CN102914753A - 磁共振成像采样轨迹优化方法 - Google Patents

磁共振成像采样轨迹优化方法 Download PDF

Info

Publication number
CN102914753A
CN102914753A CN2012103902855A CN201210390285A CN102914753A CN 102914753 A CN102914753 A CN 102914753A CN 2012103902855 A CN2012103902855 A CN 2012103902855A CN 201210390285 A CN201210390285 A CN 201210390285A CN 102914753 A CN102914753 A CN 102914753A
Authority
CN
China
Prior art keywords
sample track
phase encoding
space
frequency range
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103902855A
Other languages
English (en)
Other versions
CN102914753B (zh
Inventor
梁栋
刘端端
刘新
郑海荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201210390285.5A priority Critical patent/CN102914753B/zh
Publication of CN102914753A publication Critical patent/CN102914753A/zh
Application granted granted Critical
Publication of CN102914753B publication Critical patent/CN102914753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种磁共振成像采样轨迹优化方法,该方法初始选取几条相位编码线作为初始的采样轨迹,利用初始的采样轨迹进行重建得到重建图像和噪声压制因子,然后反变换得到新的K空间,与全采样的K空间进行比较获取均方差,然后根据均方差分别对低频段的相位编码线和高频段的相位编码线进行采集,且低频段和高频段采用不同的采集策略,对采样轨迹进行优化,优化效率高,保证了较高的下采样因子和重建图像质量,又大大降低了重建用时,提高了重建的效率。

Description

磁共振成像采样轨迹优化方法
【技术领域】
本发明涉及核磁共振成像领域,尤其涉及一种磁共振成像采样轨迹优化方法。
【背景技术】
磁共振成像是当前临床医学影像学的重要检查手段之一,具有无创,无辐射,高分辨率,灵活的选择成像参数和层面等优点。
然而,磁共振成像的最大缺点在于检查时间较长,缩短检查时间不仅能够节约成本,同时是心血管检查,介入手术等实时动态成像的关键所在,因此,缩短成像时间一直是磁共振技术发展的重要目标。
在磁共振成像中,成像时间长的主要原因在于K空间中相位编码线的获取时间较长。因此,需要对采样轨迹进行优化,在较少的相位编码线的情况下得到高分辨率的图像是解决成像速度问题的关键。近年来出现的压缩传感理论很好的解决的了这一问题。
传统压缩传感理论对是基于K空间的随机采样进行重建,但是此方法的下采样率较低,重建效果差,虽然能够使磁共振成像的时间变短,但是不能得到所要求质量的重建图像。
【发明内容】
有鉴于此,有必要提供一种重建质量好且用时少的磁共振成像采样轨迹优化方法。
一种磁共振成像采样轨迹优化方法,包括如下步骤:
由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集;
对采样轨迹进行重建,得到重建图像和噪声压制因子;
对重建图像进行反变换,得到新的K空间;
将新的K空间与全采样的K空间进行对比,得出K空间中每条相位编码线的均方差;
对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹;
对加入的采样轨迹进行重建,得到重建图像及噪声压制因子,判断噪声压制因子是否不变,若不变则低频段采集完成,获得低频段采集完后的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤进行循环,直至低频段采集完成;
对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹;
对高频段加入后的采样轨迹进行重建得到重建图像,判断重建图像是否达到设定图像质量,若达到则优化结束,获得最终的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤。
优选的,所述由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集的步骤具体为:
由全采样的K空间的低频段采集多条相位编码线,作为初始的采样轨迹。
优选的,所述由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集的步骤具体为:
相对全采样的K空间的中心,对称的采集多条相位编码线。
优选的,所述对采样轨迹进行重建,得到重建图像和噪声压制因子的步骤具体为:
采用非线性方法对采样轨迹进行重建,得到重建图像。
优选的,所述对重建图像进行反变换,得到新的K空间的步骤具体为:
对重建图像进行傅里叶反变换,得到新的K空间。
优选的,所述对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹的步骤具体为:
采集将低频段的相位编码线按照均方差由大到小排列的前10至15条,加入到初始的采样轨迹中。
优选的,所述对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹的步骤具体为:将候选集高频段的相位编码线分为不大于18个区,由每个区中采集均方差最大的相位编码线,加入到采样轨迹中。
一种磁共振成像采样轨迹优化方法,包括如下步骤:
由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集;
对采样轨迹进行重建,得到重建图像和噪声压制因子;
对重建图像进行反变换,得到新的K空间;
将新的K空间与全采样的K空间进行对比,得出K空间中每条相位编码线的均方差;
对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹;
对加入的采样轨迹进行重建,得到重建图像及噪声压制因子,判断噪声压制因子是否不变,若不变则低频段采集完成,获得低频段采集完后的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤进行循环,直至低频段采集完成;
对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹;
判断高频段加入后的采样轨迹是否达到设定的加速因子,若达到则优化结束,获得最终的采样轨迹,否则对高频段加入后的采样轨迹进行重建,得到重建图像并返回对重建图像进行反变换,得到新的K空间的步骤。
上述磁共振成像采样轨迹优化方法,初始选取几条相位编码线作为初始的采样轨迹,利用初始的采样轨迹进行重建得到重建图像和噪声压制因子,然后反变换得到新的K空间,与全采样的K空间进行比较获取均方差,然后根据均方差分别对低频段的相位编码线和高频段的相位编码线进行采集,且低频段和高频段采用不同的采集策略,对采样轨迹进行优化,优化效率高,保证了较高的下采样因子和重建图像质量,又大大降低了重建用时,提高了重建的效率。
【附图说明】
图1是一个实施例中磁共振成像采样轨迹优化方法的流程图;
图2是传统利用随机选取采用轨迹重建的重建图像;
图3是一个实施例中利用初始的采样轨迹进行重建的重建图像;
图4是一个实施例中利用优化后采样轨迹重建的重建图像。
【具体实施方式】
下面结合附图,对本发明的具体实施方式进行详细描述。
图1是一个实施例中压缩感知磁共振成像采样轨迹优化方法的流程图。该方法包括如下步骤:
S10:由全采样的K空间中采集多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集。
全采样的K空间中具有较多的相位编码线,初始基于压缩感知磁共振成像原理,采集多条相位编码线作为初始的采样轨迹,剩余的相位编码线作为候选集。由于K空间具有中心对称的性质,且低频段包含了图像的全局特征,大部分能量集中在低频段,高频段仅包含了图像的细节信息,该实施例中,由全采样的K空间中采集多条相位编码线,作为初始的采样轨迹的步骤具体为:由全采样的K空间的低频段采集多条相位编码线,作为初始的采样轨迹。在其他实施方式中,相对全采样的K空间的中心,对称的采集多条相位编码线。
S20:对采样轨迹进行重建,得到重建图像以及噪声压制因子。
采集初始的采样轨迹后,需要进行重建,得到重建图像以及噪声压制因子。噪声压住参数用来判断K空间低频段相位编码线是否已经采集完成。若低频段采集完成则噪声压制因子不再变化。该实施例中,采用非线性方法对采样轨迹进行重建,得到重建图像。
S30:对重建图像进行反变换,得到新的K空间。
根据重建图像的重建过程,在得到重建图像后,对重建图像进行反变换可以得到新的K空间。该实施例中,对重建图像进行傅里叶反变换,得到新的K空间。
S40:将新的K空间与全采样的K空间进行对比,得出候选集中每条相位编码线的均方差。
在得到新的K空间后,与全采样的K空间进行对比,能够得出K空间的均方差,即得出K空间中每条相位编码线的均方差,也即得出了候选集中每条相位编码线对应的均方差。
S50:对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹。
由于K空间低频段包含了图像的全局特征,在得到每条相位编码线的均方差后,首先对候选集中低频段的相位编码线进行采集,加入到初始的采样轨迹中,增加低频段的相位编码线到初始的采样轨迹中,更新初始的采样轨迹,得到低频段加入后的采样轨迹。此时,初始的采样轨迹已变成低频段加入后的采样轨迹,对采样轨迹进行了优化。该实施例中,对于候选集中低频段的相位编码线,采集将低频段的相位编码线按照均方差由大到小排列的前10至15条,加入到初始的采样轨迹中。
S60:对低频段加入后的采样轨迹进行重建,得到重建图像及噪声压制因子,判断噪声压制因子是否不变,若不变则低频段采集完成,获得低频段采集完后的采样轨迹,进行步骤S70,否则返回S30进行循环,直至低频段采集完成。
得到低频段加入后的采样轨迹后,进行重建获取重建图像及噪声压制因子,此时需要知道低频段相位编码线是否采集完成,则要判断噪声压制因子是否保持不变。如果低频段的相位编码线采集完成,采样轨迹中再加入低频段的相位编码线进行重建后,噪声压制因子保持不变,不会再变化,则低频段采集就完成,不再对低频段进行采集。否则的话,需要返回步骤S30,继续循环,对低频段的相位编码线进行采集,不断往上一循环的低频段加入后的采样轨迹中增加相位编码线,直至采样轨迹重建后,噪声压制因子相比之前不再变化为止。
S70:对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,获得高频段加入后的采样轨迹。
在对候选集中低频段的相位编码线采集完成后,由于低频段的包含的是图像的全局特征,而图像的细节信息包含在高频段,为更好的重建图像,还需对高频段的相位编码线进行采集,加入到采样轨迹中,进一步优化采样轨迹。该实施例中,将候选集高频段的相位编码线分为不大于18个区,由每个区中采集均方差最大的相位编码线,加入到低频段采集完后的采样轨迹中。
S80:对高频段加入后的采样轨迹进行重建得到重建图像;判断重建图像是否达到设定图像质量,若达到则优化结束,进行步骤S90:获取最终的采样轨迹,否则返回步骤S30。
对高频段加入后的采样轨迹进行重建,得到重建图像判断重建图像是否达到设定的图像质量,若达到则说明采样轨迹满足要求,否则返回步骤S30继续采集高频段的相位编码线,加入到采样轨迹中,直至采样轨迹重建后满足设定的图像质量。
在其他实施例中,该步骤还可为:判断高频段加入后的采样轨迹是否达到设定的加速因子,若达到则进行步骤S90,否则对高频段加入后的采样轨迹进行重建,得到重建图像并返回步骤S30。
此外,加速因子用来决定整个采样轨迹需要采集的相位编码线的条数。在初始的时候进行设定。在低频段采集完成后,高频段还需按照设定的加速因子,采集达到设定加速因子条数的相位编码线,若一次不能采集够,则需要回到步骤S30,重复进行采集,直至达到设定的加速因子为止。
由于K空间具有中心对称性质,该方法可以先在半K空间中对低频段以及高频段的相位编码线进行采集,对采样轨迹进行优化,然后对称的获取另一半K空间的相位编码线,对采样轨迹进行优化。
图2是传统利用随机选取采用轨迹重建的重建图像。图3是一个实施例中利用初始的采样轨迹进行重建的重建图像;图4是一个实施例中利用优化后采样轨迹重建的重建图像。结合图2至图4,该方法对256条相位编码线的采样轨迹进行优化,以第129条相位编码线为中心,对称的选取20条相位编码线,共21条相位编码线作为初始的采样轨迹,剩余的239条相位编码线为候选集。在低频段,每次采集10条相位编码先加入初始的采样轨迹,循环两次至噪声压制因子不变。在高频段,将剩余的相位编码线划分为18个子模块,选择每个模块中均方差最大的相位编码线加入采样轨迹,从而使得采样轨迹中低频段的相位编码线增多,整个过程仅耗时56秒,下采样因子为4.34,下采样因子提高,重建图像质量高且大大节省了时间。在相同的下采样因子下,与基于K空间分布的随机采样相比,图像的均方差有所下降,用时更少,图像质量也大大提高。
该方法,初始选取几条相位编码线作为初始的采样轨迹,利用初始的采样轨迹进行重建得到重建图像和噪声压制因子,然后反变换得到新的K空间,与全采样的K空间进行比较获取均方差,然后根据均方差分别对低频段的相位编码线和高频段的相位编码线进行采集,且低频段和高频段采用不同的采集策略,对采样轨迹进行优化,优化效果高,保证了较高的下采样因子和重建图像质量,又大大降低了重建用时,提高了重建的效率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种磁共振成像采样轨迹优化方法,包括如下步骤:
由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集;
对采样轨迹进行重建,得到重建图像和噪声压制因子;
对重建图像进行反变换,得到新的K空间;
将新的K空间与全采样的K空间进行对比,得出K空间中每条相位编码线的均方差;
对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹;
对加入的采样轨迹进行重建,得到重建图像及噪声压制因子,判断噪声压制因子是否不变,若不变则低频段采集完成,获得低频段采集完后的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤进行循环,直至低频段采集完成;
对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹;
对高频段加入后的采样轨迹进行重建得到重建图像,判断重建图像是否达到设定图像质量,若达到则优化结束,获得最终的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤。
2.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集的步骤具体为:
由全采样的K空间的低频段采集多条相位编码线,作为初始的采样轨迹。
3.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集的步骤具体为:
相对全采样的K空间的中心,对称的采集多条相位编码线。
4.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述对采样轨迹进行重建,得到重建图像和噪声压制因子的步骤具体为:
采用非线性方法对采样轨迹进行重建,得到重建图像。
5.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述对重建图像进行反变换,得到新的K空间的步骤具体为:
对重建图像进行傅里叶反变换,得到新的K空间。
6.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹的步骤具体为:
采集将低频段的相位编码线按照均方差由大到小排列的前10至15条,加入到初始的采样轨迹中。
7.根据权利要求1所述的磁共振成像采样轨迹优化方法,其特征在于,所述对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹的步骤具体为:将候选集高频段的相位编码线分为不大于18个区,由每个区中采集均方差最大的相位编码线,加入到采样轨迹中。
8.一种磁共振成像采样轨迹优化方法,包括如下步骤:
由全采样的K空间中选取多条相位编码线,作为初始的采样轨迹,剩余相位编码线作为候选集;
对采样轨迹进行重建,得到重建图像和噪声压制因子;
对重建图像进行反变换,得到新的K空间;
将新的K空间与全采样的K空间进行对比,得出K空间中每条相位编码线的均方差;
对候选集中低频段的相位编码线进行采集,采集将低频段的相位编码线按照均方差由大到小排列的前几条,并加入初始的采样轨迹中,得到低频段加入后的采样轨迹;
对加入的采样轨迹进行重建,得到重建图像及噪声压制因子,判断噪声压制因子是否不变,若不变则低频段采集完成,获得低频段采集完后的采样轨迹,否则返回对重建图像进行反变换,得到新的K空间的步骤进行循环,直至低频段采集完成;
对候选集中高频段的相位编码线进行采集,将高频段的相位编码线分为多个区,采集每个区中均方差最大的相位编码线加入低频段采集完后的采样轨迹中,得到高频段加入后的采样轨迹;
判断高频段加入后的采样轨迹是否达到设定的加速因子,若达到则优化结束,获得最终的采样轨迹,否则对高频段加入后的采样轨迹进行重建,得到重建图像并返回对重建图像进行反变换,得到新的K空间的步骤。
CN201210390285.5A 2011-12-08 2012-10-15 磁共振成像采样轨迹优化方法 Active CN102914753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210390285.5A CN102914753B (zh) 2011-12-08 2012-10-15 磁共振成像采样轨迹优化方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110406359 2011-12-08
CN201110406359.5 2011-12-08
CN201210390285.5A CN102914753B (zh) 2011-12-08 2012-10-15 磁共振成像采样轨迹优化方法

Publications (2)

Publication Number Publication Date
CN102914753A true CN102914753A (zh) 2013-02-06
CN102914753B CN102914753B (zh) 2014-11-26

Family

ID=47613199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210390285.5A Active CN102914753B (zh) 2011-12-08 2012-10-15 磁共振成像采样轨迹优化方法

Country Status (1)

Country Link
CN (1) CN102914753B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738840A (zh) * 2018-12-29 2019-05-10 佛山瑞加图医疗科技有限公司 一种磁共振成像系统和方法
CN112782629A (zh) * 2020-12-30 2021-05-11 深圳市联影高端医疗装备创新研究院 一种磁共振扫描控制方法、存储介质及系统
CN113917379A (zh) * 2021-09-30 2022-01-11 中国科学院精密测量科学与技术创新研究院 一种高信噪比的磁共振成像k空间轨迹测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435966A (zh) * 2011-09-02 2012-05-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及系统
CN102540116A (zh) * 2011-12-08 2012-07-04 中国科学院深圳先进技术研究院 磁共振成像方法和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435966A (zh) * 2011-09-02 2012-05-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及系统
CN102540116A (zh) * 2011-12-08 2012-07-04 中国科学院深圳先进技术研究院 磁共振成像方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG-HOON LEE等: "Evaluation of Velocity Measurements for Keyhole Imaging Combined Phase Contrast MR Angiography", 《2011 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD》, 31 December 2011 (2011-12-31), pages 3450 - 3452 *
ZHI-PEI LIANG 等: "Constrained Imaging Overcoming the Limitations of the Fourier Series", 《IEEE ENGINEERING IN MEDICINE AND BIOLOGY》, 31 December 1996 (1996-12-31), pages 126 - 132 *
何珊: "基于部分K空间数据的并行磁共振成像", 《华南理工大学硕士学位论文》, 31 December 2011 (2011-12-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738840A (zh) * 2018-12-29 2019-05-10 佛山瑞加图医疗科技有限公司 一种磁共振成像系统和方法
CN109738840B (zh) * 2018-12-29 2022-06-14 佛山瑞加图医疗科技有限公司 一种磁共振成像系统和方法
CN112782629A (zh) * 2020-12-30 2021-05-11 深圳市联影高端医疗装备创新研究院 一种磁共振扫描控制方法、存储介质及系统
CN112782629B (zh) * 2020-12-30 2022-05-03 深圳市联影高端医疗装备创新研究院 一种磁共振扫描控制方法、存储介质及系统
CN113917379A (zh) * 2021-09-30 2022-01-11 中国科学院精密测量科学与技术创新研究院 一种高信噪比的磁共振成像k空间轨迹测量方法

Also Published As

Publication number Publication date
CN102914753B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
CN108632621B (zh) 一种基于层次划分的点云属性压缩方法
CN103220528B (zh) 通过使用大型变换单元编码和解码图像的方法和设备
Lin et al. A 242mw, 10mm21080p h. 264/avc high profile encoder chip
CN105049848B (zh) 通过使用去块滤波对视频进行解码的方法和设备
CN105721867B (zh) 对视频解码的方法
CN105681802B (zh) 视频解码设备
CN102914753B (zh) 磁共振成像采样轨迹优化方法
CN107277506B (zh) 基于自适应运动矢量精度的运动矢量精度选择方法及装置
CN103533355B (zh) 一种hevc快速编码方法
CN103207409A (zh) 一种频率域全波形反演地震速度建模方法
CN105744273A (zh) 对视频进行编码和解码的方法和设备
CN108322745A (zh) 一种基于不可分二次变换模式的帧内快速选择方法
CN103529413B (zh) 磁共振成像方法与装置、k空间的重建方法与装置
CN105791826A (zh) 一种基于数据挖掘的hevc帧间快速模式选择方法
CN102890866A (zh) 基于多核支持向量回归机的交通流速度估计方法
CN102801976A (zh) 基于三维小波视频编码的帧间块模式选择方法
CN106028035A (zh) Hevc中的系数编码调谐
CN104205848A (zh) 使用用于并行处理的统一语法的视频编码方法和设备以及视频解码方法和设备
CN103163496A (zh) 平面回波成像方法及系统
CN103634600A (zh) 一种基于ssim评价的视频编码模式选择方法、系统
Zhou et al. CloudBrain-ReconAI: An online platform for MRI reconstruction and image quality evaluation
CN103186886A (zh) 磁共振成像的图像重建方法及图像重建装置
CN110753224B (zh) 一种用于随钻测量数据压缩的数据重排方法和系统
CN101511020A (zh) 一种基于稀疏分解的图像压缩方法
CN108322743B (zh) 一种基于模式依赖特性的不可分二次变换模式的帧内快速选择方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant