CN102879915A - 用于冷原子系统的高分辨成像装置 - Google Patents

用于冷原子系统的高分辨成像装置 Download PDF

Info

Publication number
CN102879915A
CN102879915A CN2012104176687A CN201210417668A CN102879915A CN 102879915 A CN102879915 A CN 102879915A CN 2012104176687 A CN2012104176687 A CN 2012104176687A CN 201210417668 A CN201210417668 A CN 201210417668A CN 102879915 A CN102879915 A CN 102879915A
Authority
CN
China
Prior art keywords
lens
imaging
dichroic mirror
laser
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104176687A
Other languages
English (en)
Other versions
CN102879915B (zh
Inventor
段亚凡
王育竹
崔国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201210417668.7A priority Critical patent/CN102879915B/zh
Publication of CN102879915A publication Critical patent/CN102879915A/zh
Application granted granted Critical
Publication of CN102879915B publication Critical patent/CN102879915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种用于冷原子系统的高分辨成像装置,该装置包括无序光晶格生成光路和成像光路,其特点在于所述的无序光晶格生成光路包括激光束,沿该激光束方向依次由第一透镜、第二透镜、扩散膜、反射镜和双色镜组成,所述的第一透镜和第二透镜组成扩束系统,所述的反射镜和双色镜与光束方向成45°;所述的成像光路包括成像照明光束,沿该成像照明光束方向依次由真空池、第三透镜、双色镜、第四透镜、CCD组成。本发明将激光散斑产生光路和成像光路组合起来,利用一个消像差透镜实现对冷原子团加载无序光晶格,并可以实现对原子团的高分辨率成像,具有结构简单,光路集成化程度高,占用空间少,调节方便等优点。

Description

用于冷原子系统的高分辨成像装置
技术领域
本发明涉及冷原子系统,特别是一种用于冷原子系统的高分辨成像装置。
背景技术
目前随着超冷原子制备技术以及光晶格技术的发展,利用超冷原子和光晶格技术进行量子模拟来研究凝聚态物理中的复杂量子问题成为了国际上研究的热门,例如利用其来研究超流、超导、局域化等问题。而为了研究这些问题需要给超冷原子团加载无序光晶格,即激光散斑,同时需要有高分辨率的成像系统对无序光晶格中原子进行拍照,从而观测原子的行为。
通常的超冷原子无序系统的成像光路和散斑光路是各自独立的,需要两个大数值孔径的透镜分别用来产生亚微米的激光散斑和实现亚微米分辨率的成像,这两个大数值孔径的透镜将占用真空池的两个通光面。通常的真空池的形状通常是长方体,通光面只有四个,因此如果两个通光面被占用了,那么要加入别的激光来对真空池中的原子进行操作将变得比较困难,影响了系统的后续扩展。另外由于采用了两个大数值孔径的透镜,这两个透镜与原子团的相对位置关系需要分别调节,这个调节过程也比较繁复。
发明内容
为了克服上述问题,本发明提供一种用于冷原子系统的高分辨成像装置,该装置将散斑光路和高分辨成像光路集合起来,只用一个大数值孔径的透镜,因此只占用一个真空池通光面,同时实现加载无序光晶格和高分辨成像,光路简单,由于只用一个大数值孔径的透镜,只需调节好这个透镜与原子团的相对位置,易于调节。
本发明的技术解决方案如下:
一种用于冷原子系统的高分辨成像装置,该装置包括无序光晶格生成光路和成像光路,其特点在于所述的无序光晶格生成光路包括激光束,沿该激光束方向依次由第一透镜、第二透镜、扩散膜、反射镜和双色镜组成,所述的第一透镜和第二透镜组成扩束系统,所述的反射镜和双色镜与光束方向成45°;所述的成像光路包括成像照明光束,沿该成像照明光束方向依次由真空池、第三透镜、双色镜、第四透镜、CCD组成,所述的第三透镜和第四透镜的焦点重合,第三透镜的焦距为f,的焦距为F,第三透镜和第四透镜之间是间隔为F+f,所述的CCD位于所述的第四透镜的后焦面上,所述的扩散膜是一种透明的但厚度无序分布的膜状材料;
所述的激光束,经第一透镜和第二透镜组成的扩束系统扩束后再经所述的扩散膜调制,形成散斑光束,该散斑光束由反射镜和双色镜反射经第三透镜聚焦到所述的真空池中第三透镜的焦点,激光焦斑光强呈现散斑结构,处于所述的真空池散斑结构的冷原子团,在与冷原子团共振的所述的成像照明光束的照明下,产生的图样经所述的经第三透镜、双色镜、第四透镜后成像在所述的CCD上。
所述的散斑结构的散斑颗粒的大小由聚焦前激光光斑的直径和聚焦透镜的焦距决定: δ ≈ λf D
其中:f为第三透镜的焦距,δ为散斑颗粒的平均横向尺寸,D为所述的散斑光束聚焦前激光光斑的直径,λ为激光的波长。
所述的双色镜对所述的激光束全反射,对成像照明光束透射的平面镜。
本发明的技术效果:
本发明用于冷原子系统的高分辨成像装置,该装置包括无序光晶格生成光路和成像光路,两光路共用一个大数值孔径的透镜,产生亚微米的散斑颗粒的同时对原子团进行亚微米分辨率的成像,因此结构简单紧凑,只占用真空池的一个通光面,方便了添加别的激光束来对原子进行操作,有利于系统的后续扩展。与传统系统相比不需分别调节两个透镜,提高了调节的便利性。
附图说明
图1是本发明用于冷原子系统的高分辨成像装置光路示意图
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
请参阅图1,图1是本发明用于冷原子系统的高分辨成像装置光路示意图。由图可见,本发明一种用于冷原子系统的高分辨成像装置,该装置包括无序光晶格生成光路和成像光路,所述的无序光晶格生成光路包括散斑光光源-激光束10,沿该激光束10方向依次由第一透镜1、第二透镜2、扩散膜3、反射镜4和双色镜5组成,所述的第一透镜1和第二透镜2组成扩束系统,所述的反射镜4和双色镜5与光束方向成45°;所述的成像光路包括照明光源-成像照明光束11,沿该成像照明光束11方向依次包括真空池9、第三透镜7、双色镜5、第四透镜6、CCD8,所述的第三透镜7和第四透镜6的焦点重合,第三透镜7的焦距为f,第四透镜6的焦距为F,第三透镜7和第四透镜6之间是间隔为F+f,所述的CCD 8位于所述的第四透镜6的后焦面上,所述的扩散膜3是一种透明的但厚度无序分布的膜状材料;
所述的激光束10经第一透镜1和第二透镜2组成的扩束系统扩束后,再经所述的扩散膜3调制,形成散斑光束,该散斑光束由反射镜4和双色镜5反射经第三透镜7聚焦到所述的真空池9中焦点,激光光强呈现散斑结构,处于所述的真空池9散斑结构的冷原子团,在与冷原子团共振的所述的成像照明光束11的照明下,产生的图样经所述的经第三透镜7、双色镜5、第四透镜6后成像在所述的CCD8上。
所述的无序光晶格生成光路和成像光路共用一个大数值孔径的消像差第三透镜7,从而可以实现较好的成像。
光路调节过程中可以调节反射镜4的角度,保证散斑光光源激光束10与第三透镜7的光轴平行,从而让激光束10汇聚于第三透镜7的焦点上。第三透镜7的焦点位置需要调到原子团所处的位置上。
所述的成像系统从照明光束11入射方向依次由真空池9、第三透镜7、第四透镜6以及CCD8组成。照明光束11是与所测原子团能级共振的平行激光束,可被所测原子吸收。第三透镜7和第四透镜6的焦点重合,CCD8的感光面处于第四透镜6的焦面上,这样整个系统组成一个成像系统实现对原子团的成像。
如果我们选择532nm的激光作为散斑光光源,780nm(对应铷87原子)的激光作为成像照明光,第三透镜7选择数值孔径为0.4的透镜,可以实现0.7微米的散斑颗粒并且同时可以实现相同量级分辨率的成像。

Claims (3)

1.一种用于冷原子系统的高分辨成像装置,该装置包括无序光晶格生成光路和成像光路,其特征在于所述的无序光晶格生成光路包括激光束(10),沿该激光束(10)方向依次由第一透镜(1)、第二透镜(2)、扩散膜(3)、反射镜(4)和双色镜(5)组成,所述的第一透镜(1)和第二透镜(2)组成扩束系统,所述的反射镜(4)和双色镜(5)与光束成45°;所述的成像光路包括成像照明光束(11),沿该成像照明光束(11)方向依次由真空池(9)、第三透镜(7)、双色镜(5)、第四透镜(6)、CCD(8)组成,所述的第三透镜(7)和第四透镜(6)的焦点重合,第三透镜(7)的焦距为f,的焦距为F,第三透镜(7)和第四透镜(6)之间是间隔为F+f,所述的CCD(8)位于所述的第四透镜(6)的后焦面上,所述的扩散膜(3)是一种透明的但厚度无序分布的膜状材料;
所述的激光束(10),经第一透镜(1)和第二透镜(2)组成的扩束系统扩束后再经所述的扩散膜(3)调制,形成散斑光束,该散斑光束由反射镜(4)和双色镜(5)反射经第三透镜(7)聚焦到所述的真空池(9)中焦点,激光光强呈现散斑结构,处于所述的真空池(9)散斑结构的冷原子团,在与冷原子团共振的所述的成像照明光束(11)的照明下,产生的图样经所述的经第三透镜(7)、双色镜(5)、第四透镜(6)后成像在所述的CCD(8)上。
2.根据权利要求1所述的高分辨成像装置,其特征在于所述的散斑结构的散斑颗粒的大小由聚焦前激光光斑的直径和聚焦透镜的焦距决定:
Figure FDA00002314159100011
其中:f为第三透镜(7)的焦距,δ为散斑颗粒的平均横向尺寸,D为所述的散斑光束聚焦前激光光斑的直径,λ为激光的波长。
3.根据权利要求1所述的高分辨成像装置,其特征在于所述的双色镜(5)对所述的激光束(10)全反射,对成像照明光束(11)透射的平面镜。
CN201210417668.7A 2012-10-26 2012-10-26 用于冷原子系统的高分辨成像装置 Active CN102879915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210417668.7A CN102879915B (zh) 2012-10-26 2012-10-26 用于冷原子系统的高分辨成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210417668.7A CN102879915B (zh) 2012-10-26 2012-10-26 用于冷原子系统的高分辨成像装置

Publications (2)

Publication Number Publication Date
CN102879915A true CN102879915A (zh) 2013-01-16
CN102879915B CN102879915B (zh) 2014-12-31

Family

ID=47481298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210417668.7A Active CN102879915B (zh) 2012-10-26 2012-10-26 用于冷原子系统的高分辨成像装置

Country Status (1)

Country Link
CN (1) CN102879915B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217804A (zh) * 2013-04-28 2013-07-24 中国科学院上海光学精密机械研究所 产生一维单色错位铷锶光晶格的装置
CN108398813A (zh) * 2018-04-25 2018-08-14 中国科学技术大学 图像调整装置及成像方法
CN108872178A (zh) * 2018-08-09 2018-11-23 中国科学院国家授时中心 光晶格成像装置
CN111610571A (zh) * 2020-05-09 2020-09-01 中国人民解放军军事科学院国防科技创新研究院 一种原子干涉重力仪动态误差监测补偿系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303928B1 (en) * 1998-12-21 2001-10-16 The Aerospace Corporation Continuous cold atom beam atomic system
CN102147536A (zh) * 2011-03-11 2011-08-10 中国科学院上海光学精密机械研究所 双路可控的一维光学晶格装置
US8101929B1 (en) * 2008-04-24 2012-01-24 University Of Central Florida Research Foundation, Inc. Diffraction free, self-bending airy wave arrangement
CN102538775A (zh) * 2010-12-24 2012-07-04 清华大学 一种冷原子束干涉陀螺装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303928B1 (en) * 1998-12-21 2001-10-16 The Aerospace Corporation Continuous cold atom beam atomic system
US8101929B1 (en) * 2008-04-24 2012-01-24 University Of Central Florida Research Foundation, Inc. Diffraction free, self-bending airy wave arrangement
CN102538775A (zh) * 2010-12-24 2012-07-04 清华大学 一种冷原子束干涉陀螺装置
CN102147536A (zh) * 2011-03-11 2011-08-10 中国科学院上海光学精密机械研究所 双路可控的一维光学晶格装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217804A (zh) * 2013-04-28 2013-07-24 中国科学院上海光学精密机械研究所 产生一维单色错位铷锶光晶格的装置
CN103217804B (zh) * 2013-04-28 2015-08-12 中国科学院上海光学精密机械研究所 产生一维单色错位铷锶光晶格的装置
CN108398813A (zh) * 2018-04-25 2018-08-14 中国科学技术大学 图像调整装置及成像方法
CN108872178A (zh) * 2018-08-09 2018-11-23 中国科学院国家授时中心 光晶格成像装置
CN111610571A (zh) * 2020-05-09 2020-09-01 中国人民解放军军事科学院国防科技创新研究院 一种原子干涉重力仪动态误差监测补偿系统及方法
CN111610571B (zh) * 2020-05-09 2020-12-25 中国人民解放军军事科学院国防科技创新研究院 一种原子干涉重力仪动态误差监测补偿系统及方法

Also Published As

Publication number Publication date
CN102879915B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
US10126466B2 (en) Spatially multiplexed dielectric metasurface optical elements
CN102879915B (zh) 用于冷原子系统的高分辨成像装置
US20140346328A1 (en) Extended depth of field three-dimensional nano-resolution imaging method, optical component, and imaging system
CN103075974B (zh) 径向偏光照明椭球曲面光瞳振幅滤波共焦成像装置
KR20160091380A (ko) 구조광 조명을 연속적으로 조절 가능한 초고해상도 현미경 이미징 방법 및 시스템
CN104111590B (zh) 基于复合涡旋双瓣聚焦光斑的激光直写装置
CN104034517B (zh) 一种亚波长光子筛聚焦性能检测方法
CN107966110A (zh) 一种双模态数字全息显微装置
CN107831589B (zh) 一种基于球形微纳液滴透镜的聚焦可控超分辨显微装置
US9323052B2 (en) Lithography pupil shaping optical system and method for generating off-axis illumination mode
CN103424870B (zh) 产生柱矢量光束的装置及方法
KR102292826B1 (ko) 선형 편광에 대한 편광 선택적 메타표면을 이용한 트리포시 메타렌즈 소자
CN100406958C (zh) 波长及角度匹配拼接光栅压缩器的监测与调整方法
CN102305969B (zh) 实现半导体激光光束匀化的微光学元件
CN108535865A (zh) 一种焦距可控的负折射光栅平凹镜设计方法
CN104582225B (zh) 用于激光等离子体时空谱诊断的x射线光学结构
CN105301781B (zh) 可消除零极点的光学系统及其光场发散角调节方法
CN101975992B (zh) 基于位相与偏振的焦深扩展的方法和装置
CN101907781B (zh) 一种具有光束会聚功能的光学平板制作方法
US20140268371A1 (en) Apparatuses and Methods to Image Surfaces with Small Spot-Size and Large Field of View
Jiang et al. An artificial compound eye of photon Sieves
RU182549U1 (ru) Субволновая оптическая ловушка в поле стоячей волны на основе фотонной струи
CN103424879B (zh) 基于单一物镜的聚焦光学系统
CN106531281A (zh) 一种消像差x射线复合折射透镜及其设计方法
Chang et al. Beaming effect of the plasmonic metalens structured with concentric elliptical nanohole arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant