CN102879473B - System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) - Google Patents
System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) Download PDFInfo
- Publication number
- CN102879473B CN102879473B CN201210371209.XA CN201210371209A CN102879473B CN 102879473 B CN102879473 B CN 102879473B CN 201210371209 A CN201210371209 A CN 201210371209A CN 102879473 B CN102879473 B CN 102879473B
- Authority
- CN
- China
- Prior art keywords
- data space
- fatigue damage
- information
- dimension
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明公开了一种基于PCA和TDF对AZ31镁合金进行疲劳损伤状态的识别系统,该系统由多个声发射换能器(6)、多路前置放大器(5)、一个声发射仪(4)和一个AZ31镁合金疲劳损伤检测单元(1)组成。AZ31镁合金疲劳损伤检测单元(1)包括有过滤模块(11)、一级数据融合模块(12)、二级数据融合模块(13)。本发明采用主成分分析与疲劳损伤类别相结合,在数据空间中进行神经网络的训练得到各换能器在数据空间中的损伤度标志,然后用损伤度标志对每个声发射换能器信息进行局部诊断;进而用神经网络输出结果构造数据融合的基本概率值;最后采用数据融合的组合关系对疲劳损伤状态进行诊断。利用该系统,可对AZ31镁合金疲劳过程中的损伤状态进行识别、诊断,进而对其可靠运行提供依据。
The invention discloses a system for identifying the fatigue damage state of an AZ31 magnesium alloy based on PCA and TDF. The system consists of multiple acoustic emission transducers (6), multi-channel preamplifiers (5), and an acoustic emission instrument ( 4) and an AZ31 magnesium alloy fatigue damage detection unit (1). The AZ31 magnesium alloy fatigue damage detection unit (1) includes a filtering module (11), a primary data fusion module (12), and a secondary data fusion module (13). The present invention combines principal component analysis with fatigue damage categories, and performs neural network training in the data space to obtain the damage degree marks of each transducer in the data space, and then uses the damage degree marks to analyze the information of each acoustic emission transducer. Carry out local diagnosis; then use the output result of neural network to construct the basic probability value of data fusion; finally use the combined relationship of data fusion to diagnose the fatigue damage state. Using this system, the damage state of AZ31 magnesium alloy during the fatigue process can be identified and diagnosed, and then the basis for its reliable operation can be provided.
Description
技术领域 technical field
本发明涉及一种对在役AZ31镁合金服役期间的疲劳损伤状态进行识别的方法。更特别地说,是指一种对声发射换能器采集的数据首先采用主成分分析(PCA)根据其损伤类别构建不同的数据空间,在数据空间中进行神经网络的训练得到各换能器在数据空间中的损伤度标志模块,然后应用该模块对在役AZ31镁合金实时采集的声发射数据进行两级数据融合(TDF),从而识别出在役AZ31镁合金属于何种疲劳损伤状态。 The invention relates to a method for identifying the fatigue damage state of an in-service AZ31 magnesium alloy during service. More specifically, it refers to a kind of data collected by acoustic emission transducers. Firstly, principal component analysis (PCA) is used to construct different data spaces according to their damage categories, and neural network training is carried out in the data space to obtain the The damage degree flag module in the data space, and then apply the module to perform two-level data fusion (TDF) on the acoustic emission data collected in real time for the in-service AZ31 magnesium alloy, so as to identify the fatigue damage state of the in-service AZ31 magnesium alloy.
背景技术 Background technique
近年来,镁合金产品产量在全球的年增长率高达20%,成为备受关注的材料。镁合金在交通工具、电子和通讯产品、航空航天、化工和机械等工业领域显示出了极大的应用前景。AZ31镁合金,是指含Al 3%、Zn 1%(wt%)的镁合金,是目前商业化应用最广泛的变形镁合金。AZ31镁合金可以挤压成棒材、管材、型材,可以轧制成薄板、厚板,也可以加工成锻件,主要应用于汽车、航空航天部件、兵器等方面。 In recent years, the annual growth rate of magnesium alloy products in the world is as high as 20%, and it has become a material that has attracted much attention. Magnesium alloys have shown great application prospects in industrial fields such as transportation, electronics and communication products, aerospace, chemical and machinery. AZ31 magnesium alloy refers to a magnesium alloy containing 3% Al and 1% (wt%) Zn, and is the most widely used wrought magnesium alloy commercially. AZ31 magnesium alloy can be extruded into rods, pipes, and profiles, rolled into thin plates, thick plates, and processed into forgings. It is mainly used in automobiles, aerospace components, weapons, etc.
AZ31镁合金在服役后损伤是造成其失效的主要原因之一,为此要对其损伤状态进行识别,及时、正确地评价AZ31镁合金的疲劳损伤状态,为其安全运行及寿命预测提供依据。 The damage of AZ31 magnesium alloy after service is one of the main reasons for its failure. Therefore, it is necessary to identify its damage state, evaluate the fatigue damage state of AZ31 magnesium alloy in a timely and correct manner, and provide the basis for its safe operation and life prediction.
声发射技术(Acoustic Emission Technique)因具有动态、实时检测等优点,已广泛的应用于结构和构件的损伤检测。实践表明,材料在疲劳过程的不同阶段,其声发射特征会发生一系列不同的变化,也就是说AZ31镁合金不同的疲劳损伤阶段,将有不同的声发射信号,而损伤状态的转变,往往引起声发射多个参数的变化,同时某一参数变化又可以是由多种损伤状态引起的,所以有必要采用多声发射换能器的数据融合技术,即充分利用不同时间与空间的多声发射换能器数据资源,采用计算机技术对按时间序列获得的多声发射换能器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。因此本发明将数据融合技术引入AZ31镁合金损伤状态识别系统中,建立主成分分析,数据融合和人工神经网络相结合的诊断系统对AZ31镁合金损伤状态进行识别、诊断。 Acoustic Emission Technique (Acoustic Emission Technique) has been widely used in the damage detection of structures and components due to its advantages of dynamic and real-time detection. Practice has shown that in different stages of the fatigue process, the acoustic emission characteristics of the material will undergo a series of different changes, that is to say, the AZ31 magnesium alloy will have different acoustic emission signals at different stages of fatigue damage, and the transition of the damage state often occurs It causes changes in multiple parameters of acoustic emission, and at the same time, a parameter change can be caused by multiple damage states, so it is necessary to use data fusion technology of multiple acoustic emission transducers, that is, to make full use of multiple acoustic emissions in different time and space. Emission transducer data resources, using computer technology to analyze, synthesize, control and use the multi-acoustic emission transducer observation data obtained in time series under certain criteria, to obtain consistent interpretation and description of the measured object, Then realize the corresponding decision-making and estimation, so that the system can obtain more sufficient information than its components. Therefore, the present invention introduces the data fusion technology into the AZ31 magnesium alloy damage state identification system, and establishes a principal component analysis, data fusion and artificial neural network combined diagnosis system to identify and diagnose the AZ31 magnesium alloy damage state.
主成分分析也称主分量分析。主成分分析利用降维的思想,在损失很少信息的前提下把多个指标转化为几个综合指标的多元统计方法。通常把转化成的指标称为主成分,其中每个主成分都是原始变量的线性组 合,且各个主成分间互不相关,使主成分比原始变量具有某些更优越的性能。“主成分分析”引用中国人民大学出版社于2008年9月第2版出版的《多元统计分析》,第152页至第154页的内容介绍。 Principal component analysis is also called principal component analysis. Principal component analysis uses the idea of dimensionality reduction to convert multiple indicators into several comprehensive indicators under the premise of losing little information. Usually, the converted indicators are called principal components, where each principal component is a linear combination of the original variables, and each principal component is independent of each other, so that the principal components have some superior performance than the original variables. "Principal Component Analysis" refers to the content introduction on pages 152 to 154 of "Multivariate Statistical Analysis" published by Renmin University of China Press, the second edition in September 2008.
神经网络是一种模拟人思维的一个非线性系统。径向基函数(RBF)神经网络是根据在人脑皮层中具有局部调节和交叠的感受域提出的,又称为局部感受域神经网络。它是一种包括输入层、隐层和输出层的三层前馈型网络模型。由于RBF网络结构简单,且具有以任意精度逼近任意连续函数的能力,学习速率快,所以越来越广泛应用于各个领域。 A neural network is a nonlinear system that simulates human thinking. The radial basis function (RBF) neural network is proposed based on the receptive field with local regulation and overlap in the human cerebral cortex, also known as the local receptive field neural network. It is a three-layer feed-forward network model including input layer, hidden layer and output layer. Due to the simple structure of the RBF network, the ability to approximate any continuous function with arbitrary precision, and the fast learning rate, it is more and more widely used in various fields.
发明内容 Contents of the invention
为了减少AZ31镁合金在使用过程中突发断裂造成的人员伤害、设备损失和经济损失,本发明提出一种采用主成分分析,神经网络和两级数据融合相结合的方法来识别在役AZ31镁合金的疲劳损伤状态。该疲劳状态识别系统首先对训练样本中不同损伤数据采用主成分分析构建两个数据空间,采用神经网络方法对多路声发射换能器采集得到的信息在两个数据空间下进行神经网络训练,获得用于判断AZ31镁合金不同疲劳损伤状态的损伤度标志模块;然后将两个数据空间下该模块的神经网络输出进行基本概率分配后进行一级数据融合,再将多个换能器一级数据融合结果进行二级数据融合,获得数据融合模块,进而将数据融合模块内嵌在AZ31镁合金疲劳识别系统中。内嵌有本发明的数据融合模块在工作状态下,能够对在役AZ31镁合金不同疲劳损伤状态进行识别,并对识别出的结果作出预警。 In order to reduce the personnel injury, equipment loss and economic loss caused by the sudden fracture of AZ31 magnesium alloy during use, the present invention proposes a method that combines principal component analysis, neural network and two-level data fusion to identify AZ31 magnesium in service Alloy fatigue damage state. The fatigue state recognition system first uses principal component analysis to construct two data spaces for different damage data in the training samples, and uses the neural network method to perform neural network training on the information collected by the multi-channel acoustic emission transducer in the two data spaces. Obtain the damage degree flag module for judging the different fatigue damage states of AZ31 magnesium alloy; then carry out the basic probability distribution of the neural network output of the module under the two data spaces, and then carry out the first-level data fusion, and then combine the multiple transducers in the first-level The data fusion results are subjected to secondary data fusion to obtain the data fusion module, and then the data fusion module is embedded in the AZ31 magnesium alloy fatigue identification system. The data fusion module embedded with the present invention can identify different fatigue damage states of the in-service AZ31 magnesium alloy under working conditions, and give early warning to the identified results.
本发明是一种采用主成分分析,神经网络和数据融合相结合的技术对AZ31镁合金进行疲劳损伤状态进行识别的识别系统,该系统包括有多个声发射换能器(6)、多路前置放大器(5)、一个声发射仪(4),其特征在于:还包括有一个AZ31镁合金疲劳损伤检测单元(1); The present invention is an identification system for identifying the fatigue damage state of AZ31 magnesium alloy by using principal component analysis, neural network and data fusion technology. The system includes multiple acoustic emission transducers (6), multiple The preamplifier (5), an acoustic emission instrument (4), is characterized in that: it also includes an AZ31 magnesium alloy fatigue damage detection unit (1);
AZ31镁合金疲劳损伤检测单元(1)包括有过滤模块(11)和一级数据融合模块(12),二级数据融合模块(13),其中,过滤模块(11)有数据滤波处理模块(11A)和波形滤波处理模块(11B),一级数据融合模块(12)有第一数据空间(12A),第二数据空间(12B),第一损伤度标志模块(12C),第二损伤度标志模块(12D),D-S证据组合模块(12E); The AZ31 magnesium alloy fatigue damage detection unit (1) includes a filtering module (11), a first-level data fusion module (12), and a second-level data fusion module (13), wherein the filtering module (11) has a data filtering processing module (11A ) and waveform filtering processing module (11B), the primary data fusion module (12) has a first data space (12A), a second data space (12B), a first damage degree flag module (12C), and a second damage degree flag Module (12D), D-S Evidence Portfolio Module (12E);
声发射换能器(6)与前置放大器(5)为配套使用,即每一个声发射换能器(6)的输出端与一个前置放大器(5)的输入端连接,每一个前置放大器(5)的输出端连接在声发射仪(4)的信息输入接口上,该信息输入接口用于接收多路突发型放大信息 AZ31镁合金疲劳损伤检测单元(1)内嵌在声发射仪(4)的存储器中; The acoustic emission transducer (6) is used in conjunction with the preamplifier (5), that is, the output end of each acoustic emission transducer (6) is connected to the input end of a preamplifier (5), and each preamplifier The output end of the amplifier (5) is connected to the information input interface of the acoustic emission instrument (4), and the information input interface is used to receive multiple channels of burst type amplification information The AZ31 magnesium alloy fatigue damage detection unit (1) is embedded in the memory of the acoustic emission instrument (4);
声发射换能器(6),用于采集在役AZ31镁合金在采集时间TX段内的突发型信息突发型信息 Acoustic emission transducer (6), used to collect burst information of in-service AZ31 magnesium alloy within the collection time T X segment
前置放大器(5),用于对接收到的突发型信息 进行放大40dB后 成为突发型放大信息 Preamplifier (5), used for receiving burst-type information After amplifying 40dB, it becomes burst type amplification information
声发射仪(4)用于对接收到的突发型放大信息 经A/D转换后成为数字突发型信息 输出给AZ31镁合金疲劳损伤检测单元(1); The acoustic emission device (4) is used to amplify the received burst information After A/D conversion, it becomes digital burst information Output to AZ31 magnesium alloy fatigue damage detection unit (1);
AZ31镁合金疲劳损伤检测单元(1)的过滤模块(11)中的数据滤波处理模块(11A)对接收到的数字突发型信息 进行参数滤波,滤掉电磁噪声和环境噪声后,提纯得到声发射疲劳损伤初步信息 然后波形滤波处理模块(11B)对声发射疲劳损伤初步信息 进行波形滤波,获得声发射疲劳损伤信息
对换能器接收到AZ31镁合金的疲劳损伤信息 进行采集时间TX段内的累积处理,然后归一化得到归一化累积疲劳损伤信息f11B′,将f11B′分别在第一数据空间(12A)和第二数据空间(12B)下投影得到各自的得分矩阵f12A=(ta1,ta2,ta3,ta4,ta5)和f12B=(tb1,tb2,tb3,tb4,tb5),得分矩阵f12A=(ta1,ta2,ta3,ta4,ta5)经第一损伤度标志模块(12C)处理得到在第一数据空间中的神经网络输出f12C=[fID,a(A1)fID,a(A2)],得分矩阵f12B=(tb1,tb2,tb3,tb4,tb5)经第二损伤度标志模块(12D)进行处理得到在第二数据空间中的神经网络输出f12D=[fID,b(A1)fID,b(A2)];将f12C和f12D进行各节点的相关系数赋值后进行基本概率分配,然后进行D-S证据组合模块(12E)处理得到单个换能器的数据融合结果mID(Bj),再将所有换能器的D-S证据组合模块(12E)结果进行二级数据融合(13)得到数据融合结果m(Cj),该结果经损伤等级评定单元(2)解析后输出疲劳损伤识别信息D给报警单元(3)。 Fatigue damage information received by the transducer for AZ31 magnesium alloy Carry out the accumulation processing within the acquisition time T X period, and then normalize to obtain the normalized cumulative fatigue damage information f 11B ′, and project f 11B ′ in the first data space (12A) and the second data space (12B) respectively Obtain respective scoring matrices f 12A =(t a1 ,t a2 ,t a3 ,t a4 ,t a5 ) and f 12B =(t b1 ,t b2 ,t b3 ,t b4 ,t b5 ), scoring matrix f 12A = (t a1 ,t a2 ,t a3 ,t a4 ,t a5 ) are processed by the first damage degree flag module (12C) to obtain the neural network output f 12C in the first data space =[f ID,a (A 1 ) f ID,a (A 2 )], scoring matrix f 12B =(t b1 ,t b2 ,t b3 ,t b4 ,t b5 ) processed by the second damage degree flag module (12D) in the second data space The neural network output f 12D =[f ID,b (A 1 )f ID,b (A 2 )]; After assigning the correlation coefficients of each node to f 12C and f 12D , carry out basic probability distribution, and then carry out DS evidence combination The module (12E) processes and obtains the data fusion result m ID (B j ) of a single transducer, and then performs secondary data fusion (13) on the results of the DS evidence combination module (12E) of all transducers to obtain the data fusion result m( C j ), the result is analyzed by the damage level assessment unit (2) and then output fatigue damage identification information D to the alarm unit (3).
本发明是一种依据声发射信息,采用神经网络在主成分分析构造的数据空间下对损伤状态进行局部识别,然后应用数据融合技术对神经网络诊断结果进行两级融合,识别诊断出AZ31镁合金最终的疲劳损伤状态,该识别系统的优点在于: According to the acoustic emission information, the present invention adopts the neural network to locally identify the damage state in the data space constructed by the principal component analysis, and then uses the data fusion technology to perform two-stage fusion of the neural network diagnosis results to identify and diagnose the AZ31 magnesium alloy The final fatigue damage state, the advantages of this identification system are:
(A)采用声发射仪中的采集卡对使用过一段时间的AZ31镁合金上的声发射换能器的声发射信息(能量eS、测量幅度AS、振铃计数CS、上升时间RS、持续时间DS)进行采集,并将该相关信息作为声发射神经网络的识别系统的信息输入,使得本发明在声发射检测过程中,能通过声发射仪对声发射换能器信息进行采集,然后根据声发射信息参数和波形的变化,识别出是损伤信息,还是噪声信息。 (A) Acoustic emission information (energy e S , measurement amplitude A S , ringing count C S , rise time R S , duration D S ) to collect, and input the relevant information as the information of the recognition system of the acoustic emission neural network, so that the present invention can perform acoustic emission transducer information through the acoustic emission instrument during the acoustic emission detection process Acquisition, and then according to the changes of acoustic emission information parameters and waveforms, it is identified whether it is damage information or noise information.
(B)根据疲劳的损伤模式类型采用主成分分析构造不同的数据空间,通过神经网络在各数据空间下对损伤状态进行局部识别,经两级数据融合输出诊断结果,充分利用了不同损伤类型间信号的差异对损伤 模式进行识别。 (B) According to the type of fatigue damage mode, principal component analysis is used to construct different data spaces, and the damage state is locally identified in each data space through the neural network. The difference in signal identifies the damage pattern.
(C)能综合、支配和使用多个、多种类型声发射换能器的监测数据,充分利用各个声发射换能器的信息,增大了诊断结果的可靠性与准确性,提高了诊断系统的适应能力。 (C) It can synthesize, control and use the monitoring data of multiple and various types of acoustic emission transducers, make full use of the information of each acoustic emission transducer, increase the reliability and accuracy of the diagnostic results, and improve the diagnostic quality. System adaptability.
(D)神经网络和数据融合理论相结合的综合识别诊断系统,具有一定的容错能力,能满足钢结构复杂系统损伤诊断的要求。 (D) The comprehensive identification and diagnosis system combined with neural network and data fusion theory has a certain fault tolerance ability and can meet the requirements of damage diagnosis of complex steel structure systems.
附图说明 Description of drawings
图1是AZ31镁合金疲劳损伤识别系统结构框图。 Figure 1 is a block diagram of the fatigue damage identification system for AZ31 magnesium alloy.
图2是本发明的AZ31镁合金疲劳损伤检测单元的结构框图。 Fig. 2 is a structural block diagram of the AZ31 magnesium alloy fatigue damage detection unit of the present invention.
具体实施方式 Detailed ways
下面将结合附图和实施例对本发明做进一步的详细说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
在疲劳损伤状态模式中包括有:疲劳裂纹稳定扩展损伤状态、疲劳裂纹失稳扩展损伤状态。在役承力件一般在疲劳裂纹稳定扩展损伤状态下工作,当处于疲劳裂纹失稳扩展损伤状态时,该承力件损伤比较严重,使用者应当对承力件进行实时重点检测、监测或者更换,因此对承力件进行疲劳损伤状态检测可以预防和减少事故的发生,以减少突发断裂造成的人员伤害、设备损失和经济损失。 The fatigue damage state model includes: fatigue crack stable growth damage state, fatigue crack instability growth damage state. The load-bearing parts in service generally work under the state of stable fatigue crack expansion and damage. When the fatigue cracks are in a state of unstable expansion and damage, the load-bearing parts are seriously damaged, and the user should carry out real-time key detection, monitoring or replacement of the load-bearing parts. , so the detection of the fatigue damage state of the load-bearing parts can prevent and reduce the occurrence of accidents, so as to reduce the personal injury, equipment loss and economic loss caused by sudden fracture.
参见图1、图2所示,对于AZ31镁合金的疲劳损伤识别系统一般由多个声发射换能器6(也称传感器)、多路前置放大器5、一个声发射仪4、一个AZ31镁合金疲劳损伤检测单元1、损伤等级评定单元2和报警单元3组成;其中,AZ31镁合金疲劳损伤检测单元1包括有过滤模块11和一级数据融合模块12,二级数据融合模块13; As shown in Figure 1 and Figure 2, the fatigue damage identification system for AZ31 magnesium alloy generally consists of multiple acoustic emission transducers 6 (also called sensors), multi-channel preamplifiers 5, an acoustic emission instrument 4, and an AZ31 magnesium alloy The alloy fatigue damage detection unit 1, the damage grade evaluation unit 2 and the alarm unit 3 are composed; wherein, the AZ31 magnesium alloy fatigue damage detection unit 1 includes a filtering module 11, a primary data fusion module 12, and a secondary data fusion module 13;
其中,过滤模块11包括有数据滤波处理模块11A和波形滤波处理模块11B; Wherein, the filtering module 11 includes a data filtering processing module 11A and a waveform filtering processing module 11B;
其中,一级数据融合模块12包括有第一数据空间12A,第二数据空间12B,第一损伤度标志模块12C,第二损伤度标志模块12D,D-S证据组合模块12E。 Among them, the primary data fusion module 12 includes a first data space 12A, a second data space 12B, a first damage degree marking module 12C, a second damage degree marking module 12D, and a D-S evidence combination module 12E.
AZ31镁合金疲劳损伤检测单元1采用Matlab语言(版本R2011b)开发。AZ31镁合金疲劳损伤检测单元1内嵌在声发射仪4的存储器中。 AZ31 magnesium alloy fatigue damage detection unit 1 is developed using Matlab language (version R2011b). The AZ31 magnesium alloy fatigue damage detection unit 1 is embedded in the memory of the acoustic emission instrument 4 .
在本发明中,声发射换能器6与前置放大器5为配套使用,即每一个声发射换能器6的输出端与一个前置放大器5的输入端连接,每一个前置放大器5的输出端连接在声发射仪4的信息输入接口上,该信息输入接口用于接收多路突发型放大信息 In the present invention, the acoustic emission transducer 6 is used in conjunction with the preamplifier 5, that is, the output end of each acoustic emission transducer 6 is connected to the input end of a preamplifier 5, and each preamplifier 5 The output end is connected to the information input interface of the acoustic emission device 4, and the information input interface is used to receive multiple channels of burst type amplification information
在本发明中,声发射仪4选取美国PAC公司生产的DiSP声发射系统,声发射换能器6选取美国PAC公司生产的CZ系列或者WD系列声发射换能器,多路前置放大器5选取美国PAC公司生产的2/4/6型前置放大器。 In the present invention, the acoustic emission instrument 4 selects the DiSP acoustic emission system produced by PAC Company of the United States, the acoustic emission transducer 6 selects the CZ series or the WD series acoustic emission transducer produced by the PAC Company of the United States, and the multi-channel preamplifier 5 selects 2/4/6 type preamplifier produced by American PAC company.
在本发明中,利用声发射换能器6在采集时间TX段内进行信息采集时,不但将损伤信息进行采集,同时也将噪声(环境噪声、电磁噪声、 机械摩擦噪声)进行采集(即eS,AS,CS,RS,DS信息中是包括有噪声的),因此,在本发明中,采用了数据滤波和波形滤波对采集获得的信息进行了去噪处理。这样的去噪其目的在于得到本发明所需的用于进行疲劳损伤监测的五个参数:即能量eS、测量幅度AS、振铃计数CS、上升时间RS和持续时间DS。 In the present invention, when the acoustic emission transducer 6 is used to collect information within the collection time TX section, not only the damage information is collected, but also the noise (environmental noise, electromagnetic noise, mechanical friction noise) is collected (i.e. e S , A S , C S , R S , and D S information contain noise), therefore, in the present invention, data filtering and waveform filtering are used to denoise the acquired information. The purpose of such denoising is to obtain the five parameters required by the present invention for fatigue damage monitoring: energy e S , measurement amplitude A S , ringing count C S , rise time RS and duration D S .
(一)声发射换能器6 (1) Acoustic emission transducer 6
声发射换能器6用于采集在役AZ31镁合金上的突发型信息Sn。在本发明中,对于声发射换能器6所需设置的个数以其传感范围为40cm~100cm/个。对声发射换能器6采集到的信息采用集合形式表达为:突发型信息Sn={eS,AS,CS,RS,DS},eS表示能量、AS表示测量幅度、CS表示振铃计数、RS表示上升时间和DS表示持续时间。 The acoustic emission transducer 6 is used to collect burst information S n on the AZ31 magnesium alloy in service. In the present invention, the required number of acoustic emission transducers 6 is 40 cm to 100 cm per sensing range. The information collected by the acoustic emission transducer 6 is expressed in a collective form: burst information S n = {e S , A S , C S , R S , D S }, where e S represents energy, and A S represents measurement Amplitude, C S for ring count, R S for rise time, and D S for duration.
在本发明中,第一个采集时间记为T1、第二个采集时间记为T2、……、最后一个采集时间TX,为了方便说明,最后一个采集时间TX也称为任意一采集时间TX。 In the present invention, the first acquisition time is marked as T 1 , the second acquisition time is marked as T 2 , ..., the last acquisition time T X , for the convenience of description, the last acquisition time T X is also referred to as any Acquisition time T X .
在本发明中,在采集时间TX段内声发射换能器6采集到的突发型信息表示为 若第一个采集时间T1得到的突发型信息记为 同理可得,若第二个采集时间T2得到的突发型信息记为
(二)前置放大器5 (2) Preamplifier 5
前置放大器5用于对接收到的突发型信息 进行放大40dB后成为突发型放大信息 The preamplifier 5 is used for receiving the burst type information After amplifying 40dB, it becomes burst type amplification information
(三)声发射仪4 (3) Acoustic emission instrument 4
声发射仪4于对接收到的突发型放大信息 经A/D转换后成为数字突发型信息 输出给AZ31镁合金疲劳损伤检测单元1,声发射仪4中自备有A/D转换器。deS表示数字式能量、dAS表示数字式测量幅度、dCS表示数字式振铃计数、dRS表示数字式上升时间和dDS表示数字式持续时间。 The acoustic emission instrument 4 is used to amplify the received burst type information After A/D conversion, it becomes digital burst information The output is sent to the AZ31 magnesium alloy fatigue damage detection unit 1, and the A/D converter is equipped in the acoustic emission instrument 4. de S stands for Digital Energy, dA S stands for Digital Measured Amplitude, dC S stands for Digital Ring Count, dR S stands for Digital Rise Time and dD S stands for Digital Duration.
(四)数据滤波处理模块11A (4) Data filtering processing module 11A
在本发明中,数据滤波处理模块11A对接收到的数字突发型信息 进行参数滤波,即滤掉电磁噪声和环境噪声后,提纯得到疲劳损伤初步信息 e0是指数字式能量deS经参数滤波后的能量(简称参数滤波能量),A0是指数字式测量幅度dAS经参数滤波后的测量幅度(简称参数滤波幅度),C0是指数字式振铃计数dCS经参数滤波后的振铃计数(简称参数滤波振铃计数),R0是指数字式上升时间dRS经参数滤波后的上升时间(简称参数滤波上升时间),D0 是指数字式持续时间dDS经参数滤波后的持续时间(简称参数滤波持续时间)。 In the present invention, the data filter processing module 11A processes the received digital burst information Perform parameter filtering, that is, filter out electromagnetic noise and environmental noise, and then purify and obtain preliminary fatigue damage information e0 refers to the energy of digital energy de S after parameter filtering (referred to as parameter filtering energy), A 0 refers to the measurement range of digital measurement range dA S after parameter filtering (referred to as parameter filtering range), and C 0 refers to digital dC S is the ring count after parameter filtering (referred to as parameter filter ring count), R 0 refers to the rise time of digital rise time dR S after parameter filtering (referred to as parameter filter rise time), D 0 It refers to the duration of the digital duration dD S after the parameter filtering (referred to as the parameter filtering duration).
(五)波形滤波处理模块11B (5) Waveform filter processing module 11B
在本发明中,波形滤波处理模块11B对接收到的疲劳损伤初步信息 进行波形滤波,获得疲劳损伤信息 e是指参数滤波能量e0经波形滤波后的能量(简称波形滤波能量),A是指参数滤波幅度A0经波形滤波后的幅度(简称波形滤波幅度),C是指参数滤波振铃计数C0经波形滤波后的振铃计数(简称为波形滤波振铃计数),R是指参数滤波上升时间R0经波形滤波后的上升时间(简称为波形滤波上升时间),D是指参数滤波持续时间D0经波形滤波后的持续时间(简称波形滤波持续时间)。 In the present invention, the waveform filter processing module 11B performs the preliminary information on the received fatigue damage Perform waveform filtering to obtain fatigue damage information e refers to the parameter filtering energy e 0 after waveform filtering (abbreviated as waveform filtering energy), A refers to the parameter filtering amplitude A 0 after waveform filtering amplitude (referred to as waveform filtering amplitude), C refers to the parameter filtering ringing count C 0 ringing count after waveform filtering (abbreviated as waveform filtering ringing count), R refers to parameter filtering rise time R 0 rising time after waveform filtering (abbreviated as waveform filtering rising time), D refers to parameter filtering The duration D 0 is the duration after waveform filtering (referred to as the duration of waveform filtering).
在本发明中,疲劳损伤信息 第一方面用于第一损伤度标志模块12C进行RBF神经网络训练,获得第一损伤度标志模型;第二方面用于第二损伤度标志模块12D进行RBF神经网络训练,获得第二损伤度标志模型;第三方面用于第一数据空间12A进行投影处理,获得第一得分矩阵;第四方面用于第二数据空间12B进行投影处理,获得第二得分矩阵。对于疲劳损伤信息 的RBF神经网络训练要执行在第一数据空间12A和第二数据空间12B之前。 In the present invention, fatigue damage information The first aspect is used for the first damage degree flag module 12C to perform RBF neural network training to obtain the first damage degree flag model; the second aspect is used for the second damage degree flag module 12D to perform RBF neural network training to obtain the second damage degree flag Model; the third aspect is used in the first data space 12A to perform projection processing to obtain the first score matrix; the fourth aspect is used in the second data space 12B to perform projection processing to obtain the second score matrix. Information for Fatigue Damage The RBF neural network training is performed before the first data space 12A and the second data space 12B.
(六)第一数据空间12A (6) The first data space 12A
第一数据空间12A第一方面对接收到的疲劳损伤信息 进行所在采集时间TX段内的累积处理,得到累积后疲劳损伤信息
第一数据空间12A第二方面对累积后疲劳损伤信息
第一数据空间12A第三方面对归一化累积疲劳损伤信息f11B′依据第一投影关系f12A=f11B′×Pa进行投影,得到第一得分矩阵f12A=(ta1,ta2,ta3,ta4,ta5); The third plane of the first data space 12A projects the normalized cumulative fatigue damage information f 11B ′ according to the first projection relationship f 12A =f 11B ′×P a to obtain the first score matrix f 12A =(t a1 ,t a2 ,t a3 ,t a4 ,t a5 );
Pa表示第一数据空间的特征矩阵; P a represents the feature matrix of the first data space;
f12A表示待诊断样本在第一数据空间中的得分矩阵,a是第一数据空间的代码,ta1,ta2,ta3,ta4,ta5表示待诊断样本在第一数据空间中5个维度的得分向量;ta1表示待诊断样本在第一数据空间中第1个维度的得分向量;ta2 表示待诊断样本在第一数据空间中第2个维度的得分向量;ta3表示待诊断样本在第一数据空间中第3个维度的得分向量;ta4表示待诊断样本在第一数据空间中第4个维度的得分向量;ta5表示待诊断样本在第一数据空间中第5个维度的得分向量。 f 12A represents the score matrix of the sample to be diagnosed in the first data space, a is the code of the first data space, t a1 , t a2 , t a3 , t a4 , t a5 represent the sample to be diagnosed in the first data space5 t a1 represents the score vector of the first dimension of the sample to be diagnosed in the first data space; t a2 represents the score vector of the second dimension of the sample to be diagnosed in the first data space; t a3 represents the score vector of the sample to be diagnosed in the first data space The score vector of the third dimension of the diagnostic sample in the first data space; t a4 represents the score vector of the fourth dimension of the sample to be diagnosed in the first data space; t a5 represents the fifth dimension of the sample to be diagnosed in the first data space dimension score vector.
(七)第二数据空间12B (7) The second data space 12B
第二数据空间12B第一方面对接收到的疲劳损伤信息 进行所在采集时间TX段内的累积处理,得到累积后疲劳损伤信息
第二数据空间12B第二方面对累积后疲劳损伤信息
第二数据空间12B第三方面对归一化累积疲劳损伤信息f11B′依据第二投影关系f12B=f11B′×Pb进行投影,得到第二得分矩阵f12B=(tb1,tb2,tb3,tb4,tb5); The third plane of the second data space 12B projects the normalized cumulative fatigue damage information f 11B ′ according to the second projection relationship f 12B =f 11B ′×P b to obtain the second score matrix f 12B =(t b1 ,t b2 ,t b3 ,t b4 ,t b5 );
Pb表示第二数据空间的特征矩阵; P b represents the feature matrix of the second data space;
f12B表示待诊断样本在第二数据空间中的得分矩阵,b是第二数据空间的代码,tb1,tb2,tb3,tb4,tb5表示待诊断样本在第二数据空间中5个维度的得分向量;tb1表示待诊断样本在第二数据空间中第1个维度的得分向量;tb2表示待诊断样本在第二数据空间中第2个维度的得分向量;tb3表示待诊断样本在第二数据空间中第3个维度的得分向量;tb4表示待诊断样本在第二数据空间中第4个维度的得分向量;tb5表示待诊断样本在第二数据空间中第5个维度的得分向量。 f 12B represents the score matrix of the samples to be diagnosed in the second data space, b is the code of the second data space, t b1 , t b2 , t b3 , t b4 , t b5 represent the samples to be diagnosed in the second data space5 t b1 represents the score vector of the first dimension of the sample to be diagnosed in the second data space; t b2 represents the score vector of the second dimension of the sample to be diagnosed in the second data space; t b3 represents the score vector of the sample to be diagnosed in the second dimension The score vector of the third dimension of the diagnostic sample in the second data space; t b4 represents the score vector of the fourth dimension of the sample to be diagnosed in the second data space; t b5 represents the fifth dimension of the sample to be diagnosed in the second data space dimension score vector.
(八)第一损伤度标志模块12C (8) The first damage degree flag module 12C
在本发明中,疲劳损伤识别系统主要作用是识别出AZ31镁合金的疲劳裂纹稳定扩展阶段和疲劳裂纹失稳扩展阶段,所以本发明中损伤数据类型有两类,即裂纹稳定类型ST和裂纹失稳类型UT;所述裂纹稳定类型ST是指疲劳裂纹稳定扩展阶段的损伤信息;所述的裂纹失稳类型UT是指疲劳裂纹失稳扩展阶段的损伤信息。 In the present invention, the main function of the fatigue damage identification system is to identify the fatigue crack stable growth stage and the fatigue crack unstable growth stage of the AZ31 magnesium alloy, so there are two types of damage data in the present invention, that is, the crack stability type ST and the crack failure type. The stability type UT; the crack stability type ST refers to the damage information of the fatigue crack stable growth stage; the crack instability type UT refers to the damage information of the fatigue crack instability growth stage.
两种损伤类型RBF神经网络训练样本的获取:当在役AZ31镁合金仅处于裂纹疲劳裂纹稳定扩展阶段时,将疲劳损伤信息 记为裂纹稳定类型疲劳损伤信息 当在役AZ31镁合金仅处于裂纹疲劳裂纹失稳扩展阶段时,将疲劳损伤信息 记为裂纹失稳类型疲劳损伤信息 Acquisition of two damage types RBF neural network training samples: when the in-service AZ31 magnesium alloy is only in the stage of crack fatigue crack stable growth, the fatigue damage information Crack stability type fatigue damage information When the in-service AZ31 magnesium alloy is only in the crack fatigue crack growth stage, the fatigue damage information Crack instability type fatigue damage information
第一损伤度标志模块12C第一方面对接收到的裂纹稳定类型疲劳损伤信息 进行所在采集时间TX段内的累积处理,得到累积后疲劳损伤信息
第一损伤度标志模块12C第二方面对累积后疲劳损伤信息
第一损伤度标志模块12C第三方面对裂纹稳定类型归一化累积疲劳损伤信息fST′进行主成分分析,得到第一数据空间的特征矩阵Pa=(pa1,pa2,pa3,pa4,pa5); The first damage degree marking module 12C thirdly performs principal component analysis on the crack stability type normalized cumulative fatigue damage information f ST ′, and obtains the characteristic matrix P a =(p a1 , p a2 , p a3 , p a4 , p a5 );
pa1,pa2,pa3,pa4,pa5表示第一数据空间中5个维度的特征向量;pa1第一数据空间中第1个维度的特征向量;pa2第一数据空间中第2个维度的特征向量;pa3第一数据空间中第3个维度的特征向量;pa4第一数据空间中第4个维度的特征向量;pa5第一数据空间中第5个维度的特征向量; p a1 , p a2 , p a3 , p a4 , p a5 represent the eigenvectors of 5 dimensions in the first data space; p a1 is the eigenvector of the first dimension in the first data space; eigenvectors of 2 dimensions; p a3 the eigenvectors of the 3rd dimension in the first data space; p a4 the eigenvectors of the 4th dimension in the first data space; p a5 the features of the 5th dimension in the first data space vector;
在本发明中,疲劳损伤识别系统在识别AZ31镁合金的疲劳裂纹稳定扩展阶段和疲劳裂纹失稳扩展阶段时,该第一数据空间的特征矩阵Pa需要引述至第一数据空间12A中进行投影处理。 In the present invention, when the fatigue damage identification system identifies the fatigue crack stable growth stage and the fatigue crack unstable growth stage of the AZ31 magnesium alloy, the characteristic matrix P a of the first data space needs to be quoted in the first data space 12A for projection deal with.
第一损伤度标志模块12C第四方面对归一化累积疲劳损伤信息fST′依据第三投影关系Pf12C=fST′×Pa进行投影,得到第三得分矩阵Pf12C=(Pta1,Pta2,Pta3,Pta4,Pta5); In the fourth aspect, the first damage degree marking module 12C projects the normalized cumulative fatigue damage information f ST ′ according to the third projection relationship Pf 12C =f ST ′×P a to obtain the third scoring matrix Pf 12C =(Pt a1 ,Pt a2 ,Pt a3 ,Pt a4 ,Pt a5 );
Pta1,Pta2,Pta3,Pta4,Pta5表示裂纹稳定类型的训练样本在第一数据空间中5个维度的得分向量;Pta1表示裂纹稳定类型的训练样本在第一数据空间中第1个维度的得分向量;Pta2表示裂纹稳定类型的训练样本在第一数据空间中第2个维度的得分向量;Pta3表示裂纹稳定类型的训练样本在第一数据空间中第3个维度的得分向量;Pta4表示裂纹稳定类型的训练样本在第一数据空间中第4个维度的得分向量;Pta5表示裂纹稳定类型的训练样本在第一数据空间中第5个维度的得分向量。 Pt a1 , Pt a2 , Pt a3 , Pt a4 , Pt a5 represent the score vectors of the five dimensions of the crack-stabilized training samples in the first data space; Pt a1 represents the crack-stabilized training samples in the first data space 1-dimensional score vector; Pt a2 represents the score vector of the crack-stabilized training sample in the second dimension in the first data space; Pt a3 represents the crack-stabilized training sample in the third dimension of the first data space Score vector; Pt a4 represents the score vector of the 4th dimension of the crack-stabilized training sample in the first data space; Pt a5 represents the score vector of the 5th dimension of the crack-stabilized training sample in the first data space.
第一损伤度标志模块12C第五方面将第三得分矩阵Pf12A=(Pta1,Pta2,Pta3,Pta4,Pta5)作为RBF神经网络的输入层信息,并设定RBF神经网络的输出层信息
在本发明中,RBF神经网络的输出层信息
第一损伤度标志模块12C第六方面采用Ma对第一得分矩阵f12A=(ta1,ta2,ta3,ta4,ta5)进行处理,得到第一损伤度参数f12C=[fID,a(A1)fID,a(A2)]。 The sixth aspect of the first damage degree flag module 12C uses M a to process the first score matrix f 12A =(t a1 , t a2 , t a3 , t a4 , t a5 ) to obtain the first damage degree parameter f 12C =[ f ID,a (A 1 )f ID,a (A 2 )].
在本发明中,第一损伤度标志模块12C对接收到的f12A=(ta1,ta2,ta3,ta4,ta5)进行RBF神经网络学习算法处理后,获得第一损伤度参数f12C=[fID,a(A1)fID,a(A2)];其中fID,a(A1)表示代码为ID的换能器的诊断样本在第一数据空间中第1个节点的神经网络输出;fID,a(A2)表示代码为ID的换能器的诊断样本在第一数据空间中第2个节点的神经网络输出;ID表示声发射换能器的代码,a是第一数据空间的代码。 In the present invention, the first damage degree flag module 12C obtains the first damage degree parameter after performing RBF neural network learning algorithm processing on the received f 12A =(t a1 , t a2 , t a3 , t a4 , t a5 ) f 12C =[f ID,a (A 1 )f ID,a (A 2 )]; wherein f ID,a (A 1 ) indicates that the diagnostic sample of the transducer whose code is ID is the first in the first data space The neural network output of nodes; f ID,a (A 2 ) represents the neural network output of the second node in the first data space of the diagnostic sample of the transducer whose code is ID; ID represents the code of the acoustic emission transducer , a is the code of the first data space.
(九)第二损伤度标志模块12D (9) The second damage degree flag module 12D
第二损伤度标志模块12D第一方面对接收到的裂纹失稳类型疲劳损伤信息 进行所在采集时间TX段内的累积处理,得到累积后疲劳损伤信息
第一损伤度标志模块12C第二方面对累积后疲劳损伤信息
第二损伤度标志模块12D第三方面对裂纹失稳类型归一化累积疲劳损伤信息fUT′进行主成分分析,得到第二数据空间的特征矩阵Pb=(pb1,pb2,pb3,pb4,pb5); The second damage degree marking module 12D third party performs principal component analysis on the crack instability type normalized cumulative fatigue damage information f UT ′, and obtains the characteristic matrix P b =(p b1 ,p b2 ,p b3 ,p b4 ,p b5 );
pb1,pb2,pb3,pb4,pb5表示第二数据空间中5个维度的特征向量;pb1第二数据空间中第1个维度的特征向量;pb2第二数据空间中第2个维度的特征向量;pb3第二数据空间中第3个维度的特征向量;pb4第二数据空间中第4个维度的特征向量;pb5第二数据空间中第5个维度的特征向量; p b1 , p b2 , p b3 , p b4 , p b5 represent the eigenvectors of the 5 dimensions in the second data space; p b1 the eigenvectors of the first dimension in the second data space; 2-dimension eigenvectors; p b3 eigenvectors of the 3rd dimension in the second data space; p b4 eigenvectors of the 4th dimension in the second data space; p b5 eigenvectors of the 5th dimension in the second data space vector;
在本发明中,疲劳损伤识别系统在识别AZ31镁合金的疲劳裂纹稳定扩展阶段和疲劳裂纹失稳扩展阶段时,该第二数据空间的特征矩阵Pb需要引述至第二数据空间12B中进行投影处理。 In the present invention, when the fatigue damage identification system identifies the fatigue crack stable growth stage and the fatigue crack unstable growth stage of the AZ31 magnesium alloy, the characteristic matrix P b of the second data space needs to be quoted in the second data space 12B for projection deal with.
第二损伤度标志模块12D第四方面对裂纹失稳类型归一化累积疲劳损伤信息fUT′依据第四投影关系Pf12D=fUT′×Pb进行投影,得到第四得分矩阵Pf12D=(Ptb1,Ptb2,Ptb3,Ptb4,Ptb5); In the fourth aspect, the second damage degree marking module 12D projects the normalized cumulative fatigue damage information f UT ′ of the crack instability type according to the fourth projection relationship Pf 12D =f UT ′×P b to obtain the fourth scoring matrix Pf 12D =(Pt b1 ,Pt b2 ,Pt b3 ,Pt b4 ,Pt b5 );
Ptb1,Ptb2,Ptb3,Ptb4,Ptb5表示裂纹失稳类型的训练样本在第二数据空间中5个维度的得分向量;Ptb1表示裂纹失稳类型的训练样本在第二数据空间中第1个维度的得分向量;Ptb2表示裂纹失稳类型的训练样本在第二数据空间中第2个维度的得分向量;Ptb3表示裂纹失稳类型的训练样本在第二数据空间中第3个维度的得分向量;Ptb4表示裂纹失稳类型的训练样本在第二数据空间中第4个维度的得分向量;Ptb5表示裂纹失稳类型的训练样本在第二数据空间中第5个维度的得分向量。 Pt b1 , Pt b2 , Pt b3 , Pt b4 , Pt b5 represent the five-dimensional score vectors of the training samples of the crack instability type in the second data space; Pt b1 represents the crack instability type training samples in the second data space The score vector of the first dimension in ; Pt b2 indicates the score vector of the second dimension of the training sample of the crack instability type in the second data space; Pt b3 indicates the second dimension of the training sample of the crack instability type in the second data space The score vector of three dimensions; Pt b4 indicates the score vector of the fourth dimension of the training sample of the crack instability type in the second data space; Pt b5 indicates the fifth dimension of the training sample of the crack instability type in the second data space Dimension score vector.
第二损伤度标志模块12D第五方面将第四得分矩阵Pf12D=(Ptb1,Ptb2,Ptb3,Ptb4,Ptb5)作为RBF神经网络的输入层信息,并设定RBF神经网络的输出层信息
在本发明中,RBF神经网络的输出层信息
第二损伤度标志模块12D第六方面采用Mb对第二得分矩阵f12B=(tb1,tb2,tb3,tb4,tb5)进行处理,得到第二损伤度参数f12D=[fID,b(A1)fID,b(A2)]。 In the sixth aspect, the second damage degree marking module 12D uses M b to process the second score matrix f 12B =(t b1 , t b2 , t b3 , t b4 , t b5 ), and obtains the second damage degree parameter f 12D =[ f ID,b (A 1 )f ID,b (A 2 )].
在本发明中,第一损伤度标志模块12C对接收到的f12B=(tb1,tb2,tb3,tb4,tb5)进行RBF神经网络学习算法处理后,获得第二损伤度参数f12D=[fID,b(A1)fID,b(A2)];其中fID,b(A1)表示代码为ID的换能器的诊断样本在第二数据空间中第1个节点的神经网络输出;fID,b(A2)表示代码为ID的换能器的诊断样本在第二数据空间中第2个节点的神经网络输出;ID表示声发射换能器的代码,b是第二数据空间的代码。 In the present invention, the first damage degree flag module 12C obtains the second damage degree parameter after performing RBF neural network learning algorithm processing on the received f 12B =(t b1 ,t b2 ,t b3 ,t b4 ,t b5 ) f 12D =[f ID,b (A 1 )f ID,b (A 2 )]; wherein f ID,b (A 1 ) indicates that the diagnostic sample of the transducer whose code is ID is the first in the second data space The neural network output of the node; f ID, b (A 2 ) represents the neural network output of the second node in the second data space of the diagnosis sample of the transducer whose code is ID; ID represents the code of the acoustic emission transducer , b is the code of the second data space.
(十)D-S证据组合模块12E (10) D-S Evidence Combination Module 12E
在本发明中,D-S证据组合模块12E第一方面对接收到的f12C=[fID,a(A1)fID,a(A2)]和f12D=[fID,b(A1)fID,b(A2)]依据节点相关系数
QID,i(Aj)表示代码为ID的换能器的待诊断样本在代码为i(i=a,b)的数据空间中与节点j(j=1,2)的相关系数。 Q ID,i (A j ) represents the correlation coefficient between the to-be-diagnosed sample of the transducer with the code ID and the node j (j=1,2) in the data space with the code i (i=a,b).
D-S证据组合模块12E第二方面通过基本概率分配函数
其中αi=max{QID,i(Aj)}表示待诊断样本在代码为i(i=a,b)的数据空间中与节点的最大相关系数; 表示代码为i(i=a,b)的数据空间中与节点相关系数的分配值; 表示代码为i(i=a,b)的数据空间的可靠系数;在本发明中Nc为节点个数,Ns为数据空间个数,均为2;mID,i(Aj)表示代码为ID的换能器接收的待诊断样本在代码为i(i=a,b)的数据空间中与节点j(j=1,2)的基本概率分配值。 Where α i =max{Q ID,i (A j )} represents the maximum correlation coefficient between the sample to be diagnosed and the node in the data space coded as i (i=a,b); Represents the distribution value of the correlation coefficient with the node in the data space whose code is i (i=a, b); Representation code is the reliability coefficient of the data space of i (i=a, b); In the present invention, N c is the number of nodes, and N s is the number of data spaces, both of which are 2; m ID, i (A j ) represents The sample to be diagnosed received by the transducer whose code is ID is assigned a value with the basic probability of node j (j=1,2) in the data space coded as i (i=a,b).
D-S证据组合模块12E第三方面运用D-S证据第一组合关系 对待诊断样本在两个数据空间中与各节点的基本概率分配值进行数据融合,得到一级数据融合值mID(Bj)。 DS Evidence Combination Module 12E The third aspect uses DS evidence first combination relationship Data fusion is carried out between the samples to be diagnosed and the basic probability distribution values of each node in the two data spaces, and the first-level data fusion value m ID (B j ) is obtained.
NS为数据空间个数;mID(Bj)表示代码为ID的换能器在节点j(j=1,2)的一级数据融合值; N S is the number of data spaces; m ID (B j ) represents the primary data fusion value of the transducer whose code is ID at node j (j=1,2);
(十一)第二级数据融合模块13 (11) Second-level data fusion module 13
在本发明中,二级数据融合13对接收到的数据融合结果mID(Bj)依据D-S证据第二组合关系
n为设置的声发射换能器6的个数;m(Cj)表示疲劳损伤识别系统中所有声发射换能器6以节点形式,在节点j(j=1,2)处的二级数据融合值。 n is the number of acoustic emission transducers 6 set; m(C j ) indicates that all acoustic emission transducers 6 in the fatigue damage identification system are in the form of nodes, and the secondary Data fusion value.
(十二)损伤等级评定单元2 (12) Damage rating unit 2
在本发明中,损伤等级评定单元2对接收到的二级数据融合结果m(Cj)进行等级评定,得到在役AZ31镁合金所处的疲劳损伤状态。 In the present invention, the damage grade assessment unit 2 performs grade assessment on the received secondary data fusion result m(C j ) to obtain the fatigue damage state of the in-service AZ31 magnesium alloy.
等级评定条件:当节点最大值w=m(C1)时,疲劳损伤状态为:在役AZ31镁合金处于疲劳裂纹稳定扩展损伤状态下;当节点最大值w=m(C2)时,疲劳损伤状态为:在役AZ31镁合金处于疲劳裂纹失稳扩展损伤状态下; Rating conditions: when the maximum value of the node w=m(C 1 ), the fatigue damage state is: the in-service AZ31 magnesium alloy is in the state of stable fatigue crack growth damage; when the maximum value of the node w=m(C 2 ), the fatigue damage state is: The damage state is: the in-service AZ31 magnesium alloy is in the state of fatigue crack instability and propagation damage;
所述的节点最大值w=max(m(C1),m(C2)),m(C1)表示疲劳损伤识别系统所有换能器在节点1(疲劳裂纹稳定状态)处的二级数据融合值,m(C2)表示疲劳损伤识别系统所有换能器在节点2(疲劳裂纹失稳状态)处的二级数据融合值。w表示疲劳损伤识别系统所有换能器在两个节点的二级数据融合值的最大值。 The node maximum value w=max(m(C 1 ),m(C 2 )), m(C 1 ) represents the secondary Data fusion value, m(C 2 ) represents the secondary data fusion value of all transducers in the fatigue damage identification system at node 2 (fatigue crack instability state). w represents the maximum value of the secondary data fusion values of all transducers in the fatigue damage identification system at two nodes.
(十三)报警单元3 (13) Alarm unit 3
在本发明中,报警模块3中当w=m(C1)时不报警,当w=m(C2)时启动报警信号。报警单元3采用如喇叭、扩音器等形式的提示音报警输出。 In the present invention, the alarm module 3 does not alarm when w=m(C 1 ), and activates an alarm signal when w=m(C 2 ). The alarm unit 3 adopts a prompt sound alarm output in the form of a horn, a loudspeaker, or the like.
实施例1:对某汽车轮毂进行声发射检测。 Embodiment 1: Acoustic emission detection is performed on a certain automobile hub.
轮毂所用的AZ31镁合金成分见表1: The composition of the AZ31 magnesium alloy used in the hub is shown in Table 1:
表1AZ31镁合金成分含量 Table 1 AZ31 magnesium alloy composition content
检测用设备有:(A)两个R15窄频声发射换能器(PAC公司的CZ系列,响应频率为100kHz~400kHz,中心频率150kHz)和两个宽频换能器(PAC公司的WD系列,响应频率为20kHz~1MHz)。 The detection equipment includes: (A) two R15 narrow-band acoustic emission transducers (CZ series of PAC company, response frequency is 100kHz ~ 400kHz, center frequency 150kHz) and two wide-band transducers (WD series of PAC company, Response frequency is 20kHz ~ 1MHz).
(B)四个PAC公司的2/4/6型前置放大器。 (B) Four PAC Corporation 2/4/6 type preamplifiers.
(C)声发射仪为美国PAC公司全数字式16通道DiSP声发射系统。声发射仪检测时的门槛值40dB,声发射峰值定义时间PDT为300μs,声发射撞击限定时间HDT为600μs,声发射撞击闭锁时间HLT为1000μs。 (C) The acoustic emission instrument is a full-digital 16-channel DiSP acoustic emission system from PAC Company of the United States. The threshold value of the acoustic emission instrument detection is 40dB, the acoustic emission peak definition time PDT is 300μs, the acoustic emission impact limit time HDT is 600μs, and the acoustic emission impact locking time HLT is 1000μs.
在AZ31镁合金在采样时间TX段内四个换能器接收的声发射信息经过疲劳损伤识别系统识别,疲劳损伤检测单元结果如表2所示。 The acoustic emission information received by the four transducers in the AZ31 magnesium alloy within the sampling time T X period is identified by the fatigue damage identification system, and the results of the fatigue damage detection unit are shown in Table 2.
表2A四个换能器接收的声发射信息在疲劳损伤检测单元中的基本概率分配结果 Table 2A Basic probability distribution results of the acoustic emission information received by the four transducers in the fatigue damage detection unit
表2B四个换能器接收的声发射信息在疲劳损伤监测单元中一级数据融合结果 Table 2B The first-level data fusion results of the acoustic emission information received by the four transducers in the fatigue damage monitoring unit
表2C四个换能器接收的声发射信息在疲劳损伤监测单元中二级数据融合结果 Table 2C The results of the secondary data fusion of the acoustic emission information received by the four transducers in the fatigue damage monitoring unit
表2C中融合结果经损伤等级评定单元2解析,可以得到节点最大值为m(C1),所以该AZ31镁合金处于疲劳裂纹稳定扩展阶段,无需报警。 The fusion results in Table 2C are analyzed by the damage grade assessment unit 2, and the maximum value of the node can be obtained as m(C 1 ), so the AZ31 magnesium alloy is in the stable growth stage of fatigue cracks, and no alarm is required.
由此可见,数据融合能降低神经网络局部融合的不确定度,使得诊断决策的可信度大幅度地提高。同时,提高了诊断系统的容错能力,并能满足钢结构复杂系统损伤诊断的要求。 It can be seen that data fusion can reduce the uncertainty of local fusion of neural network, which greatly improves the credibility of diagnostic decision-making. At the same time, it improves the fault-tolerant capability of the diagnosis system and can meet the requirements of damage diagnosis of complex steel structure systems.
本发明采用主成分分析,神经网络和两级数据融合相结合的方法对AZ31镁合金疲劳损伤状态进行识别,建立了AZ31镁合金疲劳损伤状态识别诊断系统:首先用神经网络模型对每个声发射换能器信息在主成分模型构造的不同损伤数据空间下进行局部诊断;然后将同一个换能器内的神经网络输出结果构造一级数据融合模块的基本概率值,进行一级数据融合;最后将多个传感器的一级数据融合结果进行二级数据融合,再通过损伤识别模块对疲劳损伤状态进行诊断。利用该模型,可对AZ31镁合金疲劳过程中的损伤状态进行识别、诊断,进而对其可靠运行提供依据。 The present invention adopts principal component analysis, neural network and two-level data fusion method to identify the fatigue damage state of AZ31 magnesium alloy, and establishes an identification and diagnosis system for fatigue damage state of AZ31 magnesium alloy: first, use the neural network model to analyze each acoustic emission The transducer information is locally diagnosed in different damage data spaces constructed by the principal component model; then the output results of the neural network in the same transducer are used to construct the basic probability value of the first-level data fusion module, and the first-level data fusion is performed; finally The first-level data fusion results of multiple sensors are combined with the second-level data, and then the fatigue damage state is diagnosed through the damage identification module. The model can be used to identify and diagnose the damage state of AZ31 magnesium alloy during the fatigue process, and then provide a basis for its reliable operation.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210371209.XA CN102879473B (en) | 2012-09-29 | 2012-09-29 | System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210371209.XA CN102879473B (en) | 2012-09-29 | 2012-09-29 | System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102879473A CN102879473A (en) | 2013-01-16 |
CN102879473B true CN102879473B (en) | 2014-10-08 |
Family
ID=47480876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210371209.XA Expired - Fee Related CN102879473B (en) | 2012-09-29 | 2012-09-29 | System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102879473B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106872581B (en) * | 2017-02-06 | 2019-12-24 | 太原理工大学 | An Analysis Method Based on Fatigue Crack Growth of Electron Beam Welded Specimens of Magnesium Alloy |
CN109932427B (en) * | 2019-03-19 | 2021-04-27 | 长沙理工大学 | Magnesium alloy overburning defect assessment method based on acoustic emission technology |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101566601B (en) * | 2009-05-04 | 2011-09-28 | 北京航空航天大学 | System for recognizing tensile damage state of 16Mn steel force-bearing part by adopting neural network and coupling iteration |
CN102879475B (en) * | 2012-09-29 | 2014-08-06 | 北京航空航天大学 | Identification system for fatigue damage state of 16 manganese steel bearing member based on PCA and TDF |
-
2012
- 2012-09-29 CN CN201210371209.XA patent/CN102879473B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102879473A (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101566601B (en) | System for recognizing tensile damage state of 16Mn steel force-bearing part by adopting neural network and coupling iteration | |
CN110879254B (en) | Steel rail crack acoustic emission signal detection method based on improved least square generation type countermeasure network | |
Li et al. | Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter | |
WO2019201177A1 (en) | Train component crack damage monitoring method and system | |
CN109858104B (en) | Rolling bearing health assessment and fault diagnosis method and monitoring system | |
CN102879475B (en) | Identification system for fatigue damage state of 16 manganese steel bearing member based on PCA and TDF | |
CN104833534A (en) | Train running fault diagnosis device based on multi-source information fusion, and method | |
CN109443766A (en) | A kind of heavy-duty vehicle gearbox gear Safety Analysis Method | |
CN105067707A (en) | Damage monitoring method of composite material structure, and apparatus and system thereof | |
CN109507299A (en) | High pressure compound material hydrogen cylinder Processing Method of Acoustic Emission Signals | |
CN102879473B (en) | System for recognition of fatigue damage state of AZ31 magnesium alloy based on PCA (principal component analysis) and TDF (tactical data fusion) | |
Chang et al. | An efficient method for wheel-flattened defects detection based on acoustic emission technique | |
CN102289568B (en) | Large emergent equipment fault prediction method based on offline time sequence data | |
Li et al. | A new raw signal fusion method using reweighted VMD for early crack fault diagnosis at spline tooth of clutch friction disc | |
CN101762634B (en) | In-service 16Mn steel load-bearing member deformation damage condition characteristic and quantitative evaluation system based on double-spectrum analysis | |
CN113933387B (en) | Method and system for monitoring damage of composite material structure | |
CN107255677A (en) | A kind of dam safety damage monitoring system based on piezoelectric intelligent sensor | |
CN119669842A (en) | Bearing fault diagnosis method based on multimodal fusion and multi-scale residual network | |
Luk et al. | Impact-acoustics inspection of tile-wall bonding integrity via wavelet transform and hidden Markov models | |
CN113869766B (en) | Intelligent detection modeling method for blanking quality of alloy plate | |
CN102890120A (en) | AZ31 magnesium alloy deformation damage state characterization and quantitative evaluation system based on gravity center of power spectrum | |
CN102279222B (en) | Identification System of Fatigue Damage State of 16Mn Steel Bearing Parts | |
CN102890121A (en) | AZ31 magnesium alloy fatigue damage state representing and quantitative evaluating system based on centre of gravity of power spectrum | |
CN102072939A (en) | System based on acoustic emission for evaluating deformation and damage of in-service 16 manganese steel force-bearing component under two-dimensional stress and three-dimensional stress | |
CN106372450A (en) | High-speed train axle temperature prediction method based on stepwise regression analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141008 Termination date: 20150929 |
|
EXPY | Termination of patent right or utility model |