CN102888655A - Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal - Google Patents
Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal Download PDFInfo
- Publication number
- CN102888655A CN102888655A CN2012103905533A CN201210390553A CN102888655A CN 102888655 A CN102888655 A CN 102888655A CN 2012103905533 A CN2012103905533 A CN 2012103905533A CN 201210390553 A CN201210390553 A CN 201210390553A CN 102888655 A CN102888655 A CN 102888655A
- Authority
- CN
- China
- Prior art keywords
- crystal
- doped
- gain medium
- laser
- cobalt ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 134
- 239000011651 chromium Substances 0.000 title claims abstract description 118
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910001429 cobalt ion Inorganic materials 0.000 title claims abstract description 39
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910001430 chromium ion Inorganic materials 0.000 title claims abstract description 37
- 239000003708 ampul Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000009792 diffusion process Methods 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 claims abstract description 21
- 239000002019 doping agent Substances 0.000 claims abstract description 16
- 238000001228 spectrum Methods 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000005086 pumping Methods 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- 239000010453 quartz Substances 0.000 claims description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 38
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 15
- 229910004613 CdTe Inorganic materials 0.000 claims description 12
- 229910007709 ZnTe Inorganic materials 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 8
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims 3
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000007747 plating Methods 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 10
- 229910001428 transition metal ion Inorganic materials 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 229910052774 Proactinium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- -1 zinc chalcogenides Chemical class 0.000 description 2
- 241001282315 Nemesis Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- NHDHVHZZCFYRSB-UHFFFAOYSA-N pyriproxyfen Chemical compound C=1C=CC=NC=1OC(C)COC(C=C1)=CC=C1OC1=CC=CC=C1 NHDHVHZZCFYRSB-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及全固态激光增益介质技术,尤其涉及一种中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体的制备方法,属于全固态激光介质领域。 The invention relates to all-solid-state laser gain medium technology, in particular to a method for preparing mid-infrared wide-spectrum tunable laser gain medium doubly doped with divalent chromium and cobalt ion II-VI crystals, belonging to the field of all-solid-state laser medium. the
背景技术 Background technique
随着各种光学测试技术的发展,对于用途广泛、价格低廉的中红外激光光源的需求正日益增加。中红外激光器的波长可以覆盖 “分子指纹区”,它有着广泛的用途,包括大气遥感测试、非伤害性医学诊断、激光雷达、石油勘探以及各种诸如目标标定、故障排除和红外线对抗等军事应用。 With the development of various optical testing techniques, there is an increasing demand for versatile and inexpensive mid-infrared laser sources. The wavelength of mid-infrared lasers can cover the "molecular fingerprint region", which has a wide range of uses, including atmospheric remote sensing testing, non-invasive medical diagnosis, lidar, oil exploration and various military applications such as target calibration, troubleshooting and infrared countermeasures . the
可以实现中红外波段激光输出的光源主要有:CO2气体激光器,其输出波长10~12 μm、铅盐异质节激光器其输出波长3~30 μm、量子级联半导体激光器其输出波长大于或等于3.7 μm,或者通过相对复杂的非线性光学转换技术来实现中红外波段激光输出的光源,如差频振荡激光器(DFG)、光参量振荡激光器(OPO)等。但是以上的中红外激光光源都遇到了限制其作为坚固耐用、低成本中红外激光光源使用的基本问题,如CO2气体激光器设备复杂且巨大,差频振荡激光器与光参量振荡激光器等都需要使用昂贵的光学器件,且也不稳定;铅盐异质节激光器与量子级联半导体激光器的激光输出功率较低。因此,迄今为止,以上所述激光器光源存在的缺陷使之尚不能在诸如遥感测试等高功率的应用中被使用。 The light sources that can realize laser output in the mid-infrared band mainly include: CO 2 gas lasers, whose output wavelength is 10-12 μm, lead-salt heterojunction lasers, whose output wavelength is 3-30 μm, and quantum cascade semiconductor lasers, whose output wavelength is greater than or equal to 3.7 μm, or a light source that realizes laser output in the mid-infrared band through a relatively complex nonlinear optical conversion technology, such as difference frequency oscillation laser (DFG), optical parametric oscillation laser (OPO), etc. However, the above mid-infrared laser sources have encountered basic problems that limit their use as durable, low-cost mid-infrared laser sources. For example, CO 2 gas laser equipment is complex and huge, and both difference frequency oscillation lasers and optical parametric oscillation lasers need to be used. Expensive optics, and unstable; lead-salt heterojunction lasers and quantum cascade semiconductor lasers have low laser output power. Therefore, the drawbacks of the above-mentioned laser sources have so far prevented their use in high-power applications such as remote sensing testing.
与上述激光器光源形成对比的是,基于过渡金属离子(TM2+)掺杂的Ⅱ-Ⅵ晶体ZnS、ZnSe、CdS以及CdSe等的全固态激光器正逐渐成为宽谱可调谐、高功率、高稳定性中红外激光光源。对过渡金属离子(TM2+),如Cr2+、Co2+、Fe2+掺杂的II-VI晶体的详细研究始于上世纪60年代。过渡金属离子进入半导体后在其能隙中会形成深能级,而且还会出现多重价态,因此早期的研究中将这种杂质离子看作荧光“克星”。这也是尽管过渡金属离子掺杂的II-VI晶体引起了人们相当大的兴趣,但其激光效应却是到上世纪90年代才有报道的原因。在20世纪90年代中期,美国Lawrence Livermore国家实验室的De Loach等人(L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke, Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media, Journal Name: IEEE Journal of Quantum Electronics; Journal Volume: 32; Journal Issue: 6; Other Information: PBD: Jun 1996, (1996) Medium: X; Size: pp. 885-895.)最先报道了过渡金属离子掺杂的II-VI晶体研究的突破性进展:他们研究了Cr2+、Co2+、Ni2+和Fe2+掺杂的各种锌硫族化合物的吸收与发射特性,认为此类化合物很有希望成为中红外激光介质的潜质,并且基于Cr2+:ZnSe和Cr2+:ZnS在室温下实现了2.4 μm的激光输出。 In contrast to the above-mentioned laser light sources, all-solid-state lasers based on transition metal ion (TM 2+ ) doped II-VI crystals ZnS, ZnSe, CdS, and CdSe are gradually becoming broadband tunable, high-power, and highly stable A mid-infrared laser light source. The detailed research on II-VI crystals doped with transition metal ions (TM 2+ ), such as Cr 2+ , Co 2+ , and Fe 2+ , began in the 1960s. Transition metal ions will form deep energy levels in the energy gap after entering the semiconductor, and there will also be multiple valence states. Therefore, this impurity ion was regarded as the "nemesis" of fluorescence in early studies. This is why, despite considerable interest in transition metal ion-doped II-VI crystals, their lasing effects were not reported until the 1990s. In the mid-1990s, De Loach et al. (LD DeLoach, RH Page, GD Wilke, SA Payne, WF Krupke, Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of Lawrence Livermore National Laboratory of the United States) gain media, Journal Name: IEEE Journal of Quantum Electronics; Journal Volume: 32; Journal Issue: 6; Other Information: PBD: Jun 1996, (1996) Medium: X; Size: pp. 885-895.) first reported A breakthrough in the research of II-VI crystals doped with transition metal ions: They studied the absorption and emission properties of various zinc chalcogenides doped with Cr 2+ , Co 2+ , Ni 2+ and Fe 2+ , and believed that Such compounds have great potential as mid-infrared laser media, and based on Cr 2+ :ZnSe and Cr 2+ :ZnS, a laser output of 2.4 μm has been achieved at room temperature.
常用的II-VI晶体主要有ZnS以及ZnSe。II-VI晶体具有优异的热机械性能,又具有较强的抗热冲击性能和优良的热传导性能,这就为过渡金属离子掺杂II-VI晶体激光器在大功率上的应用提供了必要条件。 Commonly used II-VI crystals mainly include ZnS and ZnSe. II-VI crystals have excellent thermomechanical properties, strong thermal shock resistance and excellent thermal conductivity, which provide the necessary conditions for the high-power application of transition metal ion-doped II-VI crystal lasers. the
至于光谱和激光性能,过渡金属离子掺杂II-VI晶体非常接近于掺钛蓝宝石(Ti-S)激光器。可以预料,类似于掺钛蓝宝石激光器,过渡金属离子掺杂的II-VI晶体将能够通过多种多样的振荡方式发光,并且具有可用InGaAsP或InGaNAs二极管阵列的直接泵浦等优点。Fazzio等人对多重态能级的计算研究以及从实验上对ZnS、ZnSe中掺杂的V2+、Cr2+、Mn2+、Fe2+、Co2+、Ni2+离子的低衰变能级的验证都解释了大部分的研究都集中在Cr2+、Co2+、Fe2+离子的原因。Cr2+、Co2+、Fe2+离子的光谱范围分别是是2~3 μm、2.6~4 μm和3.7~5.2 μm,具有较宽的可调谐范围。这类激光器发出的光源代表了现在最简单、最实惠的中红外激光光源。 As for the spectral and lasing properties, transition metal ion doped II-VI crystals are very close to those of titanium-doped sapphire (Ti-S) lasers. It can be expected that, similar to Ti:sapphire lasers, transition metal ion-doped II-VI crystals will be able to emit light through a variety of oscillation modes, and have the advantage of direct pumping with InGaAsP or InGaNAs diode arrays. Computational study of multiple state energy levels by Fazzio et al. and experimental study on the low decay of V 2+ , Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ ions doped in ZnS and ZnSe The verification of energy levels explains why most of the researches focus on Cr 2+ , Co 2+ , Fe 2+ ions. The spectral ranges of Cr 2+ , Co 2+ , and Fe 2+ ions are 2-3 μm, 2.6-4 μm, and 3.7-5.2 μm, respectively, and have a wide tunable range. Sources from these lasers represent the simplest and most affordable mid-infrared laser sources available today.
尽管对于过渡金属离子掺杂的II-VI激光介质已经有了较为深入的研究,但是利用双掺杂或多掺杂过渡金属离子掺进II-VI晶体以增大激光器可调谐激光增益介质范围的研究却鲜有涉及。 Although the II-VI laser medium doped with transition metal ions has been studied in depth, the use of double-doped or multi-doped transition metal ions doped into II-VI crystals to increase the range of laser tunable laser gain media Research has rarely covered it. the
发明内容 Contents of the invention
本发明的目的是要提供一种中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体的制备方法;该双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体是利用安瓿双端置掺杂物真空热扩散传输法,或利用晶体双面镀掺杂物薄膜真空热扩散传输法;再通过二价铬与钴双掺杂离子重叠的吸收波长进行泵浦,可以同时实现两种离子受激激发,从而获得中红外宽谱可调谐激光增益介质-双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体。本发明提供这种新型掺杂晶体完全有望成为理想的宽波段中红外可调谐激光增益介质。 The purpose of the present invention is to provide a method for preparing a mid-infrared wide-spectrum tunable laser gain medium double-doped divalent chromium and cobalt ion II-VI crystal; the double-doped divalent chromium and cobalt ion II-VI crystal is Using the double-ended dopant vacuum thermal diffusion transmission method of the ampoule, or the vacuum thermal diffusion transmission method of the dopant film on both sides of the crystal; and then pumping through the overlapping absorption wavelength of the bivalent chromium and cobalt double doping ions, it can Simultaneously realize the excitation of two kinds of ions, so as to obtain mid-infrared broad-spectrum tunable laser gain medium-double-doped divalent chromium and cobalt ion II-VI crystal. The invention provides that the novel doped crystal is fully expected to become an ideal broadband mid-infrared tunable laser gain medium. the
本发明的另一目的是提供一种基于中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体构建的激光输出实验装置,该实验装置采用双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体作为激光输出介质,实现1.6~4.2 μm中红外宽光谱波段可调谐的激光输出。 Another object of the present invention is to provide a laser output experimental device based on a mid-infrared wide-spectrum tunable laser gain medium doped with divalent chromium and cobalt ion II-VI crystals. The experimental device uses double-doped divalent chromium With cobalt ion Ⅱ-Ⅵ crystal as the laser output medium, the tunable laser output in the mid-infrared wide spectral band of 1.6-4.2 μm can be realized. the
为实现上述目的,本发明是采用以下技术措施构成的技术方案来实现的。 In order to achieve the above object, the present invention is realized by adopting the technical scheme constituted by the following technical measures. the
本发明一种中红外激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体的制备方法,其特征在于利用安瓿双端置掺杂物真空热扩散传输法制备双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体,包括以下具体工艺步骤: The invention discloses a method for preparing a mid-infrared laser gain medium double-doped divalent chromium and cobalt ion II-VI crystal, which is characterized in that the double-doped divalent chromium and cobalt ion II-VI crystals are prepared by using an ampoule double-ended dopant vacuum thermal diffusion transmission method. Cobalt ion II-VI crystals, including the following specific process steps:
(1)将Ⅱ-Ⅵ晶体薄圆片,置于由中间大、两端小的由三截石英管组成的石英安瓿中间,取单质Co粉末与单质Cr粉末分别置于石英安瓿的两端,且Co与Cr两种单质粉末各自与Ⅱ-Ⅵ晶体薄圆片之间的距离相等; (1) Place the Ⅱ-Ⅵ crystal thin disc in the middle of a quartz ampoule composed of three quartz tubes with a large middle and small ends. Take simple Co powder and simple Cr powder and place them at both ends of the quartz ampule. And the distances between the two elemental powders of Co and Cr and the Ⅱ-Ⅵ crystal thin discs are equal;
(2)将步骤(1)所述三截石英管组成的石英安瓿利用氢氧焰高温粘合在一起,并将其抽真空为10-3~10-5Pa后密封; (2) The quartz ampoule composed of three sections of quartz tubes described in step (1) is bonded together at high temperature with an oxygen-hydrogen flame, and then sealed after vacuumizing to 10 -3 ~ 10 -5 Pa;
(3)将步骤(2)密封好的石英安瓿放置于由多组加热棒加热的高温炉中,在温度为700~1300℃的条件下,热扩散1~15天,即得双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体激光增益介质样品; (3) Place the sealed quartz ampoule in step (2) in a high-temperature furnace heated by multiple sets of heating rods, and conduct thermal diffusion for 1 to 15 days at a temperature of 700-1300°C to obtain double-doped di Valence chromium and cobalt ion Ⅱ-Ⅵ crystal laser gain medium samples;
(4)最后将步骤(3)掺杂完成的二价铬与钴离子Ⅱ-Ⅵ晶体激光增益介质样品进行抛光、切割,即获得中红外宽谱可调谐激光增益介质双掺杂Cr2+,Co2+:Ⅱ-Ⅵ晶体。 (4) Finally, the divalent chromium and cobalt ion II-VI crystal laser gain medium samples doped in step (3) are polished and cut to obtain a mid-infrared broad-spectrum tunable laser gain medium doped with Cr 2+ , Co 2+ : Ⅱ-Ⅵ crystal.
上述方案中,所述Ⅱ-Ⅵ晶体薄圆片是ZnS、或ZnSe、或ZnTe、或CdS、或CdSe或CdTe晶体薄圆片。 In the above solution, the II-VI crystal thin disc is ZnS, or ZnSe, or ZnTe, or CdS, or CdSe or CdTe crystal thin disc. the
上述方案中,所述的单质钴粉末与单质铬粉末其纯度为99.99%以上;所述Ⅱ-Ⅵ晶体薄圆片其纯度为99.999%以上。 In the above solution, the purity of the elemental cobalt powder and elemental chromium powder is above 99.99%; the purity of the II-VI crystal thin disk is above 99.999%. the
上述方案中,所述掺杂离子的浓度分别为Cr2+为1×1018 cm-3~1×1020 cm-3、Co2+为1×1018 cm-3~1×1020 cm-3。 In the above scheme, the concentrations of the dopant ions are respectively 1×10 18 cm -3 to 1×10 20 cm -3 for Cr 2+ and 1×10 18 cm -3 to 1×10 20 cm for Co 2+ -3 .
本发明一种中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体的制备方法,其特征在于利用晶体双面镀铬薄膜和钴薄膜真空热扩散法制备双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体,包括以下具体工艺步骤: The invention discloses a method for preparing a mid-infrared wide-spectrum tunable laser gain medium doped with divalent chromium and cobalt ion II-VI crystals, which is characterized in that double-doped crystals are prepared by using a double-sided chromium-plated film and cobalt film vacuum thermal diffusion method. Divalent chromium and cobalt ion II-VI crystals, including the following specific process steps:
(1)利用溅射法或蒸镀法在Ⅱ-Ⅵ晶体薄圆片的两晶面分别镀上单质Co薄膜与单质Cr薄膜,其两晶面镀薄膜厚度为100~500nm; (1) Use the sputtering method or evaporation method to coat the two crystal faces of the II-VI crystal wafer with a single Co film and a single Cr film respectively, and the film thickness of the two crystal faces is 100-500nm;
(2)将步骤(1)已镀好薄膜的Ⅱ-Ⅵ晶体薄圆片放入石英安瓿中,并将其抽真空为10-3~10-5Pa后密封; (2) Put the Ⅱ-Ⅵ crystal thin disc coated with film in step (1) into a quartz ampoule, vacuumize it to 10 -3 ~ 10 -5 Pa and seal it;
(3)将步骤(2)密封好的石英安瓿放置于由多组加热棒加热的高温炉中,在温度为700~1300℃的条件下,热扩散1~15天,即获得双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体激光增益介质样品; (3) Place the sealed quartz ampoule in step (2) in a high-temperature furnace heated by multiple sets of heating rods, and conduct thermal diffusion at a temperature of 700-1300°C for 1-15 days to obtain a double-doped Valence chromium and cobalt ion Ⅱ-Ⅵ crystal laser gain medium samples;
(4)最后将步骤(3)掺杂完成的二价铬与钴离子Ⅱ-Ⅵ晶体激光增益介质样品进 行抛光、切割,即获得中红外宽谱可调谐激光增益介质双掺杂Cr2+,Co 2+:Ⅱ-Ⅵ晶体。 (4) Finally, polish and cut the divalent chromium and cobalt ion II-VI crystal laser gain medium sample doped in step (3), and then obtain a mid-infrared broad-spectrum tunable laser gain medium doped with Cr 2+ , Co 2+ : Ⅱ-Ⅵ crystal.
上述方案中,所述Ⅱ-Ⅵ晶体薄圆片是ZnS、或ZnSe、或ZnTe、或CdS、或CdSe或CdTe晶体薄圆片。 In the above solution, the II-VI crystal thin discs are ZnS, or ZnSe, or ZnTe, or CdS, or CdSe or CdTe crystal thin discs. the
上述方案中,所述单质钴薄膜和单质铬薄膜其纯度均为99.99%以上;所述Ⅱ-Ⅵ晶体薄圆片的纯度为99.999%以上。 In the above solution, the purity of the elemental cobalt thin film and elemental chromium thin film are both above 99.99%; the purity of the II-VI crystal thin disc is above 99.999%. the
上述方案中,所述掺杂离子的浓度分别为Cr2+为1×1018 cm-3~1×1020 cm-3、Co2+为1×1018 cm-3~1×1020 cm-3。 In the above scheme, the concentrations of the dopant ions are respectively 1×10 18 cm -3 to 1×10 20 cm -3 for Cr 2+ and 1×10 18 cm -3 to 1×10 20 cm for Co 2+ -3 .
本发明一种基于中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体构建的激光输出实验装置,其特征在于包括激光泵浦源、泵浦光束、密封箱、密封通光孔、输入腔镜、激光增益介质、输出腔镜、输出激光光束;从激光泵浦源输出的泵浦光束通过密封箱的密封通光孔进入输入腔镜,泵浦光束经输入腔镜到达激光增益介质,增益介质产生光转换实现光放大,然后到输出腔镜,经输出腔镜的激光再经密封通光孔输出激光光速。 The present invention is a laser output experimental device based on a mid-infrared wide-spectrum tunable laser gain medium doped with divalent chromium and cobalt ion II-VI crystals, which is characterized in that it includes a laser pump source, a pump beam, a sealed box, Sealed optical hole, input cavity mirror, laser gain medium, output cavity mirror, output laser beam; the pump beam output from the laser pump source enters the input cavity mirror through the sealed optical hole of the sealed box, and the pump beam passes through the input cavity The mirror reaches the laser gain medium, and the gain medium produces light conversion to realize light amplification, and then to the output cavity mirror, and the laser light passing through the output cavity mirror outputs the laser light speed through the sealed optical hole. the
上述方案中,所述泵浦光束波长为1.4~1.8μm;输出激光光束波长1.6~4.2μm,为使泵浦光束全透过而输出激光全反射,其输入腔镜镀膜;为使输出激光光束90%以上反射,其输出腔镜也镀膜。 In the above scheme, the wavelength of the pumping beam is 1.4-1.8 μm; the wavelength of the output laser beam is 1.6-4.2 μm. In order to make the pumping beam fully transmit and the output laser is totally reflected, the input cavity mirror is coated; in order to make the output laser beam More than 90% reflection, the output cavity mirror is also coated. the
本发明所具有的特点及有益的技术效果如下: The characteristics and beneficial technical effects of the present invention are as follows:
本发明利用二价铬与钴离子双掺杂Ⅱ-Ⅵ晶体,获得了理想的中红外宽波段可调谐激光增益介质;其获得方法工艺步骤简单,易于操作与实现;具有中红外宽谱波段可调谐激光增益介质的Cr2+和Co2+双掺杂Ⅱ-Ⅵ晶体构建的激光输出实验装置,可输出1.6~4.2μm中红外宽谱可调谐激光;从而可大幅度增大激光器可调谐激光增益介质范围。 The present invention utilizes divalent chromium and cobalt ions to double-dope II-VI crystals to obtain an ideal mid-infrared wide-band tunable laser gain medium; the obtaining method has simple process steps and is easy to operate and realize; it has a mid-infrared wide-band band The laser output experimental device constructed by the Cr 2+ and Co 2+ double-doped Ⅱ-Ⅵ crystal of the tuned laser gain medium can output 1.6-4.2 μm mid-infrared wide-spectrum tunable laser; thus it can greatly increase the laser tunable laser Gain medium range.
本发明的基本原理是:利用安瓿双端置掺杂物真空热扩散传输法,或利用晶体双面镀掺杂物薄膜真空热扩散传输法,制备得到Cr2+和Co2+双掺杂Ⅱ-Ⅵ晶体;再利用二价铬与钴双掺杂离子重叠的吸收波长对增益介质进行泵浦,可以同时实现两种离子受激激发,从而获得1.6~4.2μm中红外宽谱可调谐激光输出。由于提供的1.6~4.2μm中红外宽谱可调谐激光输出的Cr2+和Co2+双掺杂Ⅱ-Ⅵ晶体激光增益介质,在这种激光介质中,Cr2+的5E→5T2跃迁吸收波长1.4~1.8 μm与Co2+的4A 2(F)→4T1(F) 跃迁吸收波长1.2~2.0 μm有重叠的波段1.4~1.8 μm,因此利用重叠范围内的某一波长,如1.55 μm,进行泵浦就能同时实现两种离子的受激激发;Cr2+的荧光光谱范围是1.6~2.8 μm,Co2+的荧光光谱为2.6~4.2 μm,从而得到1.6~4.2μm宽光谱可调谐激光输出。掺杂的 Cr2+和Co2+离子与周围离子之间的相互作用比较强,其电子状态参数与晶体密切相关,不同的晶体导致可调谐激光输出范围也会有不同。具体而言,Cr2+,Co2+:ZnS可调谐激光输出范围是1.6~3.6 μm,Cr2+,Co2+:ZnSe为1.8~3.8 μm,Cr2+,Co2+:CdS是2.0~3.9 μm,Cr2+,Co2+:CdSe为2.2~4.2μm。 The basic principle of the present invention is to prepare Cr 2+ and Co 2+ double-doped II by using the method of vacuum thermal diffusion transmission of dopants at both ends of the ampoule, or by using the method of vacuum thermal diffusion transmission of dopant films on both sides of the crystal. -VI crystal; the gain medium is pumped by the overlapping absorption wavelength of divalent chromium and cobalt double-doped ions, and the two ions can be excited and excited at the same time, so as to obtain a 1.6-4.2 μm mid-infrared broad-spectrum tunable laser output . Due to the 1.6-4.2μm mid-infrared broad-spectrum tunable laser gain medium of Cr 2+ and Co 2+ double-doped II-VI crystal laser gain medium, in this laser medium, the 5 E of Cr 2+ → 5 T 2 The transition absorption wavelength 1.4~1.8 μm and the 4 A 2 (F)→ 4 T 1 (F) transition absorption wavelength 1.2~2.0 μm of Co 2+ have an overlapping band 1.4~1.8 μm, so use a certain The wavelength, such as 1.55 μm, can realize the excitation of two kinds of ions at the same time by pumping; the fluorescence spectrum range of Cr 2+ is 1.6-2.8 μm, and the fluorescence spectrum of Co 2+ is 2.6-4.2 μm, thus obtaining 1.6- 4.2μm wide spectrum tunable laser output. The interaction between the doped Cr 2+ and Co 2+ ions and the surrounding ions is relatively strong, and their electronic state parameters are closely related to the crystal. Different crystals lead to different tunable laser output ranges. Specifically, the tunable laser output range of Cr 2+ , Co 2+ : ZnS is 1.6-3.6 μm, that of Cr 2+ , Co 2+ : ZnSe is 1.8-3.8 μm, and that of Cr 2+ , Co 2+ : CdS is 2.0 ~3.9 μm, Cr 2+ , Co 2+ : CdSe is 2.2~4.2 μm.
附图说明 Description of drawings
图1本发明实施例1和实施例2中利用石英安瓿双端置掺杂物真空热扩散传输法制备中红外宽谱可调谐激光增益介质二价铬与钴离子双掺杂Cr 2+,Co2+:ZnSe晶体和Cr2+,Co2+:CdS晶体过程示意图; Figure 1 In Example 1 and Example 2 of the present invention, the mid-infrared wide-spectrum tunable laser gain medium was prepared by using the double-terminal dopant vacuum thermal diffusion transfer method in the quartz ampoule . 2+ :ZnSe crystal and Cr 2+ ,Co 2+ :CdS crystal process diagram;
图2本发明实施例3和实施例4中通过晶体双面镀掺杂物膜真空热扩散传输法制备中红外宽谱可调谐激光增益介质二价铬与钴离子双掺杂Cr2+,Co2+:ZnTe晶体和Cr2+,Co2+:CdTe晶体过程示意图; Fig. 2 In Example 3 and Example 4 of the present invention, the mid-infrared wide-spectrum tunable laser gain medium was prepared by double-sided dopant film coating vacuum thermal diffusion transfer method in the present invention . 2+ :ZnTe crystal and Cr 2+ ,Co 2+ :CdTe crystal process diagram;
图3本发明实施例5基于中红外宽谱可调谐激光增益介质二价铬与钴离子双掺杂Cr2+,Co2+: ZnSe晶体构建的激光输出实验装置结构示意图。 Fig. 3 is a schematic diagram of the structure of a laser output experimental device constructed based on a mid-infrared wide-spectrum tunable laser gain medium divalent chromium and cobalt ions double-doped Cr 2+ , Co 2+ : ZnSe crystal according to Example 5 of the present invention.
图中,1 Co粉末,2加热棒,3石英安瓿,4晶体薄圆片,5 Cr粉末,6 Cr薄膜,7 Co薄膜,8 激光泵浦源,9 泵浦光束,10 密封箱,11密封通光孔,12输入腔镜,13激光增益介质,14输出腔镜,15输出激光光束。 In the figure, 1 Co powder, 2 heating rod, 3 quartz ampoule, 4 crystal thin disc, 5 Cr powder, 6 Cr thin film, 7 Co thin film, 8 laser pump source, 9 pump beam, 10 sealed box, 11 sealed Optical hole, 12 input cavity mirrors, 13 laser gain medium, 14 output cavity mirrors, 15 output laser beams. the
具体实施方式 Detailed ways
下面结合附图并用具体实施例对本发明作进一步详细说明,但并不意味着是对本发明保护内容的任何限定。 The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments, but it does not mean any limitation to the protection content of the present invention. the
实施例1: Example 1:
利用安瓿双端置掺杂物真空热扩散传输法制备Cr2+,Co2+:ZnSe晶体 Preparation of Cr 2+ , Co 2+ : ZnSe Crystals by Vacuum Thermal Diffusion Transport of Ampoule Double-terminal Dopants
本实例选择Cr2+,Co2+: ZnSe作为制备Cr2+,Co2+: ZnSe晶体的原料,纯度99.99%以上的单质铬粉与钴粉、以及纯度99.999%以上的ZnSe晶体。 In this example, Cr 2+ , Co 2+ : ZnSe is selected as the raw material for preparing Cr 2+ , Co 2+ : ZnSe crystal, elemental chromium powder and cobalt powder with a purity of more than 99.99%, and ZnSe crystal with a purity of more than 99.999%.
本实例中,选择其纯度为99.99%以上的单质Cr粉末5和单质Co粉末1、以及其纯度为99.999%以上的ZnSe晶体薄圆片4作为制备Cr2+,Co2+:ZnSe双掺杂晶体的原料。
In this example, select the
首先将一块ZnSe晶体薄圆片4,其直径2 cm,厚度0.2 cm,置于由中间大、两端小的三截石英管组成的石英安瓿3中间位置,再取单质Co粉末1与单质Cr粉末5,其重量各为0.1 g,分别置于石英安瓿3两端位置,所述石英安瓿3两端的单质Co粉末与单质Cr粉末放置位置分别与石英安瓿3中间的ZnSe晶体薄圆片之间的距离相等,然后利用氢氧焰高温,将三截石英管粘合在一起,并将其抽真空为10-5 Pa后密封,如图1 所示;将密封好的石英安瓿3放置于由多组加热棒2加热的高温炉中,在温度为700℃的条件下热扩散15天,得双掺杂Cr2+,Co2+:ZnSe晶体激光增益介质样品,其掺杂离子的浓度分别为Cr2+为1×1018 cm-3、Co2+为1×1018 cm-3~1×1018 cm-3;最后将掺杂完成的双掺杂Cr2+,Co2+:ZnSe晶体激光增益介质样品进行抛光,切割,得到质地优良的激光增益介质Cr2+,Co2+: ZnSe晶体。 First, a thin ZnSe crystal disc 4 with a diameter of 2 cm and a thickness of 0.2 cm was placed in the middle of a quartz ampoule 3 composed of three quartz tubes with a large middle and small ends, and then the elemental Co powder 1 and the elemental Cr The powder 5, each of which weighs 0.1 g, is respectively placed at the two ends of the quartz ampoule 3, and the elemental Co powder and the elemental Cr powder at the two ends of the quartz ampoule 3 are respectively placed between the ZnSe crystal thin disc in the middle of the quartz ampoule 3 The distances are equal, and then the three sections of quartz tubes are glued together at high temperature by hydrogen-oxygen flame, and sealed after being vacuumed to 10 -5 Pa, as shown in Figure 1; the sealed quartz ampoule 3 is placed in the In a high-temperature furnace heated by multiple sets of heating rods 2, thermal diffusion was performed at a temperature of 700°C for 15 days to obtain a double-doped Cr 2+ , Co 2+ :ZnSe crystal laser gain medium sample, and the concentration of doped ions was respectively Cr 2+ is 1×10 18 cm -3 , Co 2+ is 1×10 18 cm -3 ~ 1×10 18 cm -3 ; finally the double doped Cr 2+ , Co 2+ : The ZnSe crystal laser gain medium sample is polished and cut to obtain a laser gain medium Cr 2+ , Co 2+ : ZnSe crystal with excellent texture.
实施例2: Example 2:
利用安瓿双端置掺杂物真空热扩散传输法制备Cr2+,Co2+:CdS晶体 Preparation of Cr 2+ , Co 2+ :CdS Crystals by Vacuum Thermal Diffusion Transport of Dopants in Ampoule
本实例中,选择其纯度为99.99%以上的单质Cr粉末5和单质Co粉末1、以及纯度为99.999%以上的CdS晶体薄圆片4作为制备Cr2+,Co2+:CdS双掺杂晶体的原料。
In this example, the
首先将一块CdS晶体薄圆片4,其直径2 cm,厚度0.2 cm,置于由中间大、两端小的三截石英管组成的石英安瓿3中间位置,再取单质Co粉末1与单质Cr粉末5,其重量各为0.3 g,分别置于石英安瓿3两端位置,所述石英安瓿3两端的单质Co粉末与单质Cr粉末放置位置分别与石英安瓿3中间的CdS晶体薄圆片4之间的距离相等,然后利用氢氧焰高温,将三截石英管粘合在一起,并将其抽真空为10-5 Pa后密封,如图1所示;将密封好的石英安瓿3放置于由多组加热棒2加热的高温炉中,在温度为1300℃的条件下热扩散2天,得双掺杂Cr2+,Co2+:CdS晶体激光增益介质样品,其掺杂离子的浓度分别为Cr2+为1×1020 cm-3、Co2+为1×1018 cm-3~1×1020 cm-3;最后将掺杂完成的双掺杂Cr2+,Co2+:CdS晶体激光增益介质样品进行抛光,切割,得到质地优良激光增益介质的Cr 2+,Co2+:CdS晶体。
First, a thin
实施例3: Example 3:
利用晶体双面镀掺杂物薄膜真空热扩散传输法制备Cr2+,Co2+:ZnTe晶体 Preparation of Cr 2+ , Co 2+ : ZnTe Crystals by Vacuum Thermal Diffusion Transport Method of Dopant Thin Films Plated on Both Sides of Crystals
本实例中,选择其纯度为99.99%以上的单质Cr粉末5与单质Co粉末1、以及纯度为99.999%以上的ZnTe晶体薄圆片4作为制备Cr2+,Co2+:ZnTe双掺杂晶体的原料。
In this example, the
首先利用溅射镀膜方法在直径2 cm,厚度2mm的ZnTe晶体薄圆片4的两晶面分别镀上单质Co薄膜7与Cr薄膜6,镀膜厚度均为100 nm,将已镀膜的ZnTe晶体薄圆片4放入石英安瓿3中,将石英安瓿3抽真空约为10-5Pa,然后密封,如图2所示;密封完成后的石英安瓿3放置于由多组加热棒2加热的高温炉中,在温度为900℃的条件下热扩散13天,得双掺杂Cr2+,Co2+:ZnTe晶体激光增益介质样品,其掺杂离子的浓度分别为Cr 2+为1×1020 cm-3、Co2+为1×1020 cm-3;最后将掺杂完成的双掺杂Cr2+,Co2+:ZnTe晶体激光增益介质样品进行抛光、切割,得到质地优良的激光增益介质Cr2+,Co2+:ZnTe晶体。
Firstly, the two crystal surfaces of the thin
实施例4: Example 4:
利用晶体双面镀掺杂物薄膜真空热扩散传输法制备Cr2+,Co2+:CdTe晶体 Preparation of Cr 2+ , Co 2+ : CdTe Crystals by Vacuum Thermal Diffusion Transport Method of Dopant Thin Films Plated on Both Sides of Crystals
本实例中,选择纯度为99.99%以上的单质Cr粉末5和单质Co粉末1、以及纯度为99.999%以上的CdTe晶体作为制备Cr2+,Co2+:CdTe双掺杂晶体的原料。
In this example,
首先利用蒸镀法在直径2 cm,厚度2mm的CdTe晶体薄圆片4的两晶面分别镀上单质Co薄膜7与Cr薄膜6,镀膜厚度均为500 nm,将已镀薄膜的CdTe晶体薄圆片4放入石英安瓿3中,将石英安瓿3抽真空约为10-5Pa,然后密封,如图2所示;密封完成后的石英安瓿3放置于由多组加热棒2加热的高温炉中,在温度为1300℃的条件下热扩散1天,得双掺杂Cr 2+,Co2+:CdTe晶体激光增益介质样品,其掺杂离子的浓度分别为Cr2+为1×1020 cm-3、Co2+为1×1020 cm-3;最后将掺杂完成的双掺杂Cr2+,Co2+:CdTe晶体激光增益介质样品进行抛光、切割,得到质地优良的激光增益介质Cr2+,Co2+:CdTe晶体。
Firstly, the two crystal surfaces of a thin
本发明一种基于中红外宽谱可调谐激光增益介质双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体构建的激光输出实验装置,如图3所示,包括激光泵浦源8,泵浦光束9,密封箱10,密封通光孔11,输入腔镜12,激光增益介质13,输出腔镜14,输出激光光束15;从激光泵浦源8输出的泵浦光束9通过密封箱10的密封通光孔11进入输入腔镜12,泵浦光束9经输入腔镜12后到达由双掺杂二价铬与钴离子Ⅱ-Ⅵ晶体的激光增益介质13,然后到输出腔镜14,经输出腔镜14的激光再经密封通光孔11输出激光光束15。
The present invention is a laser output experimental device based on a mid-infrared wide-spectrum tunable laser gain medium doped with divalent chromium and cobalt ion II-VI crystals, as shown in Figure 3, including a
实施例5: Embodiment 5:
本发明将上述制备方法得到的其中之一优质的激光增益介质Cr2+,Co2+: ZnSe晶体,作为激光输出实验装置中对吸收光谱和发射光谱进行研究;这里确定具体Cr2+,Co2+: ZnSe晶体的泵浦波长为1.55 μm、Cr2+,Co2+: ZnSe晶体的发射波长是1.8~3.7 μm。选择平凹腔作为激光谐振腔镜,采用半导体激光器(LD)作为泵浦源进行泵浦,实现1.8~3.7 μm的可调谐中红外激光输出。以输出激光的波长3.2 μm为例,设计出的激光谐振腔系统。如图3所示,激光泵浦源8波长是1.55 μm,输出的泵浦光束9,其输入腔镜12镀膜,对1.55 μm全透过,对3.2 μm波长光全反射,激光增益介质13为Cr2+,Co2+: ZnSe,其输出腔镜14镀膜,对3.2 μm波长90%反射, 输出激光15其输出波长为3.2 μm。值得注意的是,当输出激光选择输出波长为2.9 μm附近时,处于水的强吸收带,因此激光实验装置中需要排除水气对激光谐振腔的影响,此时可将激光谐振腔置于真空中、或将激光谐振腔充保护气体于密封箱10中即可消除此影响。
In the present invention, one of the high-quality laser gain medium Cr 2+ , Co 2+ : ZnSe crystal obtained by the above preparation method is used as the laser output experimental device to study the absorption spectrum and emission spectrum; here, the specific Cr 2+ , Co 2+ : the pump wavelength of ZnSe crystal is 1.55 μm, Cr 2+ , Co 2+ : the emission wavelength of ZnSe crystal is 1.8~3.7 μm. A flat concave cavity is selected as the laser resonator mirror, and a semiconductor laser (LD) is used as the pumping source for pumping to achieve a tunable mid-infrared laser output of 1.8-3.7 μm. Taking the output laser with a wavelength of 3.2 μm as an example, the laser resonator system is designed. As shown in Figure 3, the wavelength of the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210390553.3A CN102888655B (en) | 2012-10-16 | 2012-10-16 | Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210390553.3A CN102888655B (en) | 2012-10-16 | 2012-10-16 | Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102888655A true CN102888655A (en) | 2013-01-23 |
CN102888655B CN102888655B (en) | 2015-04-08 |
Family
ID=47532327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210390553.3A Expired - Fee Related CN102888655B (en) | 2012-10-16 | 2012-10-16 | Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102888655B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103590110A (en) * | 2013-11-14 | 2014-02-19 | 北京雷生强式科技有限责任公司 | Preparation method of iron doped ZnSe (zinc selenide) laser crystal |
CN114706096A (en) * | 2019-10-24 | 2022-07-05 | 趣眼有限公司 | Shortwave Infrared Optical System |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1326018A (en) * | 2000-05-19 | 2001-12-12 | 住友电气工业株式会社 | Heat treatment of ZnSe crystal substrates, heat treated substrates and optical emitter |
CN202872171U (en) * | 2012-10-16 | 2013-04-10 | 四川大学 | Laser output experimental device constructed by intermediate infrared wide spectrum tunable laser gain medium |
-
2012
- 2012-10-16 CN CN201210390553.3A patent/CN102888655B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1326018A (en) * | 2000-05-19 | 2001-12-12 | 住友电气工业株式会社 | Heat treatment of ZnSe crystal substrates, heat treated substrates and optical emitter |
CN202872171U (en) * | 2012-10-16 | 2013-04-10 | 四川大学 | Laser output experimental device constructed by intermediate infrared wide spectrum tunable laser gain medium |
Non-Patent Citations (2)
Title |
---|
O.O. ADETUNJI ET AL: "Growth of Cr- and Co-Doped CdSe Crystals from High-Temperature Selenium Solutions", 《JOURNAL OF ELECTRONIC MATERIALS》 * |
U. HOMMERICH: "Material synthesis and infrared optical properties of transition metal doped binary and ternary II-VI semiconductors", 《MATERIALS RESEARCH SOCIETY》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103590110A (en) * | 2013-11-14 | 2014-02-19 | 北京雷生强式科技有限责任公司 | Preparation method of iron doped ZnSe (zinc selenide) laser crystal |
CN103590110B (en) * | 2013-11-14 | 2016-08-31 | 北京雷生强式科技有限责任公司 | A kind of preparation method of iron-doped zinc selenide laser crystal |
CN114706096A (en) * | 2019-10-24 | 2022-07-05 | 趣眼有限公司 | Shortwave Infrared Optical System |
Also Published As
Publication number | Publication date |
---|---|
CN102888655B (en) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Two-photon-pumped perovskite semiconductor nanocrystal lasers | |
Sanghera et al. | Ceramic laser materials | |
Zheng et al. | Optical transition, excitation state absorption, and energy transfer study of Er3+, Nd3+ single‐doped, and Er3+/Nd3+ codoped tellurite glasses for mid‐infrared laser applications | |
Gallian et al. | Hot-pressed ceramic Cr2+: ZnSe gain-switched laser | |
Jing et al. | Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu, Sc) 2O3 transparent ceramics | |
Lin et al. | Oxyfluoride glass-ceramics for transition metal ion based photonics: broadband near-IR luminescence of nickel ion dopant and nanocrystallization mechanism | |
Reusswig et al. | A path to practical solar pumped lasers via radiative energy transfer | |
Zhang et al. | Phonon-assisted anti-Stokes lasing in ZnTe nanoribbons | |
Zhong et al. | Laser cooling of Yb3+-doped LuLiF4 crystal | |
Saraceno et al. | Cutting-edge high-power ultrafast thin disk oscillators | |
Pirri et al. | Achievements and future perspectives of the trivalent thulium-ion-doped mixed-sesquioxide ceramics for laser applications | |
Fjodorow et al. | Mid-infrared laser performance of Ce3+-doped selenide glass | |
Palashov et al. | Thermo-optical studies of laser ceramics | |
Rostami et al. | Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers | |
Beecher et al. | Ytterbium-doped-garnet crystal waveguide lasers grown by pulsed laser deposition | |
Li et al. | Enhanced performance of two-photon excited amplified spontaneous emission by Cd-alloyed CsPbBr3 Nanocrystals | |
CN102888655B (en) | Middle-infrared laser gain medium codoped bivalent chromium and cobalt ion II-VI crystal | |
Chen et al. | Growth, spectroscopic, diode-pumped mid-infrared laser properties of Er: GSAG crystal | |
Sorokin et al. | Continuous-wave broadly tunable high-power Cr: CdS laser | |
Basyrova et al. | Thermal lensing, heat loading and power scaling of mid-infrared Er: CaF2 lasers | |
Shen et al. | Optical crystals for 1.3 μm all-solid-state passively Q-switched laser | |
Püschel et al. | Solid-state laser cooling in Yb: CaF2 and Yb: SrF2 by anti-Stokes fluorescence | |
Kifle et al. | Graphene Q-switched Tm: KY (WO4) 2 waveguide laser | |
CN103275723B (en) | Ferrochrome ion is two mixes composite selenium zinc sulphide laserable material and preparation method thereof | |
CN202872171U (en) | Laser output experimental device constructed by intermediate infrared wide spectrum tunable laser gain medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150408 Termination date: 20151016 |
|
EXPY | Termination of patent right or utility model |