CN102910669A - 一种冶金法制备纳米ZnO的方法 - Google Patents

一种冶金法制备纳米ZnO的方法 Download PDF

Info

Publication number
CN102910669A
CN102910669A CN2012104432325A CN201210443232A CN102910669A CN 102910669 A CN102910669 A CN 102910669A CN 2012104432325 A CN2012104432325 A CN 2012104432325A CN 201210443232 A CN201210443232 A CN 201210443232A CN 102910669 A CN102910669 A CN 102910669A
Authority
CN
China
Prior art keywords
hydrogen
zinc
zno
nano
zno powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104432325A
Other languages
English (en)
Inventor
李孔斋
刘自松
王�华
魏永刚
祝星
杜云鹏
吴冬冬
宁培洪
郑燕娥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN2012104432325A priority Critical patent/CN102910669A/zh
Publication of CN102910669A publication Critical patent/CN102910669A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种冶金法制备纳米ZnO的方法,采用氢气还原锌矿,形成锌液加高温蒸发,然后通水蒸气反应形成ZnO粉和氢气,氢气循环使用。本发明既能制备出优质的纳米氧化锌,又能将产生的氢气循环利用。该方法制得的氧化锌粉体纯度高,粒度均匀;整个方法的成本低,所用设备简单,易进行工业化生产,是一种新型高效制取氧化锌纳米粉体和氢气循环利用的技术。

Description

一种冶金法制备纳米ZnO的方法
技术领域
本发明涉及一种冶金法制备纳米ZnO的方法,属于能源及材料技术领域。
背景技术
在纳米材料的研究中,纳米氧化锌是近年来开发出的一种新型多功能、多用途、高性能精细化工产品,在很多场合下扮演着一种不可替代型生产资料的角色,市场需求量也随之增长。氧化锌粉体广泛应用于各个行业中,特别是纳米级氧化锌粉体由于其尺寸小、比表面积大,呈现出表面效应、体积效应、量子隧道效应,具有非迁移性、荧光性、光吸收性和散射紫外光能力。因此氧化锌粉体可用于制备压敏电阻、变阻器、磁性材料、荧光体、紫外线屏蔽材料、气体传感器、图像记录材料、高级涂料与增白剂等广泛作用,其前景十分广阔。
氢气作为未来的理想能源其制备方法目前较多,形成规模化的主要有:含烃化石燃料转化制氢、电解水制氢等;除此外还有光解水制氢、生物制氢、热化学制氢等,该类方法目前虽未规模化,却代表着氢能制备新技术发展的方向。其中利用金属热化学分解水制氢技术是一种前景可观的高纯氢气制取技术。
纳米氧化锌的制备已应用到生产上的制备方法主要有:化学沉淀法、溶胶—凝胶法,乳化法、微乳化法、固相化学反应法。这些方法的制备过程复杂,工艺条件要求苛刻,且制备成本较高,造成环境污染。本发明提供的方法工艺简单,成本低廉,制备的氧化锌纯度高,粒度均匀,同时产生清洁能源氢气且可循环利用,对于节能减排较为有利。
发明内容
为解决传统氧化锌制备工艺的不足,本发明提供一种冶金法制备纳米ZnO的方法,通过下列技术方案实现。
一种冶金法制备纳米ZnO的方法,采用氢气还原锌矿,形成锌液加高温蒸发,然后通水蒸气反应形成ZnO粉和氢气,氢气循环使用,具体步骤如下:
(1)将锌矿在500~1000℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在900~1200℃下蒸发成锌蒸汽;
(3)向步骤(2)中的锌蒸汽中通入100~600℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经冷却降温后进行气固分离,即得到纳米ZnO和氢气。
所述步骤(3)通入水蒸气的流量为0.1~10g/min。
所述步骤(3)所得氢气返回步骤(1)循环使用。
本发明冶金法制备纳米ZnO的方法,既能制备出优质的纳米氧化锌,又能将产生的氢气循环利用。该方法制得的氧化锌粉体纯度高,粒度均匀;整个方法的成本低,所用设备简单,易进行工业化生产,是一种新型高效制取氧化锌纳米粉体和氢气循环利用的技术。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1
(1)将锌矿在700℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在950℃下蒸发成锌蒸汽;
(3)以流量为1g/min向步骤(2)中的锌蒸汽中通入200℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经换热器换热冷却降温后进行气固分离,即得到纳米ZnO和氢气;所得氢气返回步骤(1)循环使用。
实施例2
(1)将锌矿在800℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在1000℃下蒸发成锌蒸汽;
(3)以流量为4g/min向步骤(2)中的锌蒸汽中通入400℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经换热器换热冷却降温后进行气固分离,即得到纳米ZnO和氢气;所得氢气返回步骤(1)循环使用。
实施例3
(1)将锌矿在900℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在1100℃下蒸发成锌蒸汽;
(3)以流量为6g/min向步骤(2)中的锌蒸汽中通入100~600℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经换热器换热冷却降温后进行气固分离,即得到纳米ZnO和氢气;所得氢气返回步骤(1)循环使用。
实施例4
(1)将锌矿在1000℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在1200℃下蒸发成锌蒸汽;
(3)以流量为10g/min向步骤(2)中的锌蒸汽中通入600℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经换热器换热冷却降温后进行气固分离,即得到纳米ZnO和氢气;所得氢气返回步骤(1)循环使用。
实施例5
(1)将锌矿在500℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在900℃下蒸发成锌蒸汽;
(3)以流量为0.1g/min向步骤(2)中的锌蒸汽中通入100℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经换热器换热冷却降温后进行气固分离,即得到纳米ZnO和氢气;所得氢气返回步骤(1)循环使用。

Claims (3)

1.一种冶金法制备纳米ZnO的方法,其特征在于:采用氢气还原锌矿,形成锌液加高温蒸发,然后通水蒸气反应形成ZnO粉和氢气,氢气循环使用,具体步骤如下:
(1)将锌矿在500~1000℃下通入氢气进行反应,使氢气还原锌矿形成锌液;
(2)将步骤(1)形成的锌液在900~1200℃下蒸发成锌蒸汽;
(3)向步骤(2)中的锌蒸汽中通入100~600℃的水蒸汽,与锌蒸汽反应生成ZnO粉末和氢气;
(4)收集步骤(3)所得ZnO粉末和氢气,经冷却降温后进行气固分离,即得到纳米ZnO和氢气。
2.根据权利要求1所述的冶金法制备纳米ZnO的方法,其特征在于:所述步骤(3)通入水蒸气的流量为0.1~10g/min。
3.根据权利要求1或2所述的冶金法制备纳米ZnO的方法,其特征在于:所述步骤(3)所得氢气返回步骤(1)循环使用。
CN2012104432325A 2012-11-08 2012-11-08 一种冶金法制备纳米ZnO的方法 Pending CN102910669A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104432325A CN102910669A (zh) 2012-11-08 2012-11-08 一种冶金法制备纳米ZnO的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104432325A CN102910669A (zh) 2012-11-08 2012-11-08 一种冶金法制备纳米ZnO的方法

Publications (1)

Publication Number Publication Date
CN102910669A true CN102910669A (zh) 2013-02-06

Family

ID=47609280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104432325A Pending CN102910669A (zh) 2012-11-08 2012-11-08 一种冶金法制备纳米ZnO的方法

Country Status (1)

Country Link
CN (1) CN102910669A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614119A (zh) * 2013-11-07 2014-03-05 昆明理工大学 一种Zn/ZnO包裹性蓄热材料的制备方法
CN113247945A (zh) * 2021-05-20 2021-08-13 山西于斯为盛环保科技有限公司 一种治理冶金含锌灰过程中锌蒸气合成氧化锌的装置和方法
CN114436321A (zh) * 2022-03-25 2022-05-06 西安交通大学 一种氢气循环还原制备高纯纳米ZnO的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396117A (zh) * 2002-06-13 2003-02-12 山东小鸭集团有限责任公司 一种纳米氧化锌的制备方法
US20060071207A1 (en) * 2004-10-01 2006-04-06 Sharp Laboratories Of America, Inc. Selective deposition of ZnO nanostructures on a silicon substrate using a nickel catalyst and either patterned polysilicon or silicon surface modification
CN101746724A (zh) * 2009-12-25 2010-06-23 昆明理工大学 一种同时制取氢气与氧化锌粉体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396117A (zh) * 2002-06-13 2003-02-12 山东小鸭集团有限责任公司 一种纳米氧化锌的制备方法
US20060071207A1 (en) * 2004-10-01 2006-04-06 Sharp Laboratories Of America, Inc. Selective deposition of ZnO nanostructures on a silicon substrate using a nickel catalyst and either patterned polysilicon or silicon surface modification
CN101746724A (zh) * 2009-12-25 2010-06-23 昆明理工大学 一种同时制取氢气与氧化锌粉体的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614119A (zh) * 2013-11-07 2014-03-05 昆明理工大学 一种Zn/ZnO包裹性蓄热材料的制备方法
CN103614119B (zh) * 2013-11-07 2016-05-11 昆明理工大学 一种Zn/ZnO包裹性蓄热材料的制备方法
CN113247945A (zh) * 2021-05-20 2021-08-13 山西于斯为盛环保科技有限公司 一种治理冶金含锌灰过程中锌蒸气合成氧化锌的装置和方法
CN113247945B (zh) * 2021-05-20 2023-03-14 山西于斯为盛环保科技有限公司 一种治理冶金含锌灰过程中锌蒸气合成氧化锌的装置和方法
CN114436321A (zh) * 2022-03-25 2022-05-06 西安交通大学 一种氢气循环还原制备高纯纳米ZnO的装置及方法
CN114436321B (zh) * 2022-03-25 2022-12-06 西安交通大学 一种氢气循环还原制备高纯纳米ZnO的装置及方法

Similar Documents

Publication Publication Date Title
Ge et al. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr (VI)
Li et al. A facile route to the synthesis of magnetically separable BiOBr/NiFe2O4 composites with enhanced photocatalytic performance
Lin et al. Hollow direct Z‒Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production
Wei et al. Green and controllable synthesis of one-dimensional Bi2O3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr (VI)
Yuan et al. A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: solvothermal synthesis, characterization and improved visible-light photocatalytic activity
Wang et al. Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light
Li et al. Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity
Li et al. Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances
Shui et al. Green sonochemical synthesis of cupric and cuprous oxides nanoparticles and their optical properties
Li et al. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites
Tavakoli et al. Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice
Li et al. A facile approach assembled magnetic CoFe2O4/AgBr composite for dye degradation under visible light
Li et al. Spinel NiFe2O4 nanoparticles decorated BiOBr nanosheets for improving the photocatalytic degradation of organic dye pollutants
Chen et al. Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light
Ge et al. Magnetically separable Ag/AgBr/NiFe2O4 composite as a highly efficient visible light plasmonic photocatalyst
Sheikhiabadi et al. Hydrothermal synthesis and optical properties of antimony sulfide micro and nano-size with different morphologies
Xiao et al. Synthesis of lanthanum oxide nanosheets by a green carbonation process
Chaisorn et al. A novel CeO2/InVO4 composite with high visible-light induced photocatalytic activity
CN104600391A (zh) 利用废旧锂离子电池制备锰掺杂钴铁氧体磁致伸缩材料的方法
CN102910669A (zh) 一种冶金法制备纳米ZnO的方法
CN109368688A (zh) 一种高纯度氧化锌间接法的生产工艺
Liu et al. Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater
Bhattacharjee et al. Facile synthesis of 2-dimensional CuO nanoleaves and their degradation behavior for Eosin Y
Yao et al. Synthesis of core–shell nanostructured magnetic photocatalyst Fe 3 O 4@ SiO 2@ Ag 3 PO 4 with excellent visible-light-responding photocatalytic activity
Han et al. Fabrication of ZnO nanorods/Fe 3 O 4 quantum dots nanocomposites and their solar light photocatalytic performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20130206