CN102900606A - 基于有限时间保成本稳定的风电机组变桨距控制器设计方法 - Google Patents

基于有限时间保成本稳定的风电机组变桨距控制器设计方法 Download PDF

Info

Publication number
CN102900606A
CN102900606A CN2012103479324A CN201210347932A CN102900606A CN 102900606 A CN102900606 A CN 102900606A CN 2012103479324 A CN2012103479324 A CN 2012103479324A CN 201210347932 A CN201210347932 A CN 201210347932A CN 102900606 A CN102900606 A CN 102900606A
Authority
CN
China
Prior art keywords
wind
model
theta
wind turbine
turbine generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103479324A
Other languages
English (en)
Other versions
CN102900606B (zh
Inventor
张磊
刘卫朋
张琨
赵微微
高惠娟
穆显显
王伟朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201210347932.4A priority Critical patent/CN102900606B/zh
Publication of CN102900606A publication Critical patent/CN102900606A/zh
Application granted granted Critical
Publication of CN102900606B publication Critical patent/CN102900606B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明提出一种基于有限时间保成本稳定的风电机组变桨距控制器设计方法:利用模糊T-S模型近似表示风电机组变桨距系统的连续时间非线性模型;根据获得的模糊T-S模型,利用单点模糊化、乘积推理、重心解模糊化得到动态模糊模型;根据获得的动态模糊模型以及有限时间稳定涵义,设计风电机组变桨距状态反馈控制器,并利用得到的控制器对风电机组的桨距角、风力发电机转速和风电机组输出电流进行控制。

Description

基于有限时间保成本稳定的风电机组变桨距控制器设计方法
技术领域
本发明涉及风电机组变桨距的控制,尤其是一种基于有限时间保成本稳定的控制方法。
背景技术
由于风能是随机性能源,当风速发生变化时,风力机轴上输出的功率也随之发生变化。因此,如何调节风力机的输出功率对并网运行的风力发电机而言是十分重要的关键技术之一。目前,水平轴风力机功率调节方式主要分为两种,即定桨距失速调节和变桨距功率调节两种。
定桨距失速功率调节的基本原理是:利用桨叶本身的气动特性,即在额定风速以内,叶片的升力系数较高,风能的利用系数Cp也较高,而风速超过额定值时,叶片进入失速状态,只是升力不再增加,风轮转速将不再随着风速的增加而增加,从而达到限制风力机输出功率的目的。概括地说,失速功率调节既是利用叶片的气动失速功率调节,又是利用叶片的气动失速特性限制风力机叶片吸收风能,达到防止风力机的输出功率过大,从而达到维持风力机转速恒定。这种调节方式的优点是变桨距调节机构简单,运行可靠性较高,但存在风能损失大,风力机的起动性能较差,叶片上所承受的气动推力较大等缺点。
变桨距功率调节方式的基本原理是:当风力变化使风力机的风轮转速偏离了额定转速时,在规定的时间内,借助于叶片桨距调节控制器的控制,改变风力机风轮叶片的桨距角,维持风力机的转速恒定,从而调整风力机的输出功率。目前常见的控制算法有以下几种:
(1)基于鲁棒控制算法的变桨距控制技术,可实现在有建模不确定性条件下的最大风能捕获,在基本保证最大风能捕获的情况下,能使转子轴上转矩变化的幅值减小一个数量级。鲁棒控制还可以解决偏航问题,以及通过控制驱动链中的转矩实现风能转换系统中疲劳负载控制器的设计。
(2)基于模糊算法的智能变桨距控制器技术,能够有效适应非线性系统,变桨距模糊控制采用改变桨距角以改变空气动力转矩的方法来调节风力机风轮的功率系数,进而控制风力机的输出功率。
(3)基于模糊RBF神经网络的风电机组变桨距控制,采用神经网络实现模糊映射过程,根据输入-输出训练数据自动地提取控制规则,确定前件和后件参数。该控制器基于实时数据进行计算,能够不断优化其内部参数使系统可以克服非线性及时变性,满足了系统的动态特性和稳态性能。
发明内容
本发明对现有技术进行改进,旨在使风电机组变桨距控制系统在有限时间内保成本稳定。
本发明的技术方案为:
一种基于有限时间保成本稳定的风电机组变桨距控制方法,包括以下步骤:
第一步:对于风电机组变桨距系统,建立连续时间非线性模型
Figure BSA00000779624900021
并由如下模糊T-S模型近似表示:
被控对象模型规则i(i=1,2,...,r)
如果θ1(t)为Ni1,θ2(t)为Ni2 θ3(t)为Ni3
那么 x · ( t ) = A i x ( t ) + B i u ( t )
其中,θ1(t)、θ2(t)和θ3(t)分别表示风速、风力发电机转速和输出功率;Ni1、Ni2和Ni3分别为第i条规则中θ1(t)、θ2(t)和θ3(t)对应的语言变量;x(t)为由桨距角、风力发电机转速和风力发电机输出电流构成的向量;u(t)表示桨距角期望输入;(Ai,Bi)表示第i条被控对象模型规则对应的状态方程系数;r为控制规则数(本发明取值为9或16);
第二步:对上述模糊T-S模型进行乘积推理、重心解模糊化处理,得到如下动态模糊模型:
x · ( t ) = Σ i = 1 r h i ( θ ( t ) ) [ A i x ( t ) + B i u ( t ) ]
其中, h i ( θ ( t ) ) = h il ( θ 1 ( t ) ) h i 2 ( θ 2 ( t ) ) h i 3 ( θ 3 ( t ) ) Σ m = 1 r h m 1 ( θ 1 ( t ) ) h m 2 ( θ 2 ( t ) ) h m 3 ( θ 3 ( t ) ) 表示被控对象模型符合第i条规则的程度;hi11(t))、hi22(t))和hi33(t))分别为θ1(t)、θ2(t)和θ3(t)的隶属度函数,当θ1(t)、θ2(t)和θ3(t)取为具体数值时,其对应的隶属度函数取值分别为hi11(t))、hi22(t))和hi33(t));
第三步:根据有限时间稳定的涵义以及上述被控对象模型,设计由如下模糊T-S模型表示的控制器模型,其中,每个被控对象模型规则对应一个控制器模型规则:
控制器模型规则j(j=1,2,...,r)
如果θ1(t)为Nj1,θ2(t)为Nj2 θ3(t)为Nj3
那么u(t)=Kjx(t)
其中,Kj为增益矩阵;
对上述控制器模型进行乘积推理、重心解模糊化,整理得到如下控制器:
u ( t ) = Σ i = 1 r h j ( θ ( t ) ) K j x ( t )
其中,Njk(j=1,2,...,r,k=1,2,3)与第一步中的Nik(i=1,2,...,r,k=1,2,3)一致,hj(θ(t))(j=1,2,...,r)与第二步中的hi(θ(t))(i=1,2,...,r)一致;
第四步:利用第三步得到的桨距角指令输入u(t),对桨距角、风力发电机转速和风力发电机输出电流进行控制。
具体实施方式
【风电机组的变桨距调节原理】
由风能利用系数Cp=2P/ρv3A知,风力机吸收风能产生的输出功率为P=Cpρv3A/2;风力机将产生的能量转变为机械能传递给负载,机械能表达式:
Pm=Tw    (1)
式中:Pm-机械能;T-风力机扭矩;ω-风力机角速度,这里的扭矩T由负载决定,这样由式(1)可得到:
ω=ρπCpR2v3/2T
当风力机处于一定的风速下,对于一定的负载,ρ、π、R亦为常量,那么转速就取决于风能利用系数的大小,则有ω∝Cp。根据叶素特性理论分析风轮起动后以某种速度稳定旋转时叶片的受力情况,从而得出理想情况下气流与叶片各角的关系:
I=i+β
tgI=v/ωr=1/λ
式中:I-倾角;i-攻角;β-桨距角;λ-尖速比。
根据力的平衡关系,叶片的扭矩为:
T=Cmρv2AR/2
W r = v sin I
C m = C L ( sin I - 1 C L / C D cos I ) sin 2 I
式中:Cm-扭矩系数;A-风轮的迎风面积;R-风轮半径;Wr-叶片的相对风速。
对于在一定转速下运转的风力机,当风速和风向一定时,Wr和I为定值。如果增大攻角(减小桨距角),升力系数将增大,升阻比也将增大,扭矩系数也会增大,反之亦然。所以通过改变风力机桨距角β,就可以改变风力机的转速,这就是风力机变桨距调节原理。通常是以风速和风力机的转速作为叶片桨距角控制器动作的信号。
【有限时间保成本稳定】
由李亚普诺夫的渐进稳定理论开始,稳定性理论被人们广泛的研究。在研究过程中,一般定义了一个无限的时间区间,即当时间趋于无穷时,控制系统误差稳定在一领域内。而在实际应用中,往往不考虑时间趋于无穷的稳定情况,而仅考虑在设定时间范围内的稳定情况,由此引入有限时间稳定的概念,通过稳定要求的弱化,带来控制系统的动态性能提升。保成本稳定是指在反馈控制系统中加入保成本函数后,该系统仍然能保持稳定的状态,其中,[0 T]表示考察的时间范围,Q1和Q2分别表示状态与输入的增益矩阵。
定义1:对于被控对象
Figure BSA00000779624900042
闭环控制系统被称为[0,T]内有限时间稳定是指:存在参数(c1,c2,T,RC)满足
Figure BSA00000779624900043
都有 x T ( 0 ) R C x ( 0 ) ≤ c 1 ⇒ x T ( t ) R C x ( t ) ≤ c 2 , 其中0<c1<c2,T∈R+以及RC>0。
定义2:对于连续非线性系统,如果存在一个可靠的模糊控制器和一个标量Ξ,那么这个闭环系统是有限时间稳定性的,并且保成本函数值满足J<Ξ,那么Ξ就是保成本的界限,同时该控制器是一个有限时间的可靠保证成本模糊控制律。
【变桨距控制方法】
利用模糊T-S模型近似表示风电机组变桨距系统的连续时间非线性模型;根据获得的模糊T-S模型,利用单点模糊化、乘积推理、重心解模糊化得到动态模糊模型;根据获得的动态模糊模型以及有限时间稳定涵义,设计风电机组变桨距状态反馈控制器,并利用得到的控制器对风电机组的桨距角、风力发电机转速和风电机组输出电流进行控制,具体步骤如下:
第一步:对于风电机组变桨距系统,建立连续时间非线性模型并由如下模糊T-S模型近似表示:
被控对象模型规则i(i=1,2,...,r)
如果θ1(t)为Ni1,θ2(t)为Ni2 θ3(t)为Ni3
那么 x · ( t ) = A i x ( t ) + B i u ( t )
其中,θ1(t)、θ2(t)和θ3(t)分别表示风速、风力发电机转速和输出功率;Ni1、Ni2和Ni3分别为第i条规则中θ1(t)、θ2(t)和θ3(t)对应的语言变量;x(t)为由桨距角、风力发电机转速和风力发电机输出电流构成的向量;u(t)表示桨距角期望输入;(Ai,Bi)表示第i条被控对象模型规则对应的状态方程系数;r为控制规则数(本发明取值为9或16);
第二步:对上述模糊T-S模型进行乘积推理、重心解模糊化处理,得到如下动态模糊模型:
x · ( t ) = Σ i = 1 r h i ( θ ( t ) ) [ A i x ( t ) + B i u ( t ) ]
其中, h i ( θ ( t ) ) = h il ( θ 1 ( t ) ) h i 2 ( θ 2 ( t ) ) h i 3 ( θ 3 ( t ) ) Σ m = 1 r h m 1 ( θ 1 ( t ) ) h m 2 ( θ 2 ( t ) ) h m 3 ( θ 3 ( t ) ) 表示被控对象模型符合第i条规则的程度;hi11(t))、hi22(t))和hi33(t))分别为θ1(t)、θ2(t)和θ3(t)的隶属度函数,当θ1(t)、θ2(t)和θ3(t)取为具体数值时,其对应的隶属度函数取值分别为hi11(t))、hi22(t))和hi33(t));
第三步:根据有限时间稳定的涵义以及上述被控对象模型,设计由如下模糊T-S模型表示的控制器模型,其中,每个被控对象模型规则对应一个控制器模型规则:
控制器模型规则j(j=1,2,...,r)
如果θ1(t)为Nj1,θ2(t)为Nj2 θ3(t)为Nj3
那么u(t)=Kjx(t)
其中,Kj为增益矩阵;
对上述控制器模型进行乘积推理、重心解模糊化,整理得到如下控制器:
u ( t ) = Σ i = 1 r h j ( θ ( t ) ) K j x ( t )
其中,Njk(j=1,2,...,r,k=1,2,3)与第一步中的Nik(i=1,2,...,r,k=1,2,3)一致,hj(θ(t))(j=1,2,...,r)与第二步中的hi(θ(t))(i=1,2,...,r)一致;
第四步:利用第三步得到的桨距角指令输入u(t),对桨距角、风力发电机转速和风力发电机输出电流进行控制。
【控制参数设计】
根据以上定义1~2,当标量α≥0,对称正定阵Q∈Rn×n以及矩阵Wj(1≤i,j≤r)满足一定的关系式时,所述控制系数Kj取为
Figure BSA00000779624900061
以保证非线性系统有一个保成本的界限Ξ=λmax(Q-1)c1eαT,即满足控制系统在考察的时间范围[0,T]内有限时间保成本稳定,所述关系式为:
Q ~ A i T + A i Q ~ + W i T + B i T + B i W i - &alpha; Q ~ Q ~ W i T Q ~ - Q 1 - 1 0 W i 0 - Q 2 - 1 < 01 &le; i &le; r Q ~ ( A i + B i K j ) T + ( A i + B i K j ) Q ~ + Q ~ ( A j + B j K i ) T + ( A j + B j K i ) Q ~ - 2 &alpha; Q ~ Q ~ W i T W j T Q ~ - 1 2 Q 1 - 1 0 0 W i 0 - Q 2 - 1 0 W j 0 0 - Q 2 - 1 < 01 &le; i < j &le; r c 1 &lambda; min ( Q ) < c 2 e - &alpha;T &lambda; max ( Q )
其中
Figure BSA00000779624900063
参数(c1,c2,T,RC)满足
Figure BSA00000779624900064
都有
Figure BSA00000779624900065
其中,0<c1<c2,T∈R+以及RC>0,并且RC表示状态增益矩阵,c1表示初始状态x(0)对应的xT(0)RCx(0)取值上限,c2表示在时间(0,T]内状态x(t)对应的xT(t)RCx(t)取值上限,λmin(Q)表示矩阵Q的最小特征值,λmax(Q)表示矩阵Q的最大特征值,Q1和Q2分别表示状态与输入的增益矩阵。
以上关系式可以利用Matlab的LMI工具箱进行求解。
要说明的是,本发明实施例的控制方法可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以执行本发明各个实施例所述的方法。这里所称的存储介质,如:ROM/RAM、磁盘、光盘等。综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于有限时间保成本稳定的风电机组变桨距控制方法,包括以下步骤:
第一步:对于风电机组变桨距系统,建立连续时间非线性模型并由
如下模糊T-S模型近似表示:
被控对象模型规则i(i=1,2,...,r)
    如果θ1(t)为Ni1,θ2(t)为Ni2,θ3(t)为Ni3
那么 x &CenterDot; ( t ) = A i x ( t ) + B i u ( t )
其中,θ1(t)、θ2(t)和θ3(t)分别表示风速、风力发电机转速和输出功率;Ni1、Ni2和Ni3分别为第i条规则中θ1(t)、θ2(t)和θ3(t)对应的语言变量;x(t)为由桨距角、风力发电机转速和风力发电机输出电流构成的向量;u(t)表示期望的桨距角指令输入;(Ai,Bi)表示第i条被控对象模型规则对应的状态方程系数;r为控制规则数(本发明取值为9或16);
第二步:对上述模糊T-S模型进行乘积推理、重心解模糊化处理,得到由如下动态模糊模型表示的被控对象模型:
x &CenterDot; ( t ) = &Sigma; i = 1 r h i ( &theta; ( t ) ) [ A i x ( t ) + B i u ( t ) ]
其中, h i ( &theta; ( t ) ) = h il ( &theta; 1 ( t ) ) h i 2 ( &theta; 2 ( t ) ) h i 3 ( &theta; 3 ( t ) ) &Sigma; m = 1 r h m 1 ( &theta; 1 ( t ) ) h m 2 ( &theta; 2 ( t ) ) h m 3 ( &theta; 3 ( t ) ) 表示被控对象模型符合第i条规则的程度;hi11(t))、hi22(t))和hi33(t))分别为θ1(t)、θ2(t)和θ3(t)的隶属度函数;
第三步:根据有限时间稳定的涵义以及所述被控对象模型,设计由如下模糊T-S模型表示的控制器模型,其中,每个被控对象模型规则对应一个控制器模型规则:
控制器模型规则j(j=1,2,...,r)
如果θ1(t)为Nj1,θ2(t)为Nj2,θ3(t)为Nj3
那么u(t)=Kjx(t)
其中,Kj为增益矩阵,也即控制系数;
对上述控制器模型进行乘积推理、重心解模糊化,整理得到如下控制器:
u ( t ) = &Sigma; i = 1 r h j ( &theta; ( t ) ) K j x ( t )
其中,Njk(j=1,2,...,r,k=1,2,3)与第一步中的Nik(i=1,2,...,r,k=1,2,3)一致,hj(θ(t))(j=1,2,...,r)与第二步中的hi(θ(t))(i=1,2,...,r)一致;
第四步:利用第三步得到的桨距角指令输入u(t),对桨距角、风力发电机转速和风力发电机输出电流进行控制,其中,
当标量α≥0,对称正定阵Q∈Rn×n以及矩阵Wj(1≤i,j≤r)满足一定的关系式时,所述控制系数Kj取为
Figure FSA00000779624800021
以保证非线性系统有一个保成本的界限Ξ=λmax(Q-1)c1eαT,即满足控制系统在考察的时间范围[0,T]内有限时间保成本稳定,所述关系式为:
Q ~ A i T + A i Q ~ + W i T + B i T + B i W i - &alpha; Q ~ Q ~ W i T Q ~ - Q 1 - 1 0 W i 0 - Q 2 - 1 < 01 &le; i &le; r Q ~ ( A i + B i K j ) T + ( A i + B i K j ) Q ~ + Q ~ ( A j + B j K i ) T + ( A j + B j K i ) Q ~ - 2 &alpha; Q ~ Q ~ W i T W j T Q ~ - 1 2 Q 1 - 1 0 0 W i 0 - Q 2 - 1 0 W j 0 0 - Q 2 - 1 < 01 &le; i < j &le; r c 1 &lambda; min ( Q ) < c 2 e - &alpha;T &lambda; max ( Q )
其中,
Figure FSA00000779624800023
Q1和Q2分别表示状态与输入的增益矩阵;参数(c1,c2,T,RC)满足
Figure FSA00000779624800024
都有 x T ( 0 ) R C x ( 0 ) &le; c 1 &DoubleRightArrow; x T ( t ) R C x ( t ) &le; c 2 , 并且,0<c1<c2,T∈R+以及RC>0,RC表示状态增益矩阵,c1表示初始状态x(0)对应的xT(0)RCx(0)取值上限,c2表示在时间(0,T]内状态x(t)对应的xT(t)RCx(t)取值上限,λmin(Q)表示矩阵Q的最小特征值,λmax(Q)表示矩阵Q的最大特征值。
CN201210347932.4A 2012-09-19 2012-09-19 基于有限时间保成本稳定的风电机组变桨距控制器设计方法 Expired - Fee Related CN102900606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210347932.4A CN102900606B (zh) 2012-09-19 2012-09-19 基于有限时间保成本稳定的风电机组变桨距控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210347932.4A CN102900606B (zh) 2012-09-19 2012-09-19 基于有限时间保成本稳定的风电机组变桨距控制器设计方法

Publications (2)

Publication Number Publication Date
CN102900606A true CN102900606A (zh) 2013-01-30
CN102900606B CN102900606B (zh) 2014-11-19

Family

ID=47573036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210347932.4A Expired - Fee Related CN102900606B (zh) 2012-09-19 2012-09-19 基于有限时间保成本稳定的风电机组变桨距控制器设计方法

Country Status (1)

Country Link
CN (1) CN102900606B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890449A (zh) * 2012-09-20 2013-01-23 河北工业大学 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
CN113294297A (zh) * 2021-06-11 2021-08-24 中南大学 风电机组非线性模型预测转矩控制变权重调节方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
EP1007844A1 (en) * 1997-08-08 2000-06-14 Zond Energy Systems, Inc. Variable speed wind turbine generator
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN201705553U (zh) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 兆瓦级风力发电机组智能变桨距控制系统
CN102168650A (zh) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 基于主控的兆瓦级风力机统一和独立变桨混合控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
EP1007844A1 (en) * 1997-08-08 2000-06-14 Zond Energy Systems, Inc. Variable speed wind turbine generator
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN201705553U (zh) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 兆瓦级风力发电机组智能变桨距控制系统
CN102168650A (zh) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 基于主控的兆瓦级风力机统一和独立变桨混合控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890449A (zh) * 2012-09-20 2013-01-23 河北工业大学 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
CN102890449B (zh) * 2012-09-20 2016-03-02 河北工业大学 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
CN113294297A (zh) * 2021-06-11 2021-08-24 中南大学 风电机组非线性模型预测转矩控制变权重调节方法
CN113294297B (zh) * 2021-06-11 2022-11-08 中南大学 风电机组非线性模型预测转矩控制变权重调节方法

Also Published As

Publication number Publication date
CN102900606B (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
Abdelbaky et al. Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines
Mousavi et al. Sliding mode control of wind energy conversion systems: Trends and applications
CN102900603B (zh) 基于有限时间非脆/保成本稳定的风电机组变桨距控制器设计方法
CN105673325A (zh) 基于rbf神经网络pid的风电机组独立变桨控制方法
Stol Disturbance tracking and blade load control of wind turbines in variable-speed operation
Tao et al. Quantitative assessment on fatigue damage induced by wake effect and yaw misalignment for floating offshore wind turbines
Mughal et al. Review of pitch control for variable speed wind turbine
Chen et al. An assessment of the effectiveness of individual pitch control on upscaled wind turbines
Imran et al. DAC with LQR control design for pitch regulated variable speed wind turbine
Lin et al. Feasibility studies of a converter-free grid-connected offshore hydrostatic wind turbine
Golnary et al. Novel sensorless fault-tolerant pitch control of a horizontal axis wind turbine with a new hybrid approach for effective wind velocity estimation
CN102900613B (zh) 基于有限时间鲁棒/保成本稳定的风电机组变桨距控制器设计方法
CN102900605B (zh) 基于有限时间稳定的风电机组变桨距控制器设计方法
Junejo et al. Physics-informed optimization of robust control system to enhance power efficiency of renewable energy: Application to wind turbine
Meisami‐Azad et al. Anti‐windup linear parameter‐varying control of pitch actuators in wind turbines
CN102900606B (zh) 基于有限时间保成本稳定的风电机组变桨距控制器设计方法
CN102900604B (zh) 基于有限时间非脆稳定的风电机组变桨距控制器设计方法
Schulte et al. Nonlinear control of wind turbines with hydrostatic transmission based on takagi-sugeno model
CN102890449B (zh) 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
Zhang et al. Individual pitch control based on fuzzy PI used in variable speed wind turbine
Ghefiri et al. Firefly algorithm based-pitch angle control of a tidal stream generator for power limitation mode
Bahraminejad et al. Comparison of interval type-2 fuzzy logic controller with PI controller in pitch control of wind turbines
Shengsheng et al. H-infinity Variable-Pitch Control for Wind Turbines Based on Takagi-Sugeno Fuzzy Theory.
Fazlollahi et al. Modeling and neuro-fuzzy controller design of a wind turbine in full-load region based on operational data
Niss et al. A Youla-Kucera approach to gain-scheduling with application to wind turbine control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

Termination date: 20200919

CF01 Termination of patent right due to non-payment of annual fee