CN102866468A - Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof - Google Patents
Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof Download PDFInfo
- Publication number
- CN102866468A CN102866468A CN2012103276758A CN201210327675A CN102866468A CN 102866468 A CN102866468 A CN 102866468A CN 2012103276758 A CN2012103276758 A CN 2012103276758A CN 201210327675 A CN201210327675 A CN 201210327675A CN 102866468 A CN102866468 A CN 102866468A
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- hollow
- crystal fiber
- airtight chamber
- airtight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 86
- 239000013307 optical fiber Substances 0.000 title claims abstract description 47
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000835 fiber Substances 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 19
- 230000001681 protective effect Effects 0.000 claims abstract description 16
- 230000008878 coupling Effects 0.000 claims abstract description 15
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 239000005357 flat glass Substances 0.000 claims abstract description 14
- 238000003466 welding Methods 0.000 claims abstract description 13
- 238000001465 metallisation Methods 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000004021 metal welding Methods 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 229920006335 epoxy glue Polymers 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 abstract description 5
- 238000010183 spectrum analysis Methods 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 72
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
一种空心光子晶体光纤气体吸收池装置及制作方法,该装置由空心光子晶体光纤、保护套、气密室、真空计、真空阀、窗口玻璃、耦合镜、调节组件构成。本发明利用空心光子晶体光纤柔韧可弯曲,纤芯可以充入气体的特点,用气密室、真空计、真空阈实现气体的定量注入,将光束经耦合镜和窗口玻璃耦合进入空心光子晶体光纤中,用光纤金属化及馈通焊工艺进行密封,本发明装置具有结构紧凑小巧,可靠性高,气压可控,可重复使用,光束截面与气体截面重合度高的特点。可用于气体光谱分析实验,稳频激光器频率参考的气体吸收池。
A hollow photonic crystal fiber gas absorption cell device and its manufacturing method. The device is composed of a hollow photonic crystal fiber, a protective sleeve, an airtight chamber, a vacuum gauge, a vacuum valve, a window glass, a coupling mirror and an adjustment component. The invention utilizes the characteristics that the hollow photonic crystal fiber is flexible and bendable, and the fiber core can be filled with gas, and the quantitative injection of gas is realized by using an airtight chamber, a vacuum gauge, and a vacuum threshold, and the light beam is coupled into the hollow photonic crystal fiber through a coupling mirror and a window glass. , sealed with optical fiber metallization and feed-through welding process, the device of the present invention has the characteristics of compact structure, high reliability, controllable air pressure, reusable, high coincidence degree of beam cross-section and gas cross-section. It can be used for gas spectrum analysis experiments and gas absorption cells for frequency-stabilized laser frequency reference.
Description
技术领域 technical field
本发明涉及一种空心光子晶体光纤气体吸收池装置及其制作方法,该装置可应用于气体吸收谱分析、激光频率稳定、冷原子钟等领域。The invention relates to a hollow photonic crystal fiber gas absorption cell device and a manufacturing method thereof, which can be applied to the fields of gas absorption spectrum analysis, laser frequency stabilization, cold atomic clocks and the like.
背景技术 Background technique
在气体吸收谱分析、激光频率稳定、冷原子钟等领域,都需要有一个特定频率且频率稳定性高的激光器,利用气体吸收线作为频率参考进行稳频就是实现这种激光器的一种方法。In the fields of gas absorption spectrum analysis, laser frequency stabilization, and cold atomic clocks, a laser with a specific frequency and high frequency stability is required. Using gas absorption lines as a frequency reference to stabilize frequency is a method to realize this laser.
气体吸收池是用气体吸收线作为频率参考实现激光稳频的必要部件之一。对于某些吸收强度比较弱的气体,需要有光与气体的相互作用距离较长。此外特别对于星载、机载、车载的应用,对稳频激光器还有重量和抗震的要求,因此气体吸收池还要具有体积小,重量轻,稳健性高的特点。传统的气体吸收池典型代表有White型吸收池(参考在先技术[1]:J.U.White.“Long optical paths of largeaperture”,J.O.S.A,Vol.32,May 1942)和Herriott型吸收池(参考在先技术[2]:D.Herriott,H.Kogelnok,and R.Kompfner,“Off-Axis Paths in SphericalMirror Interferometers”,Applied Optics,Vol.3,Iss.4,1 April 1964),都需要控制光束入射角度,利用腔镜让光在空间中实现多次反射来增加光与气体的相互作用距离,光学稳定性较难保证;这两种结构体积较大,重量较重,要做好气密性比较有难度;而且容易损坏,可靠性不高。所以这两种结构的气体吸收池不能满足星载、机载、车载的应用对光学稳定性,气密性,可靠性的特殊要求。The gas absorption cell is one of the necessary components to use the gas absorption line as a frequency reference to achieve laser frequency stabilization. For some gases with relatively weak absorption intensity, a longer interaction distance between light and gas is required. In addition, especially for spaceborne, airborne, and vehicle-mounted applications, there are requirements for weight and shock resistance for frequency-stabilized lasers. Therefore, the gas absorption cell must have the characteristics of small size, light weight, and high robustness. Typical representatives of traditional gas absorption cells are White type absorption cells (refer to prior art [1]: J.U.White. "Long optical paths of large aperture", J.O.S.A, Vol.32, May 1942) and Herriott type absorption cells (refer to prior art Technology [2]: D. Herriott, H. Kogelnok, and R. Kompfner, "Off-Axis Paths in SphericalMirror Interferometers", Applied Optics, Vol.3, Iss.4, 1 April 1964), all need to control the beam incident angle , the use of cavity mirrors allows light to achieve multiple reflections in space to increase the interaction distance between light and gas, and it is difficult to ensure optical stability; these two structures are large in size and heavy in weight, and it is difficult to make airtightness ; And easily damaged, the reliability is not high. Therefore, the gas absorption cells of these two structures cannot meet the special requirements for optical stability, airtightness, and reliability of spaceborne, airborne, and vehicle-mounted applications.
P.S.Light等人提出了一种利用空心光子晶体光纤实现体积小,重量轻,稳健性高的乙炔气体吸收池的方案(参考在先技术[3]:P.S.Light,F.Couny,andF.Benabid.“Low optical insertion-loss and vacuum-pressure all-fiberacetylene cell based on hollow-core photonic crystal fiber”,Optics Letters,Vol.31,No.17,1 September 2006),该方案是先在空心光子晶体光纤中充入指定气压的乙炔气体,再充入氦气直到气压略大于环境气压,再将空心光子晶体光纤两端与普通单模光纤熔接,最后等待氦气通过空心光子晶体光纤的包层全部渗透扩散到光纤外部,完成空心光子晶体光纤气体吸收池的制作。但是该方案存在下述问题:一旦气体吸收池制作完成,气池内的气压或者气体种类就无法改变。所以该方案只能制作确定气体各类并且确定气压的气体吸收池,不适用于需要对气压进行调整的稳频参数优化的实验环节。P.S.Light et al. proposed a scheme to realize small volume, light weight and high robustness of acetylene gas absorption cell by using hollow-core photonic crystal fiber (refer to prior art [3]: P.S.Light, F.Couny, and F.Benabid. "Low optical insertion-loss and vacuum-pressure all-fiberacetylene cell based on hollow-core photonic crystal fiber", Optics Letters, Vol.31, No.17, 1 September 2006), this scheme is first in the hollow-core photonic crystal fiber Fill the acetylene gas with the specified pressure, and then fill it with helium until the pressure is slightly higher than the ambient pressure, then weld the two ends of the hollow-core photonic crystal fiber to the ordinary single-mode fiber, and finally wait for the helium to penetrate and diffuse through the cladding of the hollow-core photonic crystal fiber To the outside of the optical fiber, the fabrication of the hollow photonic crystal optical fiber gas absorption cell is completed. However, this solution has the following problems: once the gas absorption cell is fabricated, the air pressure or gas type in the gas cell cannot be changed. Therefore, this scheme can only make gas absorption cells that determine the various types of gases and determine the air pressure, and is not suitable for the experimental link of frequency stabilization parameter optimization that needs to adjust the air pressure.
Poberezhskiy I.Y.等人提出一种可以实现充放气体和气压控制的空心光子晶体光纤气体吸收池的方案(参考在先技术[4]:Ilya Y.Poberezhskiy,PatrickMeras,and et al.“Compact and robust refilling and connectorization ofa hollow core photonic crystal fiber gas reference cells”,The 20th AnnualMeeting of the IEEE Laser and Electro-Optics Society,2007),该方案将空心光子晶体光纤与多模光纤用硅基V型槽对准,实现光耦合,并且两个光纤端之间留有一点空隙,以供充放气体,对准的光纤与V型槽放在一块铝板上,光纤接头处用一石英管保护,用环氧树脂密封,石英管可以接上阀门,抽真空装置或者充气装置,实现可充放气体、实现气压控制的吸收池。但是环氧树脂密封方法的气密性与牢固程度与金属焊接方法相比要差;另外,空心光子晶体光纤与普通单模或者多模光纤的纤径不一样,实现光纤对准的V型槽不可能用机械加工的方法实现,必须用光刻的方法制作。Poberezhskiy IY et al. proposed a solution for a hollow photonic crystal fiber gas absorption cell that can realize gas filling and discharging and air pressure control (refer to the prior art [4]: Ilya Y.Poberezhskiy, PatrickMeras, and et al. "Compact and robust refilling and connectorization of a hollow core photonic crystal fiber gas reference cells", The 20 th Annual Meeting of the IEEE Laser and Electro-Optics Society, 2007), this scheme aligns the hollow core photonic crystal fiber with the multimode fiber with a silicon-based V-groove, Optical coupling is realized, and there is a little space between the two fiber ends for filling and discharging gas. The aligned optical fiber and V-groove are placed on an aluminum plate, and the optical fiber joint is protected by a quartz tube and sealed with epoxy resin , the quartz tube can be connected to a valve, a vacuum device or an inflatable device to realize an absorption pool that can be filled and discharged with air pressure control. However, the airtightness and firmness of the epoxy resin sealing method are inferior to those of the metal welding method; in addition, the fiber diameter of the hollow-core photonic crystal fiber is different from that of the ordinary single-mode or multi-mode fiber, and the V-groove for fiber alignment is realized. It is impossible to realize it by machining, and it must be made by photolithography.
发明内容 Contents of the invention
本发明的目的在于克服上述在先技术的不足,提供空心光子晶体光纤气体吸收池装置及其制作方法,该方案用光纤金属化方案与馈通焊、金属焊接工艺,实现高气密性,高稳健性,可以充放气体,控制气压的空心光子晶体光纤气体吸收池。The purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art, and provide a hollow photonic crystal fiber gas absorption cell device and a manufacturing method thereof. Robust, gas-filled and gas-controlled hollow-core photonic crystal fiber gas absorption cell.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种空心光子晶体光纤气体吸收池装置,其特点在于该装置由空心光子晶体光纤及其两端的气密接头构成,所述的气密接头具有相同的结构:A hollow photonic crystal fiber gas absorption cell device is characterized in that the device is composed of a hollow photonic crystal fiber and airtight joints at both ends thereof, and the airtight joints have the same structure:
所述的气密接头包括保护套、气密室、真空计、真空阀、窗口玻璃、外调节组件、内调节组件、耦合镜,上述元部件的连接关系如下:所述的气密室具有光纤接口、通气管和气密室窗口,所述的光纤接口和气密室窗口相对,所述的光纤接口用于连接所述的空心光子晶体光纤,该空心光子晶体光纤与光纤接口的连接部位用保护套保护,在所述的通气管上安装所述的真空计和真空阀,所述的窗口玻璃镀以环型金属膜,与所述的气密室窗口用金属焊接工艺连接,所述的外调节组件从气密室窗口方向与所述的气密室用螺钉固定,所述的内调节组件是一个中空圆筒,圆筒外有细螺纹的构件,所述的耦合镜固定在所述的内调节组件的圆筒的内端上,该内调节组件的外端接具有FC接头的普通光纤,所述的内调节组件的外细螺纹旋入所述的外调节组件的内螺纹中,通过内调节组件的旋转以改变内调节组件与外调节组件的配合深度,该内调节组件的位置通过外调节组件的径向螺钉锁定。The airtight joint includes a protective cover, an airtight chamber, a vacuum gauge, a vacuum valve, a window glass, an external adjustment assembly, an internal adjustment assembly, and a coupling mirror. The connection relationship of the above components is as follows: the airtight chamber has an optical fiber interface, The ventilation tube and the window of the airtight chamber, the optical fiber interface is opposite to the window of the airtight chamber, the optical fiber interface is used to connect the hollow photonic crystal fiber, and the connection part between the hollow photonic crystal fiber and the optical fiber interface is protected by a protective sleeve. The vacuum gauge and vacuum valve are installed on the vent pipe, the window glass is coated with a ring-shaped metal film, and connected with the window of the airtight chamber by metal welding process, and the external adjustment assembly is connected from the window of the airtight chamber The direction and the airtight chamber are fixed with screws, the inner adjustment assembly is a hollow cylinder with fine threaded components outside the cylinder, and the coupling mirror is fixed inside the cylinder of the inner adjustment assembly On the end, the outer end of the inner adjustment component is connected with an ordinary optical fiber with a FC connector. The outer fine thread of the inner adjustment component is screwed into the inner thread of the outer adjustment component, and the inner adjustment component is rotated to change the inner thread. The matching depth of the adjustment assembly and the outer adjustment assembly, the position of the inner adjustment assembly is locked by the radial screw of the outer adjustment assembly.
所述空心光子晶体光纤与所述的气密室采用馈通焊工艺连接,即所述的空心光子晶体光纤经过光纤金属化处理后,插入所述的气密室的光纤接口中,用馈通焊工艺连接。The hollow photonic crystal fiber is connected to the airtight chamber by a feed-through welding process, that is, the hollow photonic crystal fiber is inserted into the optical fiber interface of the airtight chamber after the optical fiber metallization process, and is welded by a feed-through welding process. connect.
所述的空心光子晶体光纤气体吸收池装置的制作方法,其特点在于该方法包括如下步骤:The manufacturing method of the hollow photonic crystal fiber gas absorption cell device is characterized in that the method comprises the following steps:
1)、空心光子晶体光纤与气密接头连接:1), the hollow photonic crystal fiber is connected with the airtight connector:
①首先在窗口玻璃接触气密室的区域用磁控溅射的方法镀上一层环形金属膜,再用金属焊接工艺把窗口玻璃焊接到气密室的窗口上;①Firstly, a layer of annular metal film is coated on the area where the window glass contacts the airtight chamber by magnetron sputtering, and then the window glass is welded to the window of the airtight chamber by a metal welding process;
②在气密室的通气管上安装好真空计与真空阀;② Install a vacuum gauge and a vacuum valve on the vent pipe of the airtight chamber;
③在空心光子晶体光纤其中一端选取合适长度去除的涂覆层,在其端面位置涂上保护胶,封住空心光子晶体光纤端面的开口,防止在光纤金属化过程中化学试剂进入空心光子晶体光纤的内部造成堵塞;用现有的光纤金属化工艺在空心光子晶体光纤一端已经除掉涂覆层的表面镀上金属层,再把涂有保护胶的头部割掉,将经过上述处理的空心光子晶体光纤的一端插入到气密室的光纤接口用现有的馈通焊工艺焊接,最后在连接处外部套好保护套;③ Select a suitable length of coating layer removed from one end of the hollow-core photonic crystal fiber, and apply protective glue on the end face to seal the opening of the end face of the hollow-core photonic crystal fiber to prevent chemical reagents from entering the hollow-core photonic crystal fiber during the metallization process of the fiber The interior of the hollow photonic crystal fiber is blocked by using the existing optical fiber metallization process to plate a metal layer on the surface of the hollow photonic crystal fiber that has been removed from the coating layer, and then cut off the head coated with the protective glue, and the hollow photonic crystal fiber that has undergone the above treatment One end of the photonic crystal fiber is inserted into the fiber interface of the airtight chamber and welded with the existing feed-through welding process, and finally the protective sleeve is put on the outside of the connection;
④把耦合镜用光学环氧胶固定在内调节组件上,依次装配好外调节组件,内调节组件,该内调节组件的外端接具有FC接头的普通光纤;④Fix the coupling mirror on the inner adjustment assembly with optical epoxy glue, assemble the outer adjustment assembly and the inner adjustment assembly in sequence, and the outer end of the inner adjustment assembly is connected with a common optical fiber with FC connector;
2)、空心光子晶体光纤的另一端与气密接头按如上步骤1)进行连接;2) The other end of the hollow-core photonic crystal fiber is connected to the airtight joint according to step 1) above;
3)、对连接好的空心光子晶体光纤气体吸收池装置进行光路调节:把其中一个气密接头的普通光纤接上激光器;另一个气密接头的外调节组件与气密室暂时分开,在其气密室窗口处用光功率计探测从空心光子晶体光纤出射的光功率;调节前一个气密接头外调节组件和内调节组件的位置,直到光功率计探测到的光功率最大;然后把光功率计去掉,把后一个气密接头的外调节组件和气密室连接起来,在其普通光纤后接上光功率计,调节其外调节组件和内调节组件的位置,直到光功率计探测到的光功率最大,完成光路调节,制作完成。3) Adjust the optical path of the connected hollow photonic crystal fiber gas absorption cell device: connect the ordinary optical fiber of one of the airtight joints to the laser; the external adjustment component of the other airtight joint is temporarily separated from the airtight chamber. Use an optical power meter to detect the optical power emitted from the hollow photonic crystal fiber at the window of the secret room; adjust the position of the outer adjustment component and the inner adjustment component of the previous airtight joint until the optical power detected by the optical power meter is maximum; then put the optical power meter Remove it, connect the outer adjustment component of the latter airtight joint with the airtight chamber, connect an optical power meter behind the ordinary optical fiber, and adjust the positions of the outer adjustment component and the inner adjustment component until the optical power detected by the optical power meter reaches the maximum , the optical path adjustment is completed, and the production is completed.
所述的气密室用于保持空心光子晶体光纤内部的气密性,通过真空计与真空阀调节控制空心光子晶体光纤内部的气压,另外还可以把气密室的通气管密封起来,撤掉真空计、真空阀、气瓶和真空泵,作为小巧的气体吸收池使用。The airtight chamber is used to maintain the airtightness inside the hollow photonic crystal fiber, and the air pressure inside the hollow photonic crystal fiber can be adjusted and controlled by a vacuum gauge and a vacuum valve. In addition, the ventilation pipe of the airtight chamber can be sealed, and the vacuum gauge can be removed. , vacuum valve, cylinder and vacuum pump, used as a small gas absorption pool.
所述的外调节组件和内调节组件是用于调节空心光子晶体光纤与普通光纤的相对位置,用以保证两者之间的耦合效率最大。The outer adjustment component and the inner adjustment component are used to adjust the relative position of the hollow-core photonic crystal fiber and the ordinary fiber, so as to ensure the maximum coupling efficiency between the two.
本发明与在先技术相比,有如下优点和积极效果:Compared with the prior art, the present invention has the following advantages and positive effects:
1、与在先技术[1]、[2]相比,本发明的空心光子晶体光纤气体吸收池体积小,质量轻,结构牢固可靠,气密性高,更适于在星载、机载等恶劣环境下使用。1. Compared with the prior art [1] and [2], the hollow photonic crystal optical fiber gas absorption cell of the present invention is small in volume, light in weight, firm and reliable in structure, and high in air tightness, and is more suitable for spaceborne and airborne Use in harsh environments.
2、与在先技术[3]相比,本发明的空心光子晶体光纤气体吸收池可以更换气体和改变气压,可以用于调整气压的稳频参数优化的实验环节。2. Compared with the prior art [3], the hollow photonic crystal fiber gas absorption cell of the present invention can replace the gas and change the air pressure, and can be used in the experiment link of optimizing the frequency stabilization parameters of the air pressure.
3、与在先技术[4]相比,本发明的空心光子晶体光纤气体吸收池用馈通焊工艺和金属焊接工艺实现密封,气密性和结构牢固程序比用环氧树脂或其他胶粘的方法更好,另外没有用到V型槽,不用光刻工艺,加工更简单。3. Compared with the prior art [4], the hollow photonic crystal fiber gas absorption cell of the present invention is sealed with a feed-through welding process and a metal welding process, and the airtightness and firm structure are better than epoxy resin or other adhesives The method is better, in addition, no V-groove is used, no photolithography process is required, and the processing is simpler.
总之,本发明装置具有结构紧凑小巧,可靠性高,气压可控,可重复使用,光束截面与气体截面重合度高的特点。可用于气体光谱分析实验,稳频激光器频率参考的气体吸收池,In a word, the device of the present invention has the characteristics of compact structure, high reliability, controllable air pressure, reusability, and high coincidence degree of beam cross-section and gas cross-section. Can be used for gas spectrum analysis experiments, gas absorption cells for frequency-stabilized laser frequency reference,
附图说明 Description of drawings
图1是本发明空心光子晶体光纤气体吸收池装置的结构示意图Fig. 1 is the structural representation of hollow photonic crystal fiber gas absorption cell device of the present invention
图2是本发明空心光子晶体光纤气体吸收池装置的结构另一实施例结构示意图Fig. 2 is a structural schematic diagram of another embodiment of the structure of the hollow photonic crystal fiber gas absorption cell device of the present invention
具体实施方式 Detailed ways
下面结合实例和附图对本发明进行进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with examples and accompanying drawings, but the protection scope of the present invention should not be limited thereby.
先请参阅图1,图1是本发明空心光子晶体光纤气体吸收池装置的结构示意图图。由图可见,本发明空心光子晶体光纤气体吸收池装置,由空心光子晶体光纤1及其两端的气密接头构成,所述的气密接头具有相同的结构:Please refer to FIG. 1 first. FIG. 1 is a schematic diagram of the structure of the hollow photonic crystal fiber gas absorption cell device of the present invention. It can be seen from the figure that the hollow photonic crystal fiber gas absorption cell device of the present invention is composed of a hollow
所述的气密接头包括保护套2、气密室3、真空计4、真空阀5、窗口玻璃6、外调节组件7、内调节组件8、耦合镜9,上述元部件的连接关系如下:所述的气密室3具有光纤接口3a、通气管3b和气密室窗口3c,所述的光纤接口3a和气密室窗口3c相对,所述的光纤接口3a用于连接所述的空心光子晶体光纤1,该空心光子晶体光纤1与光纤接口3a的连接部位用保护套2保护,在所述的通气管3b上安装所述的真空计4和真空阀5,所述的窗口玻璃6镀以环型金属膜,与所述的气密室窗口3c用金属焊接工艺连接,所述的外调节组件7从气密室窗口3c方向与所述的气密室3用螺钉固定,所述的内调节组件8是一个中空圆筒,圆筒外有细螺纹的构件,所述的耦合镜9固定在所述的内调节组件8的圆筒的内端上,该内调节组件8的外端接具有FC接头的普通光纤10,所述的内调节组件8的外细螺纹旋入所述的外调节组件7的内螺纹中,通过内调节组件8的旋转以改变内调节组件8与外调节组件7的配合深度,该内调节组件8的位置通过外调节组件7的径向螺钉锁定。The airtight joint includes a
所述空心光子晶体光纤1与所述的气密室3的连接采用馈通焊工艺连接,即所述的空心光子晶体光纤1的一端1a经过光纤金属化处理后,插入所述的气密室3的光纤接口3a中,用馈通焊工艺连接。The connection between the hollow
外调节组件7与气密室3用螺钉固定,借助机械加工公差可以微量调节接触面方向的位移,内调节组件8与外调节组件7通过细螺纹连接,通过旋转可以改变内调节组件8与外调节组件7的配合深度,并可以通过外调节组件7用螺钉锁死内调节组件8的位置,耦合镜9固定在内调节组件8上,FC接头的普通光纤10接在内调节组件8上。The
使用时,将空心光子晶体光纤1的一端1a作为气体入口,所连接的气密室3的通气管3b与气瓶连接,实现气体的充入;空心光子晶体光纤1的另一端为气体出口,该端的通气管3b与真空泵连接,实现气体抽出。During use, one
气密室3用于保持空心光子晶体光纤1内部的气密性,通过安装在通气管3b上的真空计4与真空阀5调节控制空心光子晶体光纤1内部的气压。The
另外还可以把气密室的通气管密封起来,撤掉真空计、真空阀,作为小巧的气体吸收池使用,如图2所示。In addition, the ventilation pipe of the airtight chamber can be sealed, the vacuum gauge and the vacuum valve can be removed, and it can be used as a small and exquisite gas absorption cell, as shown in Figure 2.
外调节组件7和内调节组件8是用于调节光子晶体光纤1与普通光纤10的相对位置,用以保证两者之间的耦合效率最大。The
本发明空心光子晶体光纤气体吸收池装置的具体制作步骤如下:The specific manufacturing steps of the hollow photonic crystal fiber gas absorption cell device of the present invention are as follows:
1、空心光子晶体光纤1与气密接头连接:1. The hollow
①首先在窗口玻璃6接触气密室3的区域用磁控溅射的方法镀上一层环形金属膜,再用金属焊接工艺把窗口玻璃6焊接到气密室3的窗口3c上;1. Firstly, the area where the
②在气密室3的通气管3b上安装好真空计4与真空阀5;②A vacuum gauge 4 and a
③在空心光子晶体光纤1其中一端1a选取合适长度去除的涂覆层,在其端面位置涂上保护胶,封住空心光子晶体光纤1端面的开口,防止在光纤金属化过程中化学试剂进入空心光子晶体光纤1的内部造成堵塞;用现有的光纤金属化工艺在空心光子晶体光纤1一端1a已经除掉涂覆层的表面镀上金属层,再把涂有保护胶的头部割掉,将经过上述处理的空心光子晶体光纤1的一端1a插入到气密室3的光纤接口3a用现有的馈通焊工艺焊接,最后在连接处外部套好保护套2;③ Select a suitable length of the coating layer removed from one
④把耦合镜9用光学环氧胶固定在内调节组件8上,依次装配好外调节组件7,内调节组件8,该内调节组件8的外端接具有FC接头的普通光纤10;④ Fix the coupling mirror 9 on the
2、空心光子晶体光纤1的另一端按如上步骤1进行连接;2. The other end of the hollow
3、对连接好的空心光子晶体光纤气体吸收池装置进行光路调节:把其中一个气密接头的普通光纤10接上激光器;另一个气密接头的外调节组件7与气密室3暂时分开,在其气密室窗口3c处用光功率计探测从空心光子晶体光纤1出射的光功率;调节前一个气密接头外调节组件7和内调节组件8的位置,直到光功率计探测到的光功率最大;然后把光功率计去掉,把后一个气密接头的外调节组件7和气密室3连接起来,在其普通光纤10后接上光功率计,调节其外调节组件7和内调节组件8的位置,直到光功率计探测到的光功率最大,完成光路调节,本发明空心光子晶体光纤气体吸收池装置的制作完成。3. Adjust the optical path of the connected hollow photonic crystal fiber gas absorption cell device: connect the ordinary
本发明的操作方法如下:The operating method of the present invention is as follows:
1.其中一个气密接头的通气管3b接气瓶,作为气体入口;另一个气密接头的通气管3b接真空泵,作为气体出口;1. One of the
2.在充入实验气体前,先用真空泵把空心光子晶体光纤1与其两端的气密接头抽成真空,在另一个通气管3b处接入氦气气瓶,用氦气对空心光子晶体光纤1进行冲洗,最后再用真空泵抽成真空;2. Before filling the experimental gas, use a vacuum pump to evacuate the airtight joints of the hollow
2.通气管3b改接入实验所需气体的气瓶,充入实验气体,气体入口处的通气管3b的真空计2气压读数可略大于所需气压,等待气体缓慢流通到气体出口处,直到气体入口处真空计2气压读数与气体出口处真空计2气压读数相等,再交替打开真空泵和气瓶进行抽气和充气,直到气体入口处与气体出口处的气压读数均为所需气压,此时气体充入完成,可作为实验用的气体吸收池;2. Change the
3.需要制作小巧结构的吸收池时,把通气管3b钳紧压扁不漏气,割去真空计4和真空阀5,再对通气管3b填充焊料进行密封,如图2所示。3. When it is necessary to make an absorption pool with a compact structure, clamp and flatten the
本发明采用了光纤金属化、馈通焊接、金属焊接工艺实现气体吸收池的制作,能很好地保证吸收池的密封性,以及结构的牢固性,另外它的结构紧凑和轻便小巧的特点可以很好地适用于星载的应用环境。气密室的设计结构可以满足在实验阶段对气压的调整,也可以将通气管密封起来后作为小巧的气体吸收池使用。The invention adopts optical fiber metallization, feed-through welding and metal welding processes to realize the production of the gas absorption pool, which can well ensure the airtightness of the absorption pool and the firmness of the structure. In addition, its compact structure, light weight and small size can It is well suited to the spaceborne application environment. The design structure of the airtight chamber can meet the adjustment of the air pressure during the experimental stage, and the ventilation tube can also be sealed and used as a small gas absorption pool.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103276758A CN102866468A (en) | 2012-09-06 | 2012-09-06 | Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103276758A CN102866468A (en) | 2012-09-06 | 2012-09-06 | Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102866468A true CN102866468A (en) | 2013-01-09 |
Family
ID=47445441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103276758A Pending CN102866468A (en) | 2012-09-06 | 2012-09-06 | Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102866468A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104181648A (en) * | 2014-07-07 | 2014-12-03 | 中国科学院上海光学精密机械研究所 | Hollow-photon-crystal-fiber gas absorbing pool and manufacturing method thereof |
CN105388113A (en) * | 2015-11-20 | 2016-03-09 | 上海斐讯数据通信技术有限公司 | Gas detection equipment |
CN108015412A (en) * | 2016-11-01 | 2018-05-11 | 福州高意光学有限公司 | A kind of adhering method of optical element and substrate |
CN109459425A (en) * | 2018-12-13 | 2019-03-12 | 云南电网有限责任公司电力科学研究院 | A kind of fiber adapters device applied to optical fiber gas sensing |
CN110749572A (en) * | 2019-10-29 | 2020-02-04 | 广州特种承压设备检测研究院 | Novel graphene optical fiber gas sensor measuring system and method for measuring hydrogen sulfide gas by using same |
CN115308200A (en) * | 2022-10-12 | 2022-11-08 | 东营钧辰石油设备有限责任公司 | Sealed gas detector adopting lead acetate paper method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101697026A (en) * | 2009-10-26 | 2010-04-21 | 西北核技术研究所 | Isolated optical fiber seal switching device and machining method thereof |
CN102066905A (en) * | 2008-04-14 | 2011-05-18 | 通用电气公司 | Hollow-core waveguide-based raman systems and methods |
CN202003051U (en) * | 2010-12-27 | 2011-10-05 | 蓝莫德(天津)科学仪器有限公司 | Adjusting device of optical fiber coupling lens |
-
2012
- 2012-09-06 CN CN2012103276758A patent/CN102866468A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102066905A (en) * | 2008-04-14 | 2011-05-18 | 通用电气公司 | Hollow-core waveguide-based raman systems and methods |
CN101697026A (en) * | 2009-10-26 | 2010-04-21 | 西北核技术研究所 | Isolated optical fiber seal switching device and machining method thereof |
CN202003051U (en) * | 2010-12-27 | 2011-10-05 | 蓝莫德(天津)科学仪器有限公司 | Adjusting device of optical fiber coupling lens |
Non-Patent Citations (3)
Title |
---|
P.S.LIGHT,F.COUNTY,AND F.BENABID: "《Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber》", 《OPTICS LETTERS》, vol. 31, no. 17, 1 September 2009 (2009-09-01) * |
PATRICK MERAS JR.,ILYA Y.POBEREZHSKIY,DANIEL H.CHANG,AND ETC: "《Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique》", 《24TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC), BOULDER, CO》, 23 June 2008 (2008-06-23) * |
周孟然,李振璧,朱宗玖: "《分布式光纤传感瓦斯气体系统的研究》", 《中国安全科学学报》, vol. 17, no. 8, 31 August 2007 (2007-08-31) * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104181648B (en) * | 2014-07-07 | 2015-10-28 | 中国科学院上海光学精密机械研究所 | Hollow-Core Photonic Crystal Fibers gas absorption cell and preparation method thereof |
WO2016004661A1 (en) * | 2014-07-07 | 2016-01-14 | 中国科学院上海光学精密机械研究所 | Hollow-core photonic crystal fiber gas cell and manufacturing method therefor |
US9709730B2 (en) | 2014-07-07 | 2017-07-18 | Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences | Hollow-core photonic crystal fiber gas cell and method for preparing the same |
JP2017528742A (en) * | 2014-07-07 | 2017-09-28 | 中国科学院上海光学精密机械研究所 | Hollow core photonic crystal fiber gas cell and manufacturing method thereof |
CN104181648A (en) * | 2014-07-07 | 2014-12-03 | 中国科学院上海光学精密机械研究所 | Hollow-photon-crystal-fiber gas absorbing pool and manufacturing method thereof |
CN105388113B (en) * | 2015-11-20 | 2019-05-31 | 上海斐讯数据通信技术有限公司 | Gas detection equipment |
CN105388113A (en) * | 2015-11-20 | 2016-03-09 | 上海斐讯数据通信技术有限公司 | Gas detection equipment |
CN108015412A (en) * | 2016-11-01 | 2018-05-11 | 福州高意光学有限公司 | A kind of adhering method of optical element and substrate |
CN109459425A (en) * | 2018-12-13 | 2019-03-12 | 云南电网有限责任公司电力科学研究院 | A kind of fiber adapters device applied to optical fiber gas sensing |
CN109459425B (en) * | 2018-12-13 | 2021-05-11 | 云南电网有限责任公司电力科学研究院 | An optical fiber adapter device for optical fiber gas sensing |
CN110749572A (en) * | 2019-10-29 | 2020-02-04 | 广州特种承压设备检测研究院 | Novel graphene optical fiber gas sensor measuring system and method for measuring hydrogen sulfide gas by using same |
CN115308200A (en) * | 2022-10-12 | 2022-11-08 | 东营钧辰石油设备有限责任公司 | Sealed gas detector adopting lead acetate paper method |
CN115308200B (en) * | 2022-10-12 | 2022-12-13 | 东营钧辰石油设备有限责任公司 | Sealed gas detector adopting lead acetate paper method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102866468A (en) | Hollow photonic crystal optical fiber gas absorption cell device and manufacturing method thereof | |
CN101285908B (en) | Fabrication method of all-fiber high-pressure gas cavity based on hollow-core photonic crystal fiber | |
CN103633535B (en) | A kind of alkali metal vapour room and assembly production method thereof | |
US8508874B2 (en) | Process for forming a light beam path in a dielectric mirror | |
CN104901155B (en) | A kind of high power optical fibre laser coupling pump light expands output device with signal light | |
CN106526770A (en) | Lossless ultra-vacuum fiber leading-in device and method | |
CN106495464B (en) | A kind of air pressure control method and device drawn for photon band-gap optical fiber | |
CN102385123A (en) | Optical transmission module and method for manufacturing optical transmission module | |
US8794676B2 (en) | Device and method for connecting fluid conduits | |
CN103513326B (en) | A method for preparing an all-fiber hollow-core photonic crystal fiber low-pressure gas chamber | |
US10761277B2 (en) | Hermetic optical fiber stub with connector interface and vent | |
CN211402828U (en) | Optical fiber collimator | |
CN214174669U (en) | All-fiber gas cavity based on fiber end cap | |
CN110289540A (en) | A cladding-pumped single-mode terahertz fiber laser | |
CN106597607B (en) | A kind of implementation method of low-loss all -fiber heavy pressure gas chamber system | |
US20060258253A1 (en) | Method of manufacturing a miniature tubular gas discharge lamp | |
EP1104009B1 (en) | Light source device | |
CN107808578A (en) | The device and method for being coupled optical fiber introducing vacuum using optical transmission window flange | |
CN107678102A (en) | A kind of optical fiber splicing device for coordinating vacuum equipment to use and method | |
CN205507159U (en) | Optics time subassembly | |
CN113219682A (en) | Novel all-optical fiber isolator and preparation method thereof | |
CN203705685U (en) | Integrated optical fiber connector light passing structure for sealed shell | |
US7515807B2 (en) | Hermetic fiber feedthrough | |
CN217362130U (en) | Femtosecond pulse nonlinear compression device based on multi-pass cavity | |
JPS63113406A (en) | Optical transmission hose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130109 |