CN102874764A - 传感材料及其制备方法及实时传感方法 - Google Patents

传感材料及其制备方法及实时传感方法 Download PDF

Info

Publication number
CN102874764A
CN102874764A CN2011102358436A CN201110235843A CN102874764A CN 102874764 A CN102874764 A CN 102874764A CN 2011102358436 A CN2011102358436 A CN 2011102358436A CN 201110235843 A CN201110235843 A CN 201110235843A CN 102874764 A CN102874764 A CN 102874764A
Authority
CN
China
Prior art keywords
sensing material
sensing
preparation
gas
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102358436A
Other languages
English (en)
Inventor
李寿南
林弘萍
施惠雅
谢文安
林致捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN102874764A publication Critical patent/CN102874764A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/16Phosphorus containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/16Phosphorus containing
    • Y10T436/163333Organic [e.g., chemical warfare agents, insecticides, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及传感材料及其制备方法及实时传感方法,该传感材料的制备方法包括以下步骤:(a)提供一金属氧化物前驱物的水溶液;(b)混合二氧化钛纳米管与金属氧化物前驱物的水溶液以形成一混合物;(c)以一弱碱调整混合物的pH值至中性;(d)将混合物分散于水中并加热;及(e)过滤混合物以留下固体部分,并在持续通氧的环境中锻烧固体部分,以形成负载一金属氧化物的二氧化钛纳米管。本发明还提供一种传感材料及应用该传感材料的实时传感方法,可侦测ppb至ppt等级的掺杂类气体。

Description

传感材料及其制备方法及实时传感方法
技术领域
本发明涉及一种传感材料,且特别涉及一种兆分之一(parts pertrillion,ppt)级的传感材料及其制备方法,以及应用此传感材料的实时传感方法。
背景技术
半导体与光电制造方法中使用的气体及其副产物可成为气态微量污染物(airborne molecular contaminant,AMC)而导致多种产品缺陷问题,其中典型的五大类气态微污染为酸性气体(molecular acids,MA)、碱性气体(molecular bases,MB)、气态可凝结物(molecular condensables,MC)、掺杂类气体(molecular dopants,MD)及未分类(no class,MO)。例如酸性气体会腐蚀金属层、碱性气体会产生T-topping的危害、气态可凝结物会影响薄膜特性(使Si-N膜转变为Si-O膜并使曝光机镜片雾化)、掺杂类气体(例如磷化氢(PH3)、砷化氢(AsH3))会导致半导体p-n电性偏移、未分类(no classes,MO)中的臭氧(O3)污染会使组件电容量降低。
为了避免微量污染物导致半导体与光电制造方法的产率下降,每年国家半导体技术蓝图委员会(International Technology Roadmap forSemiconductors,ITRS)会对不同线宽制造方法建议其污染物容许浓度。如上所述,磷化氢为气态微量污染物的一种,其在常温下为无色有毒气体,当吸入人体时更会造成呼吸困难甚至可能致死,因此半导体厂皆需依法安装磷化氢气体的侦测器。以45纳米(nm)制造方法为例,ITRS建议PH3浓度值应小于10兆分之一(parts per trillion,ppt),因此需要可侦测达到ppt等级浓度的气体侦测器。市面上所贩售的磷化氢气体侦测器主要为电化学式与色带式两种类型,两者的市场占有率高达9成以上,然而这些市售的磷化氢气体侦测器侦测下限约在100-10十亿分之一(parts per billion,ppb),远高于ITRS所建议的10ppt。目前业界采用的侦测掺杂类气体(MD)的方法是将测试晶圆暴露于洁净室24~48小时,然后以氢氟酸(HF)溶解测试晶圆表面所沉降的MD,最后再用电感耦合等离子体质谱分析仪(ICP-MS)进行定性、定量分析。此方法极耗费时间与人力,且每个MD样品的采样与分析时间长达2-7天,因此当确认遭受MD污染时,已历时数十天,导致数以万片的晶圆因遭受污染而报废,半导体厂也因此遭受数亿台币的损失。
中国台湾专利公开号201109081A1揭露一种负载金属氧化物的纳米结构材料及含磷化合物的检测方法,是以一种负载金属氧化物的纳米结构材料,经以下步骤合成传感材料:混合硅或钛氧化物与一界面活性剂,并聚合成一中孔洞(mesoporous)氧化硅或氧化钛,并进一步与一金属或金属化合物混合,最后对该混合物进行异相成核。根据另一实施例,负载金属氧化物的纳米结构材料的形成步骤也可为:将含硅或钛化合物与碳材模板一起进行锻烧,接着将所得产物与一金属或金属化合物混合,并进行第二次锻烧。此案还提供利用上述纳米结构材料所进行的含磷化合物(例如磷化氢)的检测方法。然而,此案所合成的传感材料需在400℃下的较高温进行监测,且对磷化氢的侦测下限仅达100-10ppb/6小时。
因此,亟需可实时侦测ppt级气态微量污染物的传感材料及传感方法。
发明内容
本发明提供一种传感材料的制备方法,包括以下步骤:(a)提供一金属氧化物前驱物的水溶液;(b)混合二氧化钛(TiO2)纳米管与该金属氧化物前驱物的水溶液以形成一混合物;(c)以一弱碱调整该混合物的pH值至中性;(d)将该混合物分散于水中并加热;及(e)过滤该混合物以留下固体部分,并在持续通氧的环境中锻烧该固体部分,以形成负载一金属氧化物的二氧化钛纳米管。
本发明还提供一种传感材料,包括:二氧化钛(TiO2)纳米管;及均匀分散且负载于该二氧化钛纳米管上的金属氧化物,其中该负载金属氧化物的二氧化钛纳米管的比表面积(BET)约为200-400平方米/克(m2/g),且该金属氧化物的金属元素相对于钛元素的原子比例约为10-50%。
本发明还提供一种实时传感方法,包括:提供上述传感材料;导入一待测气体与该传感材料反应;及以拉曼光谱仪系统或傅立叶红外线光谱仪系统分析反应结果。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合附图,作如下详细说明:
附图说明
图1显示根据本发明实施例的传感材料的制备方法流程图。
图2显示根据本发明实施例的传感系统。
图3a、3b为本发明实施例1及比较例2~4所制备的不同传感材料的X射线衍射光谱。
图4为本发明实施例6的拉曼光谱。
图5~10为本发明实施例7中根据本发明实施例的不同传感材料在不同参数条件下所得的傅立叶红外线(FT-IR)光谱。
图11~13为本发明比较例5在不同待测气体(PH3)浓度下所得的傅立叶红外线(FT-IR)光谱。
图14为本发明比较例6的傅立叶红外线(FT-IR)光谱。
【主要组件符号说明】
10、20、30、40、50、60~步骤;
18~待测气体缸;
28~干燥压缩空气缸:
38、38’~质量流量控制器;
48~化学滤网;
58~混合腔体;
68~测试腔体;
78~分析系统。
具体实施方式
以下特举出本发明的实施例,并配合附图作详细说明,而在附图或说明中所使用的相同符号表示相同或类似的部分,且在附图中,实施例的形状或厚度可扩大,并以简化或方便标示。另外,将分别描述说明附图中各组件的部分,值得注意的是,附图中未绘出或描述的组件,为所属技术领域的技术人员所知的形状。另外,特定的实施例仅为揭示本发明使用的特定方式,其并非用以限定本发明。
本发明提供一种传感材料的制备方法,其中传感材料为负载金属氧化物的二氧化钛纳米管(metal oxide loaded titanium dioxide(TiO2)nanotubes),而金属氧化物可包括CuO、AgO、Au2O3、Fe2O3或上述任意组合。本发明提供的传感材料用于侦测待测气体,其中待测气体可包括一含磷化合物、砷化氢(AsH3)、乙硼烷(B2H6)、邻苯二甲酸二(2-乙基己)酯(di(2-ethylhexyl)phthalate,DEHP)或上述任意组合。上述含磷化合物可包括磷化氢(PH3)、磷酸(H3PO4)、二甲基甲基磷酸酯(dimethylmethylphosphonate,DMMP)、亚磷酸三甲酯(trimethyl phosphate,TMB)、磷酸三甲酯(trimethyl phosphate,TMPO)或上述任意组合。在本发明实施例中,传感材料主要是以所负载的金属氧化物与待测气体反应的方式来实现传感。
图1显示根据本发明实施例的传感材料的制备方法流程图。首先进行步骤10,提供一金属氧化物前驱物(metal oxide precursor)的水溶液。在步骤10中,可依所需负载在二氧化钛纳米管的金属氧化物而选择合适的金属氧化物前驱物。举例来说,可使用Cu(NO3)2作为CuO的前驱物。或者,可使用AgNO3作为AgO的前驱物。又或者,可使用Fe(NO3)3作为Fe2O3的前驱物。或者,可使用HAuCl4作为AuO的前驱物。
接着进行步骤20,将二氧化钛纳米管或其水溶液与金属氧化物前驱物水溶液混合以形成一混合物,其中二氧化钛纳米管与金属氧化物前驱物的混合摩尔数比例约为10∶1至1∶1,在一些实施例中,可为4∶1。此外,在一些实施例中使用具有高比表面积(BET)的二氧化钛纳米管,例如比表面积约为200-400平方米/克(m2/g)的二氧化钛纳米管,以提高w金属氧化物的负载重量份,进而提高传感材料的灵敏度。二氧化钛纳米管的径长比可约为1∶35至1∶160,且其合成可使用二氧化钛结晶粉末为前驱物。在一实施例中,先将二氧化钛结晶粉末加入碱液中,再置入高温反应釜锻烧,接着进行酸洗及过滤,以完成二氧化钛纳米管的合成。应理解的是,上述合成二氧化钛纳米管的方式仅为举例,本发明可使用以各种方式合成或市售的二氧化钛纳米管。
接着进行步骤30,将一弱碱加入混合物中以调整混合物的pH值至约为中性,例如pH值约为6.5-7.5,或pH值约为7。弱碱可为各种有机或无机弱碱,例如Na2CO3、NH3、C6H5NH2、CH3NH2、CH3CH2NH2或上述任意组合。应注意的是,本发明实施例在步骤30是使用弱碱来调整混合物的pH值,可避免因强碱例如氢氧化钠(NaOH)造成混合物部分区域金属浓度过高产生聚集,而降低金属氧化物的负载量及分散度。
接着进行步骤40,将pH值调整至约为中性的混合物分散于水中并加热进行水热离子嵌入,使金属氧化物均匀分散并负载于二氧化钛纳米管表面。应注意的是,发明人发现步骤40中先进行水分散再进行水热离子嵌入,比起不进行水分散直接进行水热离子嵌入,也可提高所制备传感材料中金属氧化物的分散度。在一些实施例中,步骤40中的加热为在90-100℃下加热12-36小时或18-24小时。
在步骤40之后进行步骤50,过滤混合物以留下固体部分,固体部分为负载有金属氧化物及其前驱物的二氧化钛纳米管,其中部分金属氧化物前驱物已转变成氧化态,也就是金属氧化物。为使所有的金属氧化物前驱物可以完全氧化转变成金属氧化物,将固体部份置入一持续通氧的加热炉中锻烧,以形成负载一金属氧化物的二氧化钛纳米管,此时完成传感材料的制备。通氧的流量可为约5-10升/分钟,或为5-6升/分钟。在一些实施例中,可在锻烧固体部分时持续向加热炉中通入空气。在一些实施例中,锻烧固体部分为在250-350℃下锻烧约3-9小时,或为3-6小时。应注意的是,发明人发现在步骤50中,比起在不通氧锻烧的加热炉中锻烧固体部分,在持续通氧的加热炉中锻烧固体部份将可提高所制备传感材料中金属氧化物的分散度。
测量制备的传感材料的比表面积(BET),其大抵约为114-165m2/g,或为134-165m2/g。
在本发明的实施例中,所负载金属氧化物的金属元素相对于钛元素原子比例约为10-50%,或为20-40%。然而在其它实施例中可能更高或更低。
以下将叙述本发明实施例的传感方法。将待测气体由待测气体缸18经质量流量控制器38通入一混合腔体58,且将干燥压缩空气由干燥压缩空气缸28经化学滤网48及质量流量控制器38’通入混合腔体58,使待测气体及净化的干燥压缩空气充分混合,以下将称充分混合的待测气体及净化的干燥压缩空气为一混合气体。将传感材料设置于测试腔体68中,且使传感材料平铺盖满承载平台。将具有一特定待测气体浓度的混合气体以一流量从混合腔体58通入测试腔体68中,使混合气体可均匀贯穿传感材料。将一以光谱仪搭配可连续侦测的光学反射式套组的分析系统78连结至测试腔体68,其中分析系统78会在混合气体通入期间分析传感材料表面的光吸收特性。在一些实施例中,可使用拉曼光谱仪(Raman spectroscopy)系统搭配可连续侦测的光学反射式套组的分析系统。在其它实施例中,可使用傅立叶红外线光谱仪(Fourier transform infrared spectroscopy,FT-IR)系统搭配可连续侦测的光学反射式套组的分析系统。在一些实施例中,光学反射式套组可加热混合气体以缩短测试时间。通入测试腔体68的混合气体流量可约为1-30升/分钟,例如1升/分钟、15升/分钟或30升/分钟,而待测气体的浓度可约为1000ppb-100ppt,例如500ppb、200ppb、1ppb或500ppt。本发明所提供的传感材料对于待测气体具有高的拦截效率,例如高于98%的拦截效率,且可侦测到ppt等级的待测气体。应注意的是,本发明实施例所提供的传感方法的优点之一是可达到实时传感而不需要花费时间等待传感结果。
本发明所提供的传感材料(负载金属氧化物的二氧化钛纳米管)至少具有以下优点:(1)传感材料中所负载金属氧化物的分散度及负载重量高;(2)对于待测气体具有高捕集率;(3)可侦测达ppt等级的待测气体;(4)具有光谱传感特性。另外,本发明所提供的传感方法可实时侦测待测气体,并且可在较低温下(例如60℃)进行传感。
以下将叙述根据本发明所提供的传感材料的制备方法及传感方法的各实施例及比较例。
【传感材料的制备方法】
实施例1:负载氧化铜的二氧化钛纳米管
(1)取0.625克二氧化钛(Degussa P25)加入预先混合的2.5克NaOH及12.5毫升去离子水中,形成一混合物A。
(2)将步骤(1)的混合物A置入高温反应釜,在200℃锻烧24小时。
(3)在加热后的混合物A中加入1.3毫升70%HNO3及200毫升去离子水,搅拌24小时,并过滤两次。
(4)取0.625克以上述步骤(1)~(3)所制备的二氧化钛纳米管加入200克的水中形成混合物B,以及取0.156克的Cu(NO3)2粉末加入10克的水中形成水溶液C。
(5)混合上述混合物B与水溶液C以形成混合物D,并于40℃下搅拌混合物D三分钟。
(6)将1M的Na2CO3溶液加入搅拌后的混合物D调整其pH值至7.0。
(7)将步骤(6)中pH值约为中性的混合物D分散至100克的水中,并于100℃下加热24小时。
(8)过滤干燥步骤(7)中加热后的混合物D,以留下固体部分E。
(9)在持续通入流量为5升/分钟的空气的环境中锻烧固体部分E以形成负载氧化铜的二氧化钛纳米管,其中所通入的空气为先以化学滤网(chemical filters)过滤的干燥压缩空气(dry compressed air)。对于上述步骤(1)~(9)所制备的传感材料进行比表面积(BET)的测量,结果显示其比表面积约为165m2/g。以穿透式电子显微镜(transmission electronmicroscopy,TEM)搭配能量分散光谱仪(energydispersive x-ray spectroscopy,EDX)测量实施例1所制备传感材料中所负载氧化铜的铜元素负载重量,得到铜元素相对于钛元素的原子比例约为21%。
比较例1:负载氧化铜的二氧化钛纳米管
如实施例1所述的制备方法,其中将步骤(4)取0.156克的Cu(NO3)2粉末置换成0.031克的Cu(NO3)2粉末。以穿透式电子显微镜(TEM)搭配能量分散光谱仪(EDX)测量比较例1所制备传感材料中铜元素相对于钛元素的原子比例,结果约为5%。
比较例2:以强碱(NaOH)调整pH值
如实施例1所述的制备方法,其中将步骤(6)的1M的Na2CO3溶液置换成0.6M的NaOH溶液。
比较例3:未分散至100克水中
如实施例1所述的制备方法,其中省略步骤(7)的分散至100克的水中,而直接进行加热。
比较例4:在未通入空气的环境中锻烧固体部分E
如实施例1所述的制备方法,其中锻烧固体部分E时不通入空气。
比较例2~4所制备的传感材料中铜元素相对于钛元素的原子比例约为21%。
以X射线衍射(X-ray diffraction,XRD)分析依实施例1及比较例2~4所制备的传感材料的分散度,结果如图3a、3b所示。图3a中显示实施例1的传感材料的XRD光谱,而图3b中显示比较例2~4的传感材料的XRD光谱。如果所负载的氧化铜的分散度较好,铜的结晶度会较低,造成XRD光谱中较小的峰,然而如果分散度不佳,铜的结晶度会较高,造成XRD光谱中较大的峰。由图3a、3b可见实施例1的传感材料的铜信号的峰极小,表示所制备的传感材料所使用的条件可使其中负载的氧化铜具有良好的分散度,而比较例2(强碱滴定)、比较例3(未进行水分散)、比较例4(未通空气)的传感材料的铜信号的峰明显比实施例1大,表示氧化铜分散度较差。
实施例2:负载氧化银的二氧化钛纳米管
如实施例1所述的制备方法,其中将步骤(4)中取0.156克的Cu(NO3)2粉末加入10克的水中改为取0.156克的AgNO3粉末加入10克的水中以制备传感材料。
对所制备的传感材料进行比表面积(BET)的测量,结果显示其比表面积约为110-160m2/g。以穿透式电子显微镜(TEM)搭配能量分散光谱仪(EDX)测量实施例2所制备传感材料中所负载氧化银的银元素负载重量,得到银元素相对于钛元素的原子比例约为23.2%。
实施例3:负载氧化铁(Fe2O3)的二氧化钛纳米管
如实施例1所述的制备方法,其中将步骤(4)中取0.156克的Cu(NO3)2粉末加入10克的水中改为取0.156克的Fe(NO3)3粉末加入10克的水中以制备传感材料。
对所制备的传感材料进行比表面积(BET)的测量,结果显示其比表面积约为105-165m2/g。以穿透式电子显微镜(TEM)搭配能量分散光谱仪(EDX)测量实施例3所制备传感材料中所负载氧化铁的铁元素负载重量,得到铁元素相对于钛元素的原子比例约为16.3%。
实施例4:负载氧化铜(CuO)及氧化铁(Fe2O3)的二氧化钛纳米管
如实施例1所述的制备方法,其中将步骤(4)中取0.156克的Cu(NO3)2粉末加入10克的水中改为取0.140克的Cu(NO3)2粉末和0.0156克的Fe(NO3)3粉末加入10克的水中以制备传感材料。
对所制备的传感材料进行比表面积(BET)的测量,结果显示其比表面积约为105-165m2/g。以穿透式电子显微镜(TEM)搭配能量分散光谱仪(EDX)测量实施例4所制备传感材料中所负载氧化铜的铜元素及氧化铁的铁元素负载重量,得到铜元素及铁元素相对于钛元素的原子比例分别约为19%及1.5%。
实施例5:负载氧化金(AuO)的二氧化钛纳米管
如实施例1所述的制备方法,其中将金属前驱物替换成HAuCl4以制备传感材料。
对所制备的传感材料进行比表面积(BET)的测量,结果显示其比表面积约为105-165m2/g。以穿透式电子显微镜(TEM)搭配能量分散光谱仪(EDX)测量实施例5所制备传感材料中所负载氧化金的金元素负载重量,得到金元素相对于钛元素的原子比例约为11.6%。
【待测气体的传感方法】
提供如图2所示的传感系统,将待测气体由待测气体缸18经质量流量控制器38通入一混合腔体58,且将干燥压缩空气由干燥压缩空气缸28经化学滤网48及质量流量控制器38’通入混合腔体58,使待测气体及净化的干燥压缩空气充分混合形成一混合气体。将本发明实施例及/或比较例所制备的传感材料设置于测试腔体68中,且使传感材料平铺盖满承载平台。将具有一特定待测气体浓度的混合气体以一流量从混合腔体58通入测试腔体68中,使混合气体可均匀贯穿传感材料。使用一以光谱仪搭配可连续侦测的光学反射式套组的分析系统以分析混合气体通入期间传感材料表面的光吸收特性。
为确保本发明实施例所提供传感材料对于待测气体有高的拦截效率,将一Drager气体侦测器(Drager sensor hydrude)连接至测试腔体。在设置有实施例1的传感材料的测试腔体中通入流速为1升/分钟的混合气体,其中待测气体(在此为PH3)浓度为500ppb,并以Drager气体侦测器侦测由测试腔体通出的后端气体中待测气体的浓度,结果低于Dragon气体侦测器所能侦测到的下限(10ppb),由此证明本发明实施例所提供传感材料对于待测气体具有高于98%的拦截效率。
实施例6
在实施例6中,使用实施例2所制备的传感材料,及以磷化氢为待测气体,其中混合气体流量为1升/分钟,磷化氢浓度为500ppb,并使用拉曼光谱仪(Raman spectroscopy)搭配一光学反射式套组在通入混合气体期间分析传感材料表面的光吸收特性。在本实施例中,若通入测试腔体的磷化氢与传感材料反应形成P-O键结,P-O键结可被拉曼光谱仪侦测到。图4显示所得的拉曼光谱图,由图4可知在波长956±2cm-1有显著的特征峰,此特征峰可作为含磷化合物(如PH3)的定性与定量。
实施例7
同实施例6,但以傅立叶红外线光谱仪系统(FTIR)替换拉曼光谱仪。本实施例在不同的参数条件下测量FTIR光谱。表2显示所使用不同的参数条件,而图5~10显示所得的光谱,其特征峰明确易于分析判断。因此,本实施例可测得浓度在ppt等级的磷化氢气体。
表2
Figure BSA00000558154600111
比较例5
同实施例7,但连续20或24小时通入混合气体于混合腔体中进行传感,并在特定时间点量测传感材料的FTIR光谱。表3显示使用的不同参数条件,而图11~13显示所得的光谱,由这些随时间变化的FTIR光谱可知,在900~1200cm-1之间的吸收强度有显著的变化。表4更显示图13所示光谱的信噪比(signal-to-noise ratio,S/N),由持续增加的信噪比可知传感材料持续地吸收待测气体。
表3
Figure BSA00000558154600112
表4
Figure BSA00000558154600113
比较例6
同比较例5,但将传感材料置换成比较例1制备的传感材料、将连续通入混合气体的时间改为连续4小时、并将待测气体(PH3)的浓度改为100ppb。所得FTIR光谱如图14所示。在连续通入混合气体4个小时后,相对于可测得ppt等级浓度待测气体的比较例5,比较例6甚至连100ppb浓度的待测气体都无法测得(S/N<1)。由此证明本发明所制备出具有较高的CuO负载度(铜元素相对于钛元素的原子比例约为21%)的传感材料为可侦测至ppt等级浓度待测气体的因素之一。
综上所述,本发明所提供的传感材料可使所负载的金属氧化物具有高负载重量及高分散度,而传感材料对待测气体更有高的捕集率,更重要的是,传感材料可侦测至ppt等级浓度的待测气体。另外,本发明所提供运用上述传感材料的传感方法可达到实时侦测待测气体。因此本发明可克服背景技术中无法侦测至ppt等级及无法实时侦测等问题。
本发明虽由以上较佳实施例揭露,然而其并非用以限定本发明的范围,任何所属技术领域的技术人员,在不脱离本发明的主题和范围内,当可做任意的改动与修饰,因此本发明的保护范围应当以权利要求所界定的范围为准。

Claims (16)

1.一种传感材料的制备方法,包括以下步骤:
a)提供一金属氧化物前驱物的水溶液;
b)混合二氧化钛纳米管与该金属氧化物前驱物的水溶液以形成一混合物;
c)以一弱碱调整该混合物的pH值至中性;
d)将该混合物分散于水中并加热;及
e)过滤该混合物以留下固体部分,并在持续通氧的环境中锻烧该固体部分,以形成负载一金属氧化物的二氧化钛纳米管。
2.根据权利要求1所述的传感材料的制备方法,其中该金属氧化物前驱物包括Cu(NO3)2、HAuCl4、AgNO3、Fe(NO3)3或上述任意组合。
3.根据权利要求1所述的传感材料的制备方法,其中该金属氧化物为CuO、AgO、Au2O3、Fe2O3或上述任意组合。
4.根据权利要求1所述的传感材料的制备方法,其中该二氧化钛纳米管与该金属氧化物前驱物的混合摩尔数比例约为10∶1至1∶1。
5.根据权利要求1所述的传感材料的制备方法,其中该弱碱包括Na2CO3、NH3、C6H5NH2、CH3NH2、CH3CH2NH2或上述任意组合。
6.根据权利要求1所述的传感材料的制备方法,其中步骤d)是在90-100℃下加热12-36小时。
7.根据权利要求1所述的传感材料的制备方法,其中步骤e)包括通入空气。
8.根据权利要求1所述的传感材料的制备方法,其中步骤e)是在250-350℃下锻烧约3-9小时。
9.一种传感材料,包括:
二氧化钛纳米管;及
金属氧化物均匀分散且负载于该二氧化钛纳米管上,其中该负载金属氧化物的二氧化钛纳米管的比表面积约为200-400平方米/克,且该金属氧化物的金属元素相对于钛元素的原子比例约为10-50%。
10.根据权利要求9所述的传感材料,该金属氧化物为CuO、AgO、Au2O3、Fe2O3或上述任意组合。
11.一种实时传感方法,包括:
提供如权利要求10所述的传感材料;
导入一待测气体与该传感材料反应;及
以拉曼光谱仪系统或傅立叶红外线光谱仪系统分析反应结果。
12.根据权利要求11所述的实时传感方法,该待测气体的浓度约为1000ppb-100ppt。
13.根据权利要求11所述的实时传感方法,该待测气体的流量约为1-30升/分钟。
14.根据权利要求11所述的实时传感方法,该传感方法用以传感该待测气体内的一含磷化合物,包括磷化氢、磷酸、二甲基甲基磷酸酯、亚磷酸三甲酯、磷酸三甲酯或上述任意组合。
15.根据权利要求11所述的实时传感方法,该传感方法用以检测该待测气体内的砷化氢AsH3、乙硼烷B2H6、邻苯二甲酸二(2-乙基己)酯或上述任意组合。
16.根据权利要求11所述的实时传感方法,还包括将一具加热功能的光学反射式套件与拉曼光谱仪系统或傅立叶红外线光谱仪系统连结。
CN2011102358436A 2011-07-14 2011-08-15 传感材料及其制备方法及实时传感方法 Pending CN102874764A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100124879A TW201302301A (zh) 2011-07-14 2011-07-14 感測材料及其製備方法及即時感測方法
TW100124879 2011-07-14

Publications (1)

Publication Number Publication Date
CN102874764A true CN102874764A (zh) 2013-01-16

Family

ID=47476330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102358436A Pending CN102874764A (zh) 2011-07-14 2011-08-15 传感材料及其制备方法及实时传感方法

Country Status (5)

Country Link
US (1) US20130017611A1 (zh)
JP (1) JP2013024862A (zh)
KR (1) KR20130009567A (zh)
CN (1) CN102874764A (zh)
TW (1) TW201302301A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147790A (zh) * 2017-12-26 2018-06-12 珠海爱晟医疗科技有限公司 医用含金高精度高稳定ntc热敏芯片及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898880B2 (en) 2016-03-09 2021-01-26 Qatar University Method of making a copper oxide-titanium dioxide nanocatalyst
CN111982761B (zh) * 2020-08-26 2021-12-07 攀钢集团重庆钒钛科技有限公司 钛白粉在水性色浆中的分散性检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625930A (zh) * 2009-06-19 2010-01-13 东南大学 有序纳米管阵列结构电极材料及其制备方法和储能应用
CN101722003A (zh) * 2009-12-12 2010-06-09 源华能源科技(福建)有限公司 一种载于二氧化钛上的酯类环氧化用的催化剂及其制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034531A (ja) * 2000-05-19 2003-02-07 Japan Science & Technology Corp ナノチューブあるいはナノワイヤー形状を有する金属酸化物とその製造方法
CA2633531A1 (en) * 2005-12-13 2008-05-22 University Of Nevada, Reno Preparation of nano-tubular titania substrates having gold and carbon particles deposited thereon and their use in photo-electrolysis of water
US20080176317A1 (en) * 2006-04-17 2008-07-24 Kirollos Kirollos S System and device for transformation and detection of substances
EP2019313B1 (en) * 2007-07-25 2015-09-16 Stichting IMEC Nederland Sensor device comprising elongated nanostructures, its use and manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625930A (zh) * 2009-06-19 2010-01-13 东南大学 有序纳米管阵列结构电极材料及其制备方法和储能应用
CN101722003A (zh) * 2009-12-12 2010-06-09 源华能源科技(福建)有限公司 一种载于二氧化钛上的酯类环氧化用的催化剂及其制备和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147790A (zh) * 2017-12-26 2018-06-12 珠海爱晟医疗科技有限公司 医用含金高精度高稳定ntc热敏芯片及其制作方法

Also Published As

Publication number Publication date
JP2013024862A (ja) 2013-02-04
KR20130009567A (ko) 2013-01-23
TW201302301A (zh) 2013-01-16
US20130017611A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
Schulz et al. Gas-phase synthesis of functional nanomaterials: Challenges to kinetics, diagnostics, and process development
Wang et al. Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances
Karmaoui et al. Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing
Liu et al. Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron (III) ion
Li et al. Structure modification function of g‐C3N4 for Al2O3 in the in situ hydrothermal process for enhanced photocatalytic activity
Zhu et al. In situ enrichment amplification strategy enabling highly sensitive formaldehyde gas sensor
Zhang et al. Surfactant-free solution phase synthesis of monodispersed SnO 2 hierarchical nanostructures and gas sensing properties
Kar et al. Facile synthesis of SnO 2–PbS nanocomposites with controlled structure for applications in photocatalysis
CN107115861B (zh) 一种Au-TiO2-x催化剂及其应用
Chen et al. Hollow peanut-like m-BiVO 4: facile synthesis and solar-light-induced photocatalytic property
Kumar et al. A systematic review on 2D materials for volatile organic compound sensing
Dong et al. Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films
Zhu et al. Unraveling the origin of the “Turn-On” effect of Al-MIL-53-NO 2 during H 2 S detection
Xia et al. Z-Scheme charge separation in Bi 24 O 31 Br 10/SrTiO 3 nanocomposites for degradation of methyl orange
Chu et al. A new fluorescence probe comprising nitrogen-doped graphene quantum dots for the selective and quantitative determination of cerium (iv)
Li et al. Heterogeneous conversion of SO 2 on nano α-Fe 2 O 3: the effects of morphology, light illumination and relative humidity
Tarasov et al. Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of Thermally Assisted Reactions in Aqueous Sprays
Wang et al. Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas
Li et al. Tuning morphology-dependent localized surface plasmon resonance in quasi-metallic tungsten oxide nanostructures for enhanced photocatalysis
Liang et al. Controlled assembly of one-dimensional MoO 3@ Au hybrid nanostructures as SERS substrates for sensitive melamine detection
Zhu et al. Triazine-based graphitic carbon nitride: Controllable synthesis and enhanced cataluminescent sensing for formic acid
Liu et al. Photocatalytic reactive oxygen species generation activity of TiO 2 improved by the modification of persistent free radicals
Wang et al. One-step facile synthesis of novel β-amino alcohol functionalized carbon dots for the fabrication of a selective copper ion sensing interface based on the biuret reaction
CN102874764A (zh) 传感材料及其制备方法及实时传感方法
Muñoz-Chilito et al. ZnO-CeO2 nanocomposites: Synthesis, characterization and evaluation of their action on polluting gases emitted by motorcycles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130116