F., et al., Photonic integrated technology for multi-wavelength laser emission. Chinese Science Bulletin, 2011. 56(28-29): 3064-3071.

[5]              Tennant, D. and T. Koch, Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks. Microelectronic Engineering, 1996. 32(1-4): 331-341. [5] Tennant, D. and T. Koch, Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks. Microelectronic Engineering, 1996. 32(1-43):41331

[6]              Steingr¨ ber, R., et al., Continuously chirped gratings for DFB-lasers fabricated by direct write electron-beam lithography. Microelectronic Engineering, 2002. 61-62: 331-335. [6] Steingr¨ber, R., et al., Continuously chirped gratings for DFB-lasers fabricated by direct write electron-beam lithography. Microelectronic Engineering, 2002. 61-62: 331-335.

[7]              Sakano, S., et al., Tunable DFB laser with a striped thin-film heater. IEEE Photonics Technology Letters, 1992. 4(4): 321-323. [7] Sakano, S., et al., Tunable DFB laser with a striped thin-film heater. IEEE Photonics Technology Letters, 1992. 4(4): 321-323.

[8]              Hansmann, S., et al., Static and Dynamic Properties of InGaAsP-InP Distributed-Feedback Lasers—a Detailed Comparison between Experiment and Theory. IEEE Journal of Quantum Electronics, 1994. 30(11): 2477-2484. [8] Hansmann, S., et al., Static and Dynamic Properties of InGaAsP-InP Distributed-Feedback Lasers—a Detailed Comparison between Experiment and Theory. IEEE Journal of Quantum Electronics, 2(417. 2: 417. 3)

[9]              Dutta, N., et al., Electronically tunable distributed feedback lasers. Applied Physics Letters, 1986. 48(22): 1501-1503. [9] Dutta, N., et al., Electronically tunable distributed feedback lasers. Applied Physics Letters, 1986. 48(22): 1501-1503.

[10]              Dai, Y., et al., Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Optics Letters, 2004. 29(12): 1333-1335. [10] Dai, Y., et al., Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Optics Letters, 2004. 29(12): 13533-13

[11]              Chen, X., et al., Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system. IEEE Photonics Technology Letters, 2000. 12(8): 1013-1015. [11] Chen, X., et al., Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system. IEEE Photonics Technology 30 Letters, 2(1 80 Letters): 2 1015.

[12]              Feng, J., et al., A novel method to achieve various equivalent chirp profiles in sampled Bragg gratings using uniform-period phase masks. Optics Communications, 2002. 205: 71-75. [12] Feng, J., et al., A novel method to achieve various equivalent chirp profiles in sampled Bragg gratings using uniform-period phase masks. Optics Communications, 2002. 205: 71-75.

[13]              Dai, Y., et al., Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photonics Technology Letters, 2004. 16(10): 2284-2296. [13] Dai, Y., et al., Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photonics Technology Letters, 2004. 16(10): 2284-2296.

[14]              Numai, T., 1.5 μm phase-controlled distributed feedback wavelength tunable optical filter. IEEE Journal of Quantum Electronics, 1992. 28(6): 1513-1519. [14] Numai, T., 1.5 μm phase-controlled distributed feedback wavelength tunable optical filter. IEEE Journal of Quantum Electronics, 1992. 28(6): 1513-1519.

[15]              H. Ghafouri-Shiraz, et al., Analysis of a λ/4-Phase-Shifted Double Phase-Shift-Controlled Distributed Feedback Wavelength Tunable Optical Filter. IEEE Journal of Quantum Electronics, 1997. 33(4): 556-561. [15] H. Ghafouri-Shiraz, et al., Analysis of a λ/4-Phase-Shifted Double Phase-Shift-Controlled Distributed Feedback Wavelength Tunable Optical Filter. IEEE Journal of Quantum 5 Electronics, 1997: 35(3647). -561.

[16]              Y. KOTAKI, et al., Tunable, narrow-linewidth and high-power lambda 4-shifted DFB laser. Electronics Letters, 1989. 25(15): 990-992. [16] Y. KOTAKI, et al., Tunable, narrow-linewidth and high-power lambda 4-shifted DFB laser. Electronics Letters, 1989. 25(15): 990-992.

[17]              Nobuhiro Nunoya, et al. Novel tunable DFB laser with separated high coupling coefficient gratings. in 2006 International Conference on Indium Phosphide and Related Materials Conference. 2006: 68-71。 [17] Nobuhiro Nunoya, et al. Novel tunable DFB laser with separated high coupling coefficient gratings. in 2006 International Conference on Indium Phosphide and Related Materials Conference. 2006: 68-71.

发明内容 Contents of the invention

本发明的目的在于,为使半导体激光器的激射波长满足ITU-T标准,提出了一种利用取样光栅技术来实行对半导体激光器激射波长的初步控制,然后通过改变激光器两个取样光栅区和中间相移区注入电流大小的方法,来获得不同的相移值,进而精细调节激光器激射波长的方法及装置,为DFB半导体激光器的设计制造,提出一种新的结构和工艺。 The purpose of the present invention is to, in order to make the lasing wavelength of the semiconductor laser satisfy the ITU-T standard, propose a kind of utilization sampling grating technology to carry out preliminary control to the lasing wavelength of the semiconductor laser, then by changing two sampling grating areas and The method of injecting current in the intermediate phase shift region to obtain different phase shift values, and then the method and device for finely adjusting the lasing wavelength of the laser, proposes a new structure and process for the design and manufacture of DFB semiconductor lasers.

本发明的目的是提出一种激射波长可调的取样光栅半导体激光器及其制作方法,利用取样光栅技术设有两个取样光栅区,在两个取样光栅区中间设有一个相移区构成取样光栅激光器,基于取样光栅技术和相移电流注入控制技术得到可调波长分布反馈式(DFB)半导体激光器及制作方法。 The object of the present invention is to propose a sampling grating semiconductor laser with adjustable lasing wavelength and its manufacturing method. The sampling grating technology is used to set two sampling grating areas, and a phase shift area is arranged in the middle of the two sampling grating areas to form a sampling Grating laser, based on sampling grating technology and phase-shift current injection control technology to obtain adjustable wavelength distribution feedback (DFB) semiconductor laser and its manufacturing method.

本发明技术方案是:基于相移电控制的取样光栅半导体激光器,其所述的DFB半导体激光器结构由两个取样光栅区和一个相移区组成。两边取样光栅区中的光栅是取样布拉格光栅(Sampled Bragg grating, SBG),中间的相移区可没有光栅,或可以有与取样光栅区相同的SBG,取样周期从1微米到数十微米量级,两个取样光栅区的电极连接在一起,但与相移区的电极相隔离。 The technical solution of the present invention is: a sampling grating semiconductor laser based on phase shift electrical control, and the DFB semiconductor laser structure is composed of two sampling grating regions and a phase shift region. The gratings in the sampling grating areas on both sides are sampled Bragg gratings (Sampled Bragg grating, SBG), and the phase shift area in the middle can have no grating, or can have the same SBG as the sampling grating area, and the sampling period is from 1 micron to tens of microns , the electrodes of the two sampling grating regions are connected together, but separated from the electrodes of the phase shift region.

通常选用取样光栅第±1级子光栅之一作为激射信道;此外,为保证只有所选的激射信道激射而零级信道不发生激射,在选择制作激光器的半导体材料时,把半导体材料的增益区中心设置在所选择的激射信道布拉格波长处而远离零级信道布拉格波长。 Usually, one of the sub-gratings of the ±1st level of the sampling grating is selected as the lasing channel; in addition, in order to ensure that only the selected lasing channel is lasing and the zero-order channel is not lasing, when selecting the semiconductor material for making the laser, the semiconductor The gain region of the material is centered at the selected lasing channel Bragg wavelength and away from the zero-order channel Bragg wavelength.

1、普通的均匀取样光栅 1. Ordinary uniform sampling grating

图1为普通的均匀取样模板的示意图,其中a是一个取样周期中有光栅部分的长度,P为取样周期。从数学上来看,一个取样布拉格光栅的折射率调制                                                可以表示为 FIG. 1 is a schematic diagram of a common uniform sampling template, where a is the length of a grating portion in a sampling period, and P is the sampling period. Mathematically, the refractive index modulation of a sampled Bragg grating It can be expressed as

                 (1) (1)

在这里,分别是种子光栅的折射率调制深度和光栅周期,表示复共轭。图1中取样函数,根据傅里叶分析,可用下式表示 it's here, and are the refractive index modulation depth and grating period of the seed grating, respectively, represents the complex conjugate. Sampling function in Figure 1 , according to Fourier analysis, it can be expressed as

 (2) (2)

取样光栅的第m级傅里叶系数可表示为 The m-th order Fourier coefficient of the sampled grating can be expressed as

              (3) (3)

把式(2)和(3)代入式(1),可得 Substituting equations (2) and (3) into equation (1), we can get

               (4) (4)

从式(4)可知,一个取样光栅可以看成是许多影子光栅(一个影子光栅对应一个信道)的叠加。第m级影子光栅的周期可以表示为 It can be seen from formula (4) that a sampling grating can be regarded as a superposition of many shadow gratings (one shadow grating corresponds to one channel). The period of the mth shadow grating It can be expressed as

                          (5) (5)

因此在第m级影子光栅中,布拉格波长可表示为 Therefore, in the m-th order shadow grating, the Bragg wavelength can be expressed as

                       (6) (6)

为有效折射率。取样占空比被定义为有均匀光栅的长度与取样周期之比,也即 is the effective refractive index. Sampling Duty Cycle is defined as the ratio of the length of the uniform grating to the sampling period, that is,

                              (7) (7)

如果取样的形式是周期性的方波,根据上面理论计算的结果,也就是公式(1)到(4)可知,在一个取样光栅的除0级以外的任意一级子光栅中,第±1级子光栅中的折射率调制强度最大,所以在用取样光栅结构来制作DFB激光器时,通常选用第±1级子光栅之一作为激射信道。在取样光栅第±1级子光栅中,折射率调制强度和取样占空比的关系为   If the form of sampling is a periodic square wave, according to the above theoretical calculation results, that is, the formulas (1) to (4), it can be known that in any sub-grating of a sampling grating except the 0th level, the ±1th The refractive index modulation intensity in the first-level sub-grating is the largest, so when the sampling grating structure is used to make a DFB laser, one of the ±1st-level sub-gratings is usually selected as the lasing channel. In the ±1st sub-grating of the sampled grating, the refractive index modulates the intensity The relationship with the sampling duty cycle is

                       (8) (8)

第±1级子光栅中折射率调制强度和取样占空比的关系,如图2所示。从式(8)和图2可知占空比=0.5时,第±1级子光栅中折射率调制强度最大,对第±1级子光栅布拉格波长的反馈作用最强。占空比偏离0.5越多,第±1级子光栅中折射率调制强度越小,则对第±1级子光栅布拉格波长的反馈作用越弱。 The relationship between the refractive index modulation intensity and the sampling duty cycle in the ±1st-level sub-gratings is shown in Fig. 2 . From Equation (8) and Figure 2, it can be seen that the duty cycle =0.5, the refractive index modulation intensity in the ±1st-level sub-gratings is the largest, and the feedback effect on the Bragg wavelength of the ±1st-level sub-gratings is the strongest. duty cycle The more the deviation is from 0.5, the smaller the refractive index modulation intensity in the ±1st-level sub-gratings is, and the weaker the feedback effect on the Bragg wavelength of the ±1st-level sub-gratings is.

以第-1级子光栅为例,式(5)和(6)变化为 Taking the -1st level sub-grating as an example, formulas (5) and (6) change to

                            (9) (9)

                      (10) (10)

对于普通的均匀光栅,其布拉格波长可以表示为 For an ordinary uniform grating, the Bragg wavelength It can be expressed as

                            (11) (11)

从式(9)到(11)可以看出,同样地来控制布拉格波长的大小,在普通的均匀光栅中需要改变光栅周期的大小,而在取样光栅中只要改变取样周期P的大小。在半导体激光器中,前者大约是二百多纳米,后者为数微米到数十微米,后者比前者大一到两个数量级。因此同样来控制布拉格波长的大小,利用取样光栅(用其±1级子光栅)要比用均匀光栅来得容易得多。 From equations (9) to (11), it can be seen that to control the size of the Bragg wavelength in the same way, it is necessary to change the grating period in the ordinary uniform grating The size of the sampling grating only needs to change the size of the sampling period P. In semiconductor lasers, the former is about two hundred nanometers, the latter is several microns to tens of microns, and the latter is one to two orders of magnitude larger than the former. Therefore, to control the size of the Bragg wavelength, it is much easier to use a sampling grating (using its ±1-level sub-grating) than a uniform grating.

2、相移电控制方法 2. Phase-shift electrical control method

相移电控制取样光栅激光器装置的结构,可由图3示意地表示。其结构特点描述如下:两边的取样光栅区中的光栅是取样布拉格光栅(Sampled Bragg grating, SBG),中间的相移区没有光栅,也可以有与取样光栅区相同的SBG。取样光栅区的电极连接在一起,但与相移区的电极相隔离。取样光栅区和相移区的有效折射率与长度,分别用来表示。 The structure of the phase-shift electrically controlled sampling grating laser device can be schematically represented by FIG. 3 . Its structural characteristics are described as follows: the gratings in the sampled grating areas on both sides are sampled Bragg gratings (Sampled Bragg grating, SBG), and the phase shift area in the middle has no grating, and can also have the same SBG as the sampled grating area. The electrodes in the sampling grating section are connected together but isolated from the electrodes in the phase shifting section. The effective refractive index and length of the sampling grating area and the phase shift area are respectively used and , and To represent.

有源层的增益中心被设置在取样光栅的±1级子光栅之一的布拉格波长处(通常选择在-1级子光栅的布拉格波长处,所以这里以-1级子光栅为例来说明),有 The gain center of the active layer is set at the Bragg wavelength of one of the ±1st order sub-gratings of the sampled grating (usually at the Bragg wavelength of the -1 level sub-grating, so here we take the -1 level sub-grating as an example to illustrate), there is

                   (12) (12)

在取样光栅区和相移区注入不同电流密度时,由于自由载流子的等离子效应,将不同,因而在相移区将产生一个相移,大小为 When different current densities are injected into the sampling grating area and the phase shift area, due to the plasma effect of free carriers, and will be different, and thus will produce a phase shift in the phase shift region , with a size of

         (13) (13)

由式(10)可知,在种子光栅周期保持不变的情况下,只要改变取样周期P的大小,就能实现对激光器激射波长的初步控制。 It can be seen from formula (10) that if the period of the seed grating remains unchanged, the initial control of the lasing wavelength of the laser can be achieved only by changing the size of the sampling period P.

在取样周期P确定时,在取样光栅区、相移区注入电流之和,即激光器工作电流()保持不变的条件下,由式(13)可知改变的比例就能改变引入相移的大小,在取样光栅±1级子光栅的禁带宽度(通常为2~5nm)范围内任意调节激射波长的数值。为减少取样光栅区、相移区注入电流间的串扰,提高改变引入相移精细调节激光器激射波长的效果,还可以在取样光栅区和相移区之间用氦离子注入进行电隔离。在引入相移大小在0.25π~1.75π范围内,激光器域值电流和在正常工作(工作电流在2~3倍域值电流)时激光器输出的激光功率变化很小。 When the sampling period P is determined, the current is injected into the sampling grating area and the phase shift area , The sum of the laser operating current ( + ) remains unchanged, from formula (13) it can be seen that the change and The ratio of the ratio can change the size of the introduced phase shift, and the value of the lasing wavelength can be adjusted arbitrarily within the range of the forbidden band width (usually 2-5nm) of the sampling grating ± 1-level sub-grating. In order to reduce the crosstalk between the injection current in the sampling grating area and the phase shift area, and improve the effect of changing the phase shift and finely adjusting the lasing wavelength of the laser, helium ion implantation can also be used for electrical isolation between the sampling grating area and the phase shift area. When the introduced phase shift is in the range of 0.25π-1.75π, the threshold current of the laser and the output laser power of the laser during normal operation (the operating current is 2 to 3 times the threshold current) change very little.

本发明中的相移由于分布在整个相移区上,因而是一个渐变累积的相移,与突变的相移相比能更好地抑制相移激光器中常见的烧孔效应。 Since the phase shift in the present invention is distributed over the entire phase shift region, it is a gradually cumulative phase shift, which can better suppress the common hole-burning effect in phase-shift lasers compared with abrupt phase shifts.

第二种基于相移电控制的取样光栅半导体激光器,其结构和特征与上述的DFB半导体激光器基本结构相同。不同之处是两个长度相同的取样光栅区的取样占空比不同,前一部分的取样占空比为0.5,后一部分的取样占空比是在0.2到0.5之间的优化取值。 The second type of sampling grating semiconductor laser based on phase shift electrical control has the same basic structure and characteristics as the above-mentioned DFB semiconductor laser. The difference is that the sampling duty cycle of the two sampling grating areas with the same length is different, and the sampling duty cycle of the former part is 0.5, the sampling duty cycle of the latter part It is an optimal value between 0.2 and 0.5.

从式(8)和图2可知占空比=0.5时,第±1级子光栅中折射率调制强度最大,对第±1级子光栅布拉格波长的反馈作用最强。占空比偏离0.5越多,则第±1级子光栅中折射率调制强度越小,对第±1级子光栅布拉格波长的反馈作用越弱。 From Equation (8) and Figure 2, it can be seen that the duty cycle =0.5, the refractive index modulation intensity in the ±1st-level sub-gratings is the largest, and the feedback effect on the Bragg wavelength of the ±1st-level sub-gratings is the strongest. duty cycle The more the deviation is from 0.5, the smaller the refractive index modulation intensity in the ±1st-level sub-gratings is, and the weaker the feedback effect on the Bragg wavelength of the ±1st-level sub-gratings is.

因此,在激射功率一定的情况下,后一部分的取样占空比偏离0.5越多,从这一侧取样光栅区有效输出的激光功率越大。在无法进行端面镀膜的情况下,优化后一部分的取样占空比,能提高激光器从这个取样光栅区一侧端面有效输出的激光功率。 Therefore, in the case of a certain laser power, the sampling duty cycle of the latter part The greater the deviation from 0.5, the greater the effective output laser power of the sampled grating area from this side. In the case where end-face coating is not possible, optimize the sampling duty cycle of the latter part , which can increase the effective output laser power of the laser from the end face of one side of the sampling grating area.

第三种基于相移电控制的取样光栅半导体激光器,其结构和特征与所述的DFB半导体激光器基本结构相同。不同之处是两个取样光栅相同的取样光栅区的长度不同。 The third type of sampling grating semiconductor laser based on phase shift electrical control has the same structure and features as the basic structure of the DFB semiconductor laser. The difference is that the lengths of the same sampling grating areas of the two sampling gratings are different.

当激光器取样光栅区的取样光栅相同时,取样光栅区长度越长对激射波长的反馈作用就越强。当本发明激光器一侧的取样光栅区长度保持恒定时,另一侧取样光栅区长度越小则从这一侧出射的激光功率就越大。 When the sampling gratings in the sampling grating area of the laser are the same, the longer the length of the sampling grating area, the stronger the feedback effect on the lasing wavelength. When the length of the sampling grating area on one side of the laser of the present invention remains constant, the smaller the length of the sampling grating area on the other side, the greater the laser power emitted from this side.

因此,在激射功率一定且无法进行端面镀膜的情况下,优化本激光器两个取样光栅区的长度,就能提高激光器从长度较短取样光栅区一侧有效输出的激光功率。 Therefore, when the laser power is constant and the end face coating cannot be performed, optimizing the length of the two sampling grating regions of the laser can increase the effective output laser power of the laser from the side of the shorter sampling grating region.

上述三种基于相移电控制的取样光栅半导体激光器是单元激光器,可构成单片集成的相移电控制取样光栅半导体激光器阵列。 The above three sampling grating semiconductor lasers based on phase shift electrical control are unit lasers, which can form a monolithic integrated phase shift electrical control sampling grating semiconductor laser array.

由这样的半导体激光器组成的激光器阵列,在工作电流相同、工作温度相同的情况下,各个激光器的域值电流和输出激光功率能够保持大致相等,这给激光器阵列产生激光的调制、耦合和传输带来了很大的方便。 For a laser array composed of such semiconductor lasers, under the same operating current and operating temperature, the threshold current and output laser power of each laser can be kept approximately equal, which produces laser modulation, coupling and transmission bands for the laser array. It is very convenient.

上述三种基于相移电控制的取样光栅半导体激光器阵列构成PIC发射芯片模块,它由激光监测器阵列、相移电控制的取样光栅半导体激光器阵列、调制器阵列(注:直接调制时不需要调制器阵列)、功率均衡器阵列和复用器,通过选择区外延生长或对接生长技术,依次生长集成到同一外延晶片上得到的。 The above three sampling grating semiconductor laser arrays based on phase-shift electrical control constitute a PIC emission chip module, which consists of a laser monitor array, a phase-shift electrical control sampling grating semiconductor laser array, and a modulator array (note: no modulation is required for direct modulation) Device array), power equalizer array and multiplexer, which are sequentially grown and integrated on the same epitaxial wafer through selective area epitaxial growth or butt growth technology.

本发明的有益效果是:取样光栅技术结合电注入控制引入相移,能灵活地控制激光器的激射波长,并使激光器保持优越的性能。利用取样光栅技术能用对比种子光栅周期大一到两个数量级的取样周期的控制,来有效地实现对激光器激射波长的基本控制。对激光器芯片材料生长过程中不可控因素造成的激射波长偏差,则可通过电注入控制引入相移大小来进行精细调节。在引入相移大小合适的情况下,如在0.25π~1.75π时,既保证了激光器单模激射的实现,也使得结构相似的取样光栅激光器(仅是取样周期和引入相移不同)有相近的域值和激射特性。由这样的半导体激光器组成的激光器阵列,在引入相移大小不为0.25π~1.75π范围内、工作电流相同、工作温度相同的情况下,各个激光器的输出激光功率能够保持大致相等,这给激光器阵列产生激光的调制、耦合和传输带来了很大的方便。本发明中的半导体激光器阵列,在PIC发射芯片模块的研制中有很大的优越性。在波长连续可调范围内各个单元激光器的域值电流几乎不发生变化,且在相同的工作电流下输出的激光功率也变化不大,因而这种多波长激光器阵列有优越的传输、调制和耦合特性。此外,利用了取样光栅技术,对加工精度的要求有很大的降低,因而这种多波长激光器阵列有较低的制造成本。 The beneficial effects of the invention are: the sampling grating technology is combined with electric injection control to introduce phase shift, the lasing wavelength of the laser can be flexibly controlled, and the laser maintains superior performance. Using the sampling grating technology, the control of the sampling period which is one to two orders of magnitude larger than the period of the seed grating can be used to effectively realize the basic control of the lasing wavelength of the laser. The lasing wavelength deviation caused by uncontrollable factors in the growth process of laser chip materials can be finely adjusted by introducing phase shift through electrical injection control. When the introduced phase shift is appropriate, such as 0.25π~1.75π, it not only ensures the realization of single-mode lasing of the laser, but also makes the sampled grating laser with similar structure (only the sampling period and the introduced phase shift are different). Similar threshold and lasing characteristics. For a laser array composed of such semiconductor lasers, the output laser power of each laser can be kept roughly equal when the phase shift is not in the range of 0.25π-1.75π, the operating current is the same, and the operating temperature is the same, which gives the laser The modulation, coupling and transmission of the laser generated by the array bring great convenience. The semiconductor laser array in the present invention has great advantages in the development of PIC emitting chip modules. In the wavelength continuously adjustable range, the threshold current of each unit laser hardly changes, and the output laser power does not change much under the same operating current, so this multi-wavelength laser array has superior transmission, modulation and coupling. characteristic. In addition, the use of sampling grating technology greatly reduces the requirements for processing accuracy, so the multi-wavelength laser array has a lower manufacturing cost.

附图说明 Description of drawings

图1、均匀取样光栅的取样模板示意图。 Figure 1. Schematic diagram of a sampling template for a uniformly sampled grating.

图2、±1级子光栅中的折射率调制强度和取样占空比的关系。 Figure 2. Refractive index modulation intensity versus sampling duty cycle in ±1-level sub-gratings.

图3、相移电控制取样光栅激光器结构示意图。 Fig. 3. Schematic diagram of the structure of a phase-shifted electrically controlled sampling grating laser.

图4、相移电控制取样光栅激光器取样模板示意图。 Fig. 4. Schematic diagram of a sampling template of a phase shift electrically controlled sampling grating laser.

图5、双紫外光束透过取样模板发生干涉制作取样光栅示意图。 Fig. 5. Schematic diagram of sampling grating produced by interference of double ultraviolet light beams passing through the sampling template.

具体实施方法: Specific implementation method:

1、本发明中得到相移电控制取样光栅半导体激光器的关键,在于取样光栅结构的制作,具体的方法是 1, the key that obtains phase-shift electrical control sampling grating semiconductor laser among the present invention is the making of sampling grating structure, and concrete method is

首先在光栅掩膜板上,设计并制作所需要的取样图案。如图4所示,取样图案的特征是:沿整个激光器结构的取样光栅都是取样周期相同的均匀取样光栅,但在取样光栅区中间的相移区,可以是与取样光栅区相同的取样光栅,也可以是没有光栅的存在。 First, design and manufacture the required sampling pattern on the grating mask. As shown in Figure 4, the characteristics of the sampling pattern are: the sampling gratings along the entire laser structure are uniform sampling gratings with the same sampling period, but the phase shift area in the middle of the sampling grating area can be the same sampling grating as the sampling grating area , or no grating exists.

然后用两束相干的紫外光束,透过取样模板后进行双光束干涉,把双光束干涉图案和取样图案同时转录到光刻胶上,如图5所示。1:n-InP基底  2:n-InP缓冲层  3:下限制层  4:多量子阱有源层  5:上限制层  6:U-InP+1.3μm InGaAsP层(用于制作SBG光栅)  7:光刻胶  8:取样模板。 Then, two coherent ultraviolet beams are used to pass through the sampling template and perform double-beam interference, and the double-beam interference pattern and the sampling pattern are simultaneously transcribed onto the photoresist, as shown in Figure 5. 1:n-InP substrate 2:n-InP buffer layer 3:Lower confinement layer 4:Multiple quantum well active layer 5:Upper confinement layer 6:U-InP+1.3μm InGaAsP layer (for making SBG grating) 7:Optical Engraving 8: Sampling template.

2、相移电控制取样光栅半导体激光器的结构 2. The structure of the phase-shift electrically controlled sampling grating semiconductor laser

相移电控制取样光栅半导体激光器器件,从下至上依次是:n电极、n型InP基底材料、外延n型InP缓冲层、非掺杂晶格匹配InGaAsP下限制层、应变InGaAsP多量子阱有源层、非掺杂晶格匹配InGaAsP上限制层、取样光栅层、二次外延生长的p型InP层、p型InGaAs的欧姆接触层和p电极。 Phase-shift electrically controlled sampling grating semiconductor laser devices, from bottom to top are: n-electrode, n-type InP substrate material, epitaxial n-type InP buffer layer, non-doped lattice matching InGaAsP lower confinement layer, strained InGaAsP multi-quantum well active Layer, non-doped lattice matching InGaAsP upper confinement layer, sampling grating layer, p-type InP layer grown by secondary epitaxial growth, p-type InGaAs ohmic contact layer and p-electrode.

3、本发明中的相移电控制取样光栅半导体激光器的制作 3. Fabrication of Phase Shift Electrically Controlled Sampling Grating Semiconductor Laser in the present invention

下面以工作波长在1550nm范围,相移电控制取样光栅半导体激光器的制作过程,来说明本发明所述的激光器及包含这种激光器阵列的光子发射模块芯片的具体制作方法。 The specific manufacturing method of the laser described in the present invention and the photon emitting module chip including the laser array will be described below by using the manufacturing process of the phase-shift electrically controlled sampling grating semiconductor laser with an operating wavelength in the range of 1550 nm.

(1)光栅掩膜板的制作:根据事先的设计,使用普通微电子工艺制作取样图案掩模板。 (1) Fabrication of the grating mask: According to the prior design, the sampling pattern mask is made using the common microelectronics process.

(2)相移电控制取样光栅半导体激光器,可通过金属-有机化学气相沉积法(Metal-organic chemical vapor deposition,MOCVD)技术进行二次外延生长来完成制作。其细节描述如下:首先在n型InP衬底材料上一次外延n型InP缓冲层(厚度200nm、掺杂浓度约1.1′1018cm-2)、100nm厚的非掺杂晶格匹配InGaAsP下限制层、应变InGaAsP多量子阱(光荧光波长1.52微米,7个量子阱:阱厚8nm,0.5%压应变,垒厚10nm,晶格匹配材料)和100nm厚的p型晶格匹配InGaAsP(掺杂浓度约1.1′1017cm-3)上限制层。接下来通过所设计的取样光掩模板,用普通曝光结合双光束全息干涉曝光的方法,把取样光栅图案转移到上限制层上的光刻胶上,然后施以材料刻蚀,在上限制层上部形成所需的非对称取样光栅结构。当光栅制作好后,再通过二次外延生长 p型InP层(厚度1700nm,掺杂浓度约1.1′1018cm-2)和p型InGaAs(厚度100nm,掺杂浓度大于1′1019cm-2)欧姆接触层。在外延生长结束后,利用普通光刻结合化学湿法刻蚀,完成脊形波导的制作,脊波导长度一般为数百微米量级,脊宽2微米,脊侧沟宽20微米,深1.5微米。然后再用等离子体增强化学气相沉积法(Plasma-Enhanced Chemical Vapor Deposition,PECVD),在脊形波导周围沉积一层300nm厚的SiO2层或有机物BCB绝缘层。再接着利用光刻和化学湿法刻蚀,去除激光器脊形波导上方的SiO2层或有机物BCB绝缘层,露出其InGaAs欧姆接触层;再用磁控溅射的方法,在整个激光器结构的上方分别镀上100nm厚的Ti 和400nm厚的Au,结合光刻工艺和化学湿法刻蚀,在脊条上方露出InGaAs的欧姆接触层上形成Ti-Au 金属P电极。此外,在把整个激光器晶片减薄到150μm后,在基底材料的下方蒸镀上500nm厚的Au-Ge-Ni(Au:Ge:Ni成分比例为84:14:2)合金作为n电极。相移区有没有光栅这两种情况都是存在的,但从激光器的性能效果来讲,没有光栅时的效果也很好或更好。 (2) Phase-shift electrically controlled sampling grating semiconductor lasers can be fabricated by secondary epitaxial growth through Metal-organic chemical vapor deposition (MOCVD) technology. The details are described as follows: First, an n-type InP buffer layer (thickness 200nm, doping concentration about 1.1′10 18 cm -2 ) is epitaxially applied on the n-type InP substrate material, and a 100nm-thick non-doped lattice matching InGaAsP lower limit layer, strained InGaAsP multiple quantum wells (photofluorescence wavelength 1.52 microns, 7 quantum wells: well thickness 8nm, 0.5% compressive strain, barrier thickness 10nm, lattice matching material) and 100nm thick p-type lattice matching InGaAsP (doped The concentration is about 1.1′10 17 cm -3 ) in the upper confinement layer. Next, through the designed sampling photomask, the sampling grating pattern is transferred to the photoresist on the upper confinement layer by means of ordinary exposure combined with double-beam holographic interference exposure, and then material etching is applied to the upper confinement layer. The upper part forms the required asymmetric sampling grating structure. After the grating is fabricated, the p-type InP layer (thickness 1700nm, doping concentration about 1.1′10 18 cm -2 ) and p-type InGaAs (thickness 100nm, doping concentration greater than 1′10 19 cm -2 ) are grown by secondary epitaxy . 2 ) Ohmic contact layer. After the epitaxial growth is completed, the ridge waveguide is fabricated by ordinary photolithography combined with chemical wet etching. The length of the ridge waveguide is generally on the order of hundreds of microns, the width of the ridge is 2 microns, the width of the ridge side groove is 20 microns, and the depth is 1.5 microns. . Then use plasma-enhanced chemical vapor deposition (Plasma-Enhanced Chemical Vapor Deposition, PECVD), deposit a layer of 300nm thick SiO 2 layer or organic BCB insulating layer around the ridge waveguide. Then use photolithography and chemical wet etching to remove the SiO2 layer or organic BCB insulating layer above the laser ridge waveguide to expose its InGaAs ohmic contact layer; Plating 100nm-thick Ti and 400nm-thick Au, combined with photolithography and chemical wet etching, formed a Ti-Au metal P electrode on the ohmic contact layer exposing InGaAs above the ridges. In addition, after thinning the entire laser wafer to 150μm, a 500nm-thick Au-Ge-Ni (Au:Ge:Ni composition ratio of 84:14:2) alloy was evaporated under the base material as the n-electrode. There are two cases of whether there is a grating in the phase shift region, but in terms of the performance effect of the laser, the effect without the grating is also good or better.

(3)基于本发明所述半导体激光器阵列的光子发射模块芯片的制作 (3) Fabrication of the photon emission module chip based on the semiconductor laser array of the present invention

激光监测器阵列、基于本发明所述半导体激光器组成的多波长激光器阵列、调制器阵列、功率均衡器阵列和复用器,通过选择区外延生长或对接生长技术,依次生长集成到同一外延晶片上,就能制成集成的光子发射模块芯片。通过设计使激光器在激光监测器阵列一侧的取样光栅取样占空比为0.5,调制器阵列一侧取样光栅取样占空比为不等于0.5的优化计算值。或者使激光器在激光监测器阵列一侧的取样光栅区长度大于调制器阵列一侧取样光栅区长度,取样光栅区长度取需要的优化计算值。这两种方法能使光子发射模块芯片在监测器阵列获得一定的激射功率、保证正常工作的前提下,使更多的激射功率从调制器阵列方向输出。 The laser monitor array, multi-wavelength laser array, modulator array, power equalizer array and multiplexer based on the semiconductor laser of the present invention are sequentially grown and integrated on the same epitaxial wafer through selective area epitaxial growth or docking growth technology , can be made into an integrated photon emission module chip. By designing, the sampling duty cycle of the sampling grating of the laser on the side of the laser monitor array is 0.5, and the sampling duty cycle of the sampling grating on the side of the modulator array is not equal to an optimal calculated value of 0.5. Or the length of the sampling grating area of the laser on the side of the laser monitor array is greater than the length of the sampling grating area on the side of the modulator array, and the length of the sampling grating area takes the required optimized calculation value. These two methods enable the photon emission module chip to output more lasing power from the direction of the modulator array under the premise that the monitor array obtains a certain lasing power and ensures normal operation.

为保持激光器的单模特性,实际在使用本发明的过程中,将选择作激射信道的±1级信道之一设计在半导体材料的增益区中心,从而使主边模的0级远离增益区。 In order to keep the single-mode characteristic of the laser, in the process of using the present invention, one of the ±1-level channels selected as the lasing channel is designed in the center of the gain region of the semiconductor material, so that the 0-level of the main side mode is far away from the gain region .

Claims (9)

1.一种基于相移电控制的取样光栅半导体激光器,其特征是采用的DFB半导体激光器结构由第一与第二两个取样光栅区和一个相移区组成;两边取样光栅区中的光栅是取样布拉格光栅SBG,中间为相移区,取样周期从1微米到数十微米量级;两个取样光栅区的电极连接在一起,但与相移区的电极相隔离;均匀取样光栅中的折射率调制强度,表示为  1. A sampling grating semiconductor laser based on phase shift electrical control, characterized in that the DFB semiconductor laser structure adopted is made up of the first and second two sampling grating regions and a phase shift region; the gratings in the sampling grating regions on both sides are Sampling Bragg grating SBG, with a phase shift area in the middle, the sampling period is from 1 micron to tens of microns; the electrodes of the two sampling grating areas are connected together, but separated from the electrodes of the phase shift area; the refraction in the uniform sampling grating Rate modulation intensity, expressed as 从式(4)知,一个取样光栅等效为许多影子光栅的叠加、一个影子光栅对应一个信道;第m级影子光栅的周期表示为  From formula (4), a sampling grating is equivalent to the superposition of many shadow gratings, and a shadow grating corresponds to a channel; the period of the mth shadow grating is expressed as 因此在第m级影子光栅中,布拉格波长表示为  Therefore, in the m-th order shadow grating, the Bragg wavelength is expressed as neff为有效折射率,取样占空比γ被定义为有均匀光栅的长度与取样周期之比,即  n eff is the effective refractive index, and the sampling duty cycle γ is defined as the ratio of the length of the uniform grating to the sampling period, that is 在一个取样光栅的除0级以外的任意一级子光栅中,第±1级子光栅中的折射率调制强度最大,所以在用取样光栅结构来制作DFB激光器时,选用第±1级子光栅之一作为激射信道;在取样光栅第±1级子光栅中,折射率调制强度Δn±1和取样占空比的关系为  In any level of sub-gratings of a sampling grating except level 0, the refractive index modulation intensity in the ±1st level sub-grating is the largest, so when using the sampling grating structure to make a DFB laser, the ±1st level sub-grating is selected One of them is used as the lasing channel; in the ±1st sub-grating of the sampling grating, the relationship between the refractive index modulation intensity Δn ±1 and the sampling duty cycle is 以第-1级子光栅为例,式(5)和(6)变化为  Taking the -1st level sub-grating as an example, formulas (5) and (6) change to 取样光栅区和相移区的有效折射率与长度,分别用nSBG和np、LSBG和LP来表示;激光器有源层的增益中心被设置在取样光栅的±1级子光栅之一的布拉格波长λ B处  The effective refractive index and length of the sampling grating area and the phase shifting area are represented by n SBG and n p , L SBG and L P respectively; the gain center of the laser active layer is set at one of the ±1-level sub-gratings of the sampling grating The Bragg wavelength λ B at 在取样光栅区和相移区注入不同电流密度时,由于自由载流子的等离子效应,nSBG和np将不同,因而在相移区将产生一个相移θ,大小为  When different current densities are injected into the sampling grating area and the phase shift area, due to the plasma effect of free carriers, n SBG and n p will be different, so a phase shift θ will be generated in the phase shift area, the magnitude of which is 由式(10)可知,在影子光栅周期保持不变的情况下,只要改变取样周期P的大小,就能实现对激光器激射波长的初步控制;  It can be seen from formula (10) that if the period of the shadow grating remains unchanged, the initial control of the lasing wavelength of the laser can be achieved only by changing the size of the sampling period P; 在取样周期P确定时,在取样光栅区、相移区注入电流IS、IP之和,即激光器工作电流(IS+IP)保持不变的条件下,由式(13)可知改变IS和IP的比例就能改变引入相移的大小,在取样光栅±1级子光栅的禁带宽度、通常为2~5nm的范围内任意调节激射波长的数值;  When the sampling period P is determined, under the condition that the sum of the injection current I S and I P in the sampling grating area and the phase shift area, that is, the laser working current (I S +I P ), remains constant, it can be known from formula (13) that The ratio of I S to I P can change the size of the introduced phase shift, and the value of the lasing wavelength can be adjusted arbitrarily within the forbidden band width of the sampling grating ± 1-level sub-grating, usually within the range of 2 to 5 nm; 其中Δns和Λ0分别是种子光栅的折射率调制深度和光栅周期,c.c.表示复共轭,Fm是取样光栅的第m级傅里叶系数,a是一个取样周期中有光栅部分的长度,P为取样周期。  Among them, Δn s and Λ 0 are the refractive index modulation depth and grating period of the seed grating respectively, cc is the complex conjugate, F m is the mth order Fourier coefficient of the sampling grating, and a is the length of the grating part in a sampling period , P is the sampling period. 2.根据权利要求1基于相移电控制的取样光栅半导体激光器,其特征是选用取样光栅第±1级子光栅之一作为激射信道;把半导体材料的增益区中心设置在所选择的激射信道布拉格波长处而远离零级信道布拉格波长。  2. According to claim 1, based on the sampling grating semiconductor laser controlled by phase shift electricity, it is characterized in that one of the ±1st level sub-gratings of the sampling grating is selected as the lasing channel; the center of the gain region of the semiconductor material is set at the selected lasing channel Bragg wavelength and away from the zero-order channel Bragg wavelength. the 3.根据权利要求2基于相移电控制的取样光栅半导体激光器,其特征是两个长度相同的取样光栅区的取样占空比不同,第一取样光栅的取样占空比γL为0.5,第二取样光栅的取样占空比γR是在0.2到0.5之间的值。  3. according to claim 2 based on the sampling grating semiconductor laser of phase shift electric control, it is characterized in that the sampling duty cycle of two identical sampling grating regions is different, the sampling duty cycle γ L of the first sampling grating is 0.5, the second The sampling duty cycle γ R of the two-sampled grating has a value between 0.2 and 0.5. 4.根据权利要求的1-3之一所述的基于相移电控制的取样光栅半导体激光器,其特征是由所述相移电控制取样光栅半导体激光器构成DFB半导体激光器单片集成阵列。  4. The sampling grating semiconductor laser based on phase-shift electrical control according to any one of claims 1-3, characterized in that the DFB semiconductor laser monolithic integrated array is formed by the phase-shift electrical control sampling grating semiconductor laser. the 5.根据权利要求4所述的基于相移电控制的取样光栅半导体激光器,其特征是激光器单片集成阵列构成的PIC发射芯片模块,由激光监测器阵列、所述基于相移电控制的取样光栅半导体激光器单片集成阵列、调制器阵列、功率均衡器阵列和复用器,通过选择区外延生长或对接生长集成到同一外延晶片上。  5. The sampling grating semiconductor laser based on phase shift electrical control according to claim 4, characterized in that the laser monolithic integrated array constitutes a PIC emitting chip module, composed of a laser monitor array, said sampling based on phase shift electrical control The monolithic integrated array of grating semiconductor lasers, modulator array, power equalizer array and multiplexer are integrated on the same epitaxial wafer through selective area epitaxial growth or butt growth. the 6.根据权利要求的1所述的基于相移电控制的取样光栅半导体激光器,其特征是占空比为0.5时,第±1级子光栅中折射率调制强度最大,对第±1级子光栅布拉格波长的反馈作用最强;占空比偏离0.5越多,则第±1级子光栅中折射率调制强度越小,对第±1级子光栅布拉格波长的反馈作用越弱。  6. The sampling grating semiconductor laser based on phase shift electrical control according to claim 1, characterized in that when the duty cycle is 0.5, the refractive index modulation intensity in the ±1st-level sub-grating is the largest, and for the ±1st-level sub-grating The feedback effect of the Bragg wavelength of the grating is the strongest; the more the duty cycle deviates from 0.5, the smaller the refractive index modulation intensity in the ±1st-level sub-gratings is, and the weaker the feedback effect on the Bragg wavelength of the ±1st-level sub-gratings is. the 7.根据权利要求的3所述的基于相移电控制的取样光栅半导体激光器,其特征是在激射功率一定的情况下,前一部分的取样占空比γL为0.5,后一部分的取样占空比γR偏离0.5越多,从后一部分取样光栅区有效输出的激光功率越大;在无法进行端面镀膜的情况下,优化后一部分的取样占空比γR,能提高激光器从这个取样光栅区一侧端面有效输出的激光功率。  7. The sampling grating semiconductor laser based on phase shift electrical control according to claim 3, characterized in that under the certain situation of laser power, the sampling duty ratio γ L of the former part is 0.5, and the sampling duty ratio of the latter part is 0.5. The more the duty ratio γ R deviates from 0.5, the greater the effective output laser power from the latter part of the sampling grating area; in the case where the end face coating cannot be performed, optimizing the sampling duty ratio γ R of the latter part can improve the laser output from the sampling grating area. The effective output laser power of the end face on one side of the zone. 8.根据权利要求的2所述的基于相移电控制的取样光栅半导体激光器,其特征是取样光栅区越长,对第±1级子光栅布拉格波长的反馈作用越强;当所述激光器一侧的取样光栅区长度保持恒定时,在激射功率一定的情况下,另一侧取样光栅区长度越小则从这一侧出射的激光功率就越大;在无法进行端面镀膜的情况下,优 化两个取样光栅区的长度,能提高激光器从长度较短的取样光栅区一侧端面有效输出的激光功率。  8. The sampling grating semiconductor laser based on phase shift electrical control according to claim 2, characterized in that the longer the sampling grating area, the stronger the feedback effect on the ±1st order sub-grating Bragg wavelength; When the length of the sampling grating area on one side is kept constant, and the laser power is constant, the smaller the length of the sampling grating area on the other side, the greater the laser power emitted from this side; Optimizing the lengths of the two sampling grating regions can increase the effective output laser power of the laser from the end face of the shorter sampling grating region. the 9.根据权利要求6所述的基于相移电控制的取样光栅半导体激光器,其特征是为减少取样光栅区、相移区注入电流间的串扰,提高改变引入相移精细调节激光器激射波长的效果,还在取样光栅区和相移区之间用氦离子注入进行电隔离;在引入相移大小在0.25π~1.75π范围内,激光器阈值电流和在正常工作、工作电流在2~3倍阈值电流时激光器输出的激光功率变化很小。  9. The sampling grating semiconductor laser based on phase shift electrical control according to claim 6 is characterized in that for reducing the crosstalk between the sampling grating area and the injection current in the phase shift area, it improves the change and introduces the phase shift fine adjustment laser lasing wavelength Effect, between the sampling grating area and the phase shift area, helium ion implantation is used for electrical isolation; when the introduced phase shift is in the range of 0.25π to 1.75π, the threshold current of the laser is 2 to 3 times that of the normal operation and the working current At the threshold current, the output laser power of the laser changes very little. the
CN201210370711.9A 2012-02-08 2012-09-29 Phase-shift electric-control sampling grating semiconductor laser and setting method therefor Active CN102916340B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210370711.9A CN102916340B (en) 2012-02-08 2012-09-29 Phase-shift electric-control sampling grating semiconductor laser and setting method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210026981.8 2012-02-08
CN201210026981 2012-02-08
CN201210370711.9A CN102916340B (en) 2012-02-08 2012-09-29 Phase-shift electric-control sampling grating semiconductor laser and setting method therefor

Publications (2)

Publication Number Publication Date
CN102916340A CN102916340A (en) 2013-02-06
CN102916340B true CN102916340B (en) 2015-01-21

Family

ID=47614625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210370711.9A Active CN102916340B (en) 2012-02-08 2012-09-29 Phase-shift electric-control sampling grating semiconductor laser and setting method therefor

Country Status (1)

Country Link
CN (1) CN102916340B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151702B (en) * 2013-03-13 2016-01-06 常州工学院 Phase shift electric control DFB semiconductor laser device and preparation method thereof
CN103746288B (en) * 2013-12-23 2017-07-14 南京大学 DFB semiconductor laser and laser array based on double exposure chirp structure
CN105071219B (en) * 2015-09-10 2017-12-26 常州工学院 A kind of adjustable double Wavelength distribution feedback type semiconductor laser device
JP2019526937A (en) 2016-09-02 2019-09-19 国立大学法人九州大学 Continuous wave organic thin film distributed feedback laser and electrically driven organic semiconductor laser diode
WO2018147470A1 (en) 2017-02-07 2018-08-16 Kyushu University, National University Corporation Current-injection organic semiconductor laser diode, method for producing same and program
CN107565381B (en) * 2017-09-14 2019-12-06 常州工学院 Distributed feedback semiconductor laser device and photonic integrated emission chip module
CN109991699B (en) * 2017-12-29 2024-04-16 北京交通大学 2 mu m wave band phase shift sampling optical fiber grating and manufacturing system and method
CN109560459A (en) * 2018-12-03 2019-04-02 中国科学院半导体研究所 Low chirp distributed Blatt reflective tunable laser and preparation method thereof
CN111817132A (en) * 2019-04-12 2020-10-23 晶连股份有限公司 Modulated Laser Diode Improved Structure
CN112615253B (en) * 2020-12-15 2022-02-11 华中科技大学 Wavelength tunable semiconductor laser
CN113224638A (en) * 2021-04-08 2021-08-06 常州工学院 SBG semiconductor laser device for sampling by using electrode
CN113991423A (en) * 2021-09-27 2022-01-28 南京华飞光电科技有限公司 Semiconductor laser based on distributed phase compensation technology
CN116683291B (en) * 2023-08-02 2023-10-03 中国科学院半导体研究所 Phase-shifted multi-wavelength semiconductor laser and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546743A1 (en) * 1991-12-12 1993-06-16 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser
US7180930B2 (en) * 2002-06-20 2007-02-20 The Furukawa Electric Co., Ltd. DFB semiconductor laser device having ununiform arrangement of a diffraction grating
CN101034788A (en) * 2006-03-09 2007-09-12 南京大学 Method and device for making the semiconductor laser based on reconstruction-equivalent chirp technology
CN101924326A (en) * 2010-09-14 2010-12-22 南京大学 DFB Semiconductor Laser Based on Special Equivalent Phase Shift

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546743A1 (en) * 1991-12-12 1993-06-16 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser
US7180930B2 (en) * 2002-06-20 2007-02-20 The Furukawa Electric Co., Ltd. DFB semiconductor laser device having ununiform arrangement of a diffraction grating
CN101034788A (en) * 2006-03-09 2007-09-12 南京大学 Method and device for making the semiconductor laser based on reconstruction-equivalent chirp technology
CN101924326A (en) * 2010-09-14 2010-12-22 南京大学 DFB Semiconductor Laser Based on Special Equivalent Phase Shift

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
用传输矩阵法分析取样光栅半导体激光器调谐特性;高劭宏等;《应用激光》;20041031;第24卷(第5期);第285-288页 *

Also Published As

Publication number Publication date
CN102916340A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
CN102916340B (en) Phase-shift electric-control sampling grating semiconductor laser and setting method therefor
CN100583579C (en) Manufacture method and device of single-chip integrated semiconductor laser array
CN104124611B (en) Single-chip integration injection locking Distributed Feedback Laser and array and its manufacture method based on reconstruct equivalent chirp
US7941024B2 (en) Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD
CN103151702B (en) Phase shift electric control DFB semiconductor laser device and preparation method thereof
CN103762500B (en) Asymmetric equivalent apodization sampling optical grating and laser based on reconstruction-equivalent chirp
CN105846312A (en) Monolithic integration double-segment type DFB semiconductor laser and array
US20100284019A1 (en) Semiconductor integrated optical device and method of making the same
CN103337788A (en) DFB semiconductor laser based on asymmetric structure of reconstruction-equivalent chirp and preparation method thereof
CN102570300B (en) Asymmetric sampling grating semiconductor laser and its manufacturing method
CN101924326B (en) DFB semiconductor laser based on special equivalent phase shift
CN103762497A (en) Reconstruction-equivalent chirp and equivalent half apodization-based DFB semiconductor laser and preparation method thereof
CN104917051A (en) Distributed coupling coefficient DFB laser based on reconstruction-equivalent chirp technology and array thereof
CN107565381B (en) Distributed feedback semiconductor laser device and photonic integrated emission chip module
JPH04303982A (en) Manufacture of optical semiconductor element
CN104701734A (en) Semiconductor laser, manufacturing method thereof and laser array
CN105071219B (en) A kind of adjustable double Wavelength distribution feedback type semiconductor laser device
CN105140779A (en) Backup type semiconductor laser based on reconstructing-equivalent chirp technology
CN103972790A (en) Asymmetric phase shifting and equivalent apodization sampling optical grating based on reconstruction-equivalent chirp and DFB laser thereof
Zhang et al. The fabrication of 10-channel DFB laser array by SAG technology
Fujii et al. Wide-wavelength range membrane laser array using selectively grown InGaAlAs MQWs on InP-on-insulator
Guo et al. 1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth
Zhao et al. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application
Ma et al. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier
JP2018006590A (en) Optical semiconductor element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant