CN102857095B - 采用llc变换器的功率变换器和操作功率变换器的方法 - Google Patents

采用llc变换器的功率变换器和操作功率变换器的方法 Download PDF

Info

Publication number
CN102857095B
CN102857095B CN201210146207.0A CN201210146207A CN102857095B CN 102857095 B CN102857095 B CN 102857095B CN 201210146207 A CN201210146207 A CN 201210146207A CN 102857095 B CN102857095 B CN 102857095B
Authority
CN
China
Prior art keywords
voltage
llc converter
frequency
converter
power inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210146207.0A
Other languages
English (en)
Other versions
CN102857095A (zh
Inventor
R·雷迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Switzerland AG
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102857095A publication Critical patent/CN102857095A/zh
Application granted granted Critical
Publication of CN102857095B publication Critical patent/CN102857095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及采用LLC变换器的功率变换器的优化。功率变换器包括连接成接收输入信号和提供中间DC电压的输入级,和具有连接成接收中间DC电压和提供DC输出电压的LLC变换器的输出级。另外,功率变换器包括连接到输入级和输出级,以根据对中间DC电压的控制,调整DC输出电压和设定LLC变换器的目标工作参数的控制单元。还提供操作功率变换器的方法。

Description

采用LLC变换器的功率变换器和操作功率变换器的方法
技术领域
本申请一般涉及功率变换,更具体地说,涉及功率变换器和操作功率变换器的方法。 
背景技术
电感-电感-电容(LLC)功率变换器是功率变换系统的日益重要部分。与其它功率变换器相比,LLC功率变换器具有许多优点。这些优点可以包括当在初级开关上在空载和满载之间循环时的零电压切换,以及提供较低的电磁发射。LLC功率变换器还可以在比其它多种形式的功率变换器更高的开关频率下工作,这又能够降低某些LLC功率变换器组件的大小。不过,当采用LLC功率变换器时,也会出现缺陷,这包括LLC变换器的振荡回路元件的组件容限因单元而异,从而形成不同的串联谐振增益曲线,和变换器输出电压的对应差别。另外,因单元而异的LLC变换器的输入电压也形成DC输出电压差异。在这些方面的改进会有利于该领域。 
发明内容
本公开的实施例提供功率变换器和操作功率变换器的方法。在一个实施例中,功率变换器包括连接成接收输入信号和提供中间DC电压的输入级,以及具有连接成接收中间DC电压和提供DC输出电压的LLC变换器的输出级。另外,功率变换器包括连接到输入级和输出级以根据对中间DC电压的控制,调整DC输出电压和设定LLC变换器的目标工作参数的控制单元。 
在另一方面,操作功率变换器的方法包括接收输入信号和提供中间DC电压,以及从具有耦接到中间DC电压的输入端的LLC变换器 产生DC输出电压。所述方法还包括根据对中间DC电压的控制,调整DC输出电压和设定LLC变换器的目标工作参数。 
上面概述了本公开的优选特征和备选特征,以致本领域的技术人员可更好地理解本公开的以下详细说明。下面将说明本公开的、构成本公开的权利要求的主题的另外特征。本领域的技术人员会认识到,他们能够容易地把公开的构想和具体实施例用作设计或修改实现本公开的相同目的的其它结构的基础。 
附图说明
现在参考结合附图进行的以下说明,其中: 
图1图解说明按照本公开的原理构成的功率变换器的方框图; 
图2图解说明按照本公开的原理构成的另一个功率变换器的方框图; 
图3图解说明可以和图1或2的功率变换器一起使用的控制单元的实施例的扩展方框图; 
图4图解说明与可以用在按照本公开的原理构成的输出级中的LLC变换器对应的归一化增益曲线; 
图5图解说明表示与图1和2的输入级对应的中间DC电压的分布的直方图的例子;以及 
图6图解说明按照本公开的原理进行的操作功率变换器的方法的实施例的流程图。 
具体实施方式
本公开的实施例采用提供功率变换器输入级和输出级的总体闭环控制的控制单元,以便于几个操作问题的改进。这些操作问题包括LLC变换器的振荡回路元件的组件容限因单元而异,这会形成不同的串联谐振增益曲线,和影响DC输出电压。另外,如果不被抵消的话,因单元而异的中间DC电压会形成DC输出电压的差异。 
图1图解说明按照本公开的原理构成的功率变换器100的方框 图。功率变换器100包括输入级105、输出级115和控制单元125。 
输入级105包括具有典型输入端107a、107b的升压或升降压功率变换器,所述输入端107a、107b连接到根据需要可以是DC电压、单相AC电压或者3相AC电压的输入电压Vin。输入级105还包括具有连接成提供中间DC电压Vint的2个电平108、109的输出端。升压或升降压功率变换器是PFC(功率因数校正)结构,PFC结构具有常规的电压控制器和电流控制器,其中常规的电流控制器进一步耦接到控制单元125。 
输出级115包括电感-电感-电容(LLC)变换器,LLC变换器具有耦接到中间DC电压Vint的输入端,和提供DC输出电压Vout并接纳输出负载(未具体示出)的LLC输出端120a、120b。LLC变换器可以是具有耦接到控制单元125的常规控制开关的半桥或全桥LLC变换器。 
控制单元125包括输出级控制模块130和输入级控制模块140。输出级控制模块130连接到DC输出电压Vout,以提供对应于DC输出电压Vout的输入(即,测量的Vout)。输出级控制模块130还采用第一基准(基准1)提供用于LLC变换器的输出级控制信号,和给输入级控制模块140的LLC工作参数(例如工作频率或周期)。用于LLC变换器的输出级控制信号可以按照常规方式被施加到LLC变换器的输入控制开关和变压器控制开关。 
输入级控制模块140采用第二和第三基准(基准2和基准3),以及LLC工作参数和与测量的中间DC电压Vint对应的输入(测量的Vint),提供给输入级105的升压或升降压功率变换器的输入级控制信号。用于升压或升降压功率变换器的输入级控制信号可被施加到其常规电流控制器。 
图2图解说明按照本公开的原理构成的另一个功率变换器200的方框图。功率变换器200包括输入级205、输出级215和控制单元225。 
在本实施例中,输入级205是3相3电平升压PFC功率变换器并且包括连接到3相AC输入电压Va、Vb、Vc的3个输入端207a、 207b和207c。输入级205还包括具有连接成提供第一和第二中间DC电压Vint1、Vint2的3个电平208、209、210的输出端,如图所示。输入级205采用常规的电流和电压控制器,其中常规的电流控制器进一步耦接到控制单元225。 
输出级215包括具有耦接到第一和第二中间DC电压Vint1、Vint2的第一和第二串联连接输入端217a、217b和221a,221b的第一和第二交错LLC变换器216、220,如图所示。第一和第二并联连接输出端218a、222a和218b、222b提供DC输出电压Vout和接纳输出负载。第一和第二交错LLC变换器216、220可以是具有耦接到控制单元225的常规控制开关的半桥或全桥LLC变换器。 
控制单元225与控制单元125的操作相似,并且包括输出级控制模块230和输入级控制模块240。输出级控制模块230连接到DC输出电压Vout,以提供与DC输出电压Vout(即,测量的Vout)对应的输入,如前所述。输出级控制模块230还采用第一基准(基准1)提供用于第一和第二LLC变换器216、220的输出级控制信号,和给输入级控制模块240的LLC工作参数(例如,工作频率或周期)。用于交错LLC变换器的输出级控制信号可以按照常规方式被施加到LLC变换器的输入控制开关和变压器控制开关。 
输入级控制模块240采用第二和第三基准(基准2和基准3),以及LLC工作参数和与第一和第二中间DC电压Vint1、Vint2(即,测量的Vint,Vint2)对应的输入,提供给输入级205的3相3电平升压功率变换器的输入级控制信号。用于3电平升压变换器的输入级控制信号可被施加到其常规电流控制器。 
图3图解说明可以和图1或2的功率变换器一起使用的控制单元300的实施例的扩展方框图。控制单元300包括输出级控制模块305和输入级控制模块315。 
输出级控制模块305的目的是调整与输出级需要的指令DC输出电压值对应的DC输出电压Vout。在图解说明的实施例中,指令DC输出电压由第一基准(基准1)以基准电压Vref的形式提供。求和元件 307比较测量的DC输出电压Vout和指令DC输出电压Vout,以向输出级控制器309提供输出级误差信号。输出级控制器309可以是PI(比例积分)控制器并且提供与输出级误差信号成比例的输出控制器数字输出信号。 
调制器311从输出级控制器309接收数字输出信号,并根据输出级误差信号,向供给DC输出电压Vout的LLC输出级提供输出级控制信号。输出级控制信号可以采用PFM(脉冲频率调制)或PWM(脉冲宽度调制),PFM或PWM允许输出级控制模块305把输出级误差信号驱动到大体为0,并且把DC输出电压Vout保持为用基准电压Vref选择的值。 
通常,输入级控制模块315控制和调整来自对应输入级的作为输入电压施加于输出级的中间DC电压Vint。它可调整单个中间DC电压(例如,图1的中间DC电压Vint),或者它可调整两个以上的中间DC电压(例如,图2的第一和第二中间DC电压Vint1、Vint2)。 
在图解所示的实施例中,输出级控制器309向滤波器317提供LLC输出级工作频率或周期的表示,滤波器317再向求和元件319的一个输入端提供该信号的滤波后表示。LLC输出级的目标谐振频率或周期作为基准2被提供给求和元件319的另一个输入端,求和元件319再向优化控制器321提供第一输入级误差信号。滤波后表示及其对应的基准2信号可以对应于所述频率或周期的一部分,以提高测量分辨率。 
优化控制器321也可以是提供与第一输入级误差信号成比例的优化控制器数字输出信号的PI控制器。限幅器323约束优化控制器数字输出信号允许的调整范围,以避免整体控制过载或者削波。 
在一个实施例中,基准3的目的是提供单个中间DC电压(如图1中所示)的额定设定点。求和元件325提供与优化控制器321调制的基准3对应的第二输入级误差信号,以提供额定中间DC电压Vint的优化范围。该优化范围对应于最小和最大串联谐振频率之间的工作频率或目标频率的窗口。 
在另一个实施例中,基准3对应于两个或更多中间DC电压(例如,图2的第一和第二中间DC电压Vint1、Vint2)的平均数或总和。对本实施例来说,求和元件325提供与优化控制器321调制的基准3对应的第二输入级误差信号,以提供以所述两个或更多中间DC电压的额定值为中心的优化窗口或范围。 
求和元件327接收第二输入级误差信号和测量的中间DC电压,从而向输入级控制器329提供第三输入级误差信号。根据需要,测量的中间DC电压可以对应于单个中间DC电压或者两个或更多中间DC电压。输入级控制器329提供至少一个输入级控制信号,以调整与输出级LLC变换器要求对应的一个或多个中间DC电压。 
图4图解说明与可用在按照本公开的原理构成的输出级中的LLC变换器对应的归一化增益曲线400。归一化增益曲线400对应于归一化DC输出电压并且包括第一和第二归一化增益曲线405、410,第一和第二归一化增益曲线405、410对应于确定一组LLC变换器(用作本公开的实施例的输出级)的串联谐振频率的输入电容器和电感器的组件容限扩展。组件容限扩展可以对应于如图1中所示的单个LLC变换器,或者如图2中所示的交错LLC变换器。另外,第一和第二归一化增益曲线405、410可对应于中间DC电压的不同值,或者组件容限和不同的中间DC电压的组合。 
可如下所示计算一组LLC变换器中的组件失配情况最坏的最小和最大串联谐振频率。 
Fseries min = 1 2 π L max C max , 和    (1a) 
Fseries max = 1 2 π L min C min (1b) 
其中Lmax和Cmax对应于一组LLC变换器的最大输入电感值和电容值,以及Lmin和Cmin对应于一组LLC变换器的最小输入电感值和电容值。图4中示出了分别对应于180KHz和200KHz的这些最小和最大串联谐振频率的例子。所述一组LLC变换器的剩余物的串联谐振频率位于这些最小和最大串联谐振频率之间。归一化的单位增益值(即,为1的归一 化增益)可被认为代表调整的指令DC输出电压。 
图5图解说明表示与图1和2的输入级对应的中间DC电压的分布的直方图500的例子。直方图500表明对于所示的样本分布,中间DC电压Vint可在约390伏和410伏之间变化。在没有输入级控制模块315提供的控制的情况下,中间DC电压的这种容限范围会极大地影响DC输出电压Vout。 
在串联谐振频率,LLC变换器的损耗被最小化,以及LLC变换器的工作效率被最大化。于是,设定接近特定LLC变换器的串联谐振频率的目标频率(基准2)使它可以使其工作频率达到最大。 
在本公开的一个实施例,在每个LLC变换器的串联谐振频率附近,为每个LLC变换器单独选择目标频率(基准2),从而使每个LLC变换器可以使其工作效率达到最大。这里,输入级控制模块315调整其对应中间DC电压Vint(从而例如升高第一归一化增益曲线405),直到它在LLC变换器的串联谐振频率(即,目标频率),与归一化的单位增益值重合为止。这要求最大串联谐振频率也对应于作为最坏情况中间DC电压的约390伏的中间DC电压Vint。 
在本公开的另一个实施例中,为所有LLC变换器选择单个目标频率(基准2),从而要求每个LLC变换器在该目标频率下工作。这里,目标频率可被设定成最大串联谐振频率,因为使LLC变换器在其串联谐振频率以下工作一般会对其工作频率造成过大的损失。在本实施例中,多数LLC变换器的工作效率可能稍微降低,因为除一个以外的所有LLC变换器都被迫在它们的串联谐振频率以上工作。不过,对许多应用来说,这种方法是可接受或者准许的。 
这里,输入级控制模块315调整中间DC电压Vint(从而升高第一归一化增益曲线405),直到它在作为所有LLC变换器的目标频率的最大串联谐振频率,与归一化的单位增益值重合为止。这还要求最大串联谐振频率对应于作为最坏情况中间DC电压的约390伏的中间DC电压Vint。 
图6图解说明按照本公开的原理进行的操作功率变换器的方法 600的实施例的流程图。方法600开始于步骤605,随后在步骤610,接收输入信号,并提供中间DC电压。在步骤615,从具有耦接到中间DC电压的输入端的LLC变换器产生DC输出电压。在步骤620,以控制中间DC电压为基础,调整DC输出电压并设定LLC变换器的目标工作参数。 
在一个实施例中,用施加于LLC变换器的脉冲频率调制(PFM)信号或者脉冲宽度调制(PWM)信号,调整DC输出电压。在另一个实施例中,目标工作参数确定LLC变换器的工作频率或工作周期。
在另一个实施例中,目标工作参数对应于LLC变换器的串联谐振频率。另一方面,目标工作参数对应于LLC变换器的比其串联谐振频率高的工作频率,并且可对应于从一组LLC变换器中选择的最大串联工作频率。 
在另一个实施例中,用LLC变换器的上组件容限确定的最小串联谐振频率对应于LLC工作频率的目标频率窗口的下端。另一方面,用LLC变换器的下组件容限确定的最大串联谐振频率对应于LLC工作频率的目标频率窗口的上端。 
在另一个实施例中,基于样本单元的容限分布的中间DC电压的最小值足以提供LLC变换器的最大串联谐振频率。对应地,样本单元的容限分布提供约为中间DC电压的5%的范围。方法600结束于步骤625。 
虽然关于按照特定顺序进行的特定步骤,说明和示出了这里公开的方法,不过显然这些步骤可以被结合、再分或者重新排序,以形成等同的方法,而不脱离本公开的教导。因而,除非这里明确地指出,否则步骤的顺序或分组不是对本公开的限制。 
本申请所涉及领域的技术人员会理解可对说明的实施例做出其它更多的添加、删除、替换和修改。 

Claims (9)

1.一种功率变换器,包括:
连接成接收输入信号和提供中间DC电压的输入级;
具有连接成接收中间DC电压和提供DC输出电压的LLC变换器的输出级;和
连接到输入级和输出级,以根据对中间DC电压的控制,调整DC输出电压和设定所述LLC变换器的目标工作参数的控制单元;其中用所述LLC变换器的上组件容限确定的最小串联谐振频率对应于所述LLC变换器工作频率的目标频率窗口的下端。
2.按照权利要求1所述的功率变换器,其中用施加于LLC变换器的脉冲频率调制(PFM)信号或脉冲宽度调制(PWM)信号,调整DC输出电压。
3.按照权利要求1所述的功率变换器,其中目标工作参数确定LLC变换器的工作频率或工作周期。
4.按照权利要求3所述的功率变换器,其中目标工作参数对应于LLC变换器的串联谐振频率。
5.按照权利要求3所述的功率变换器,其中目标工作参数对应于LLC变换器的高于其串联谐振频率的较高工作频率。
6.按照权利要求5所述的功率变换器,其中LLC变换器的较高工作频率对应于从一组LLC变换器中选择的最大串联谐振频率。
7.按照权利要求1所述的功率变换器,其中用所述LLC变换器的下组件容限确定的最大串联谐振频率对应于所述LLC变换器工作频率的目标频率窗口的上端。
8.按照权利要求1所述的功率变换器,其中基于样本单元的容限分布的中间DC电压的最小值足以提供LLC变换器的最大串联谐振频率。
9.一种操作功率变换器的方法,包括:
接收输入信号和提供中间DC电压;
从具有耦接到中间DC电压的输入端的LLC变换器产生DC输出电压;和
根据对中间DC电压的控制,调整DC输出电压和设定LLC变换器的目标工作参数;
其中用所述LLC变换器的上组件容限确定的最小串联谐振频率对应于所述LLC变换器工作频率的目标频率窗口的下端。
CN201210146207.0A 2011-06-28 2012-05-11 采用llc变换器的功率变换器和操作功率变换器的方法 Active CN102857095B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/170,614 2011-06-28
US13/170,614 US8681513B2 (en) 2011-06-28 2011-06-28 Optimization of a power converter employing an LLC converter

Publications (2)

Publication Number Publication Date
CN102857095A CN102857095A (zh) 2013-01-02
CN102857095B true CN102857095B (zh) 2015-04-01

Family

ID=47390532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210146207.0A Active CN102857095B (zh) 2011-06-28 2012-05-11 采用llc变换器的功率变换器和操作功率变换器的方法

Country Status (2)

Country Link
US (1) US8681513B2 (zh)
CN (1) CN102857095B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197132B2 (en) * 2006-12-01 2015-11-24 Flextronics International Usa, Inc. Power converter with an adaptive controller and method of operating the same
CN102342008B (zh) 2009-01-19 2016-08-03 伟创力国际美国公司 用于功率转换器的控制器
US9077248B2 (en) 2009-06-17 2015-07-07 Power Systems Technologies Ltd Start-up circuit for a power adapter
US8976549B2 (en) 2009-12-03 2015-03-10 Power Systems Technologies, Ltd. Startup circuit including first and second Schmitt triggers and power converter employing the same
US9246391B2 (en) 2010-01-22 2016-01-26 Power Systems Technologies Ltd. Controller for providing a corrected signal to a sensed peak current through a circuit element of a power converter
US9350175B2 (en) * 2012-04-17 2016-05-24 General Electric Company Input relay architecture for rectifying power converters and suitable for AC or DC source power
US9190898B2 (en) * 2012-07-06 2015-11-17 Power Systems Technologies, Ltd Controller for a power converter and method of operating the same
US9240712B2 (en) 2012-12-13 2016-01-19 Power Systems Technologies Ltd. Controller including a common current-sense device for power switches of a power converter
US20140211515A1 (en) * 2013-01-25 2014-07-31 Tdk Corporation Dc-dc converter and power supply device having dc-dc converter
JP5958414B2 (ja) * 2013-04-25 2016-08-02 Tdk株式会社 Dcdcコンバータ及びこのdcdcコンバータを備えた電源装置
CN103248232B (zh) * 2013-04-08 2015-04-15 南京航空航天大学 高效率多路输出直直变换器及其控制方法
CN204068706U (zh) * 2013-04-11 2014-12-31 雅达电子国际有限公司 多级电力转换器
DE102013211353B4 (de) * 2013-06-18 2022-12-22 Valeo Eautomotive Germany Gmbh Verfahren und Regeleinrichtung zur Regelung eines Resonanzwandlers mit PFC
DE102013216878A1 (de) * 2013-08-23 2015-02-26 Osram Gmbh Zweistufiger getakteter elektronischer Energiewandler
US9300206B2 (en) 2013-11-15 2016-03-29 Power Systems Technologies Ltd. Method for estimating power of a power converter
US9461554B2 (en) * 2014-09-30 2016-10-04 Futurewei Technologies, Inc. Hybrid converter using a resonant stage and a non-isolated stage
US10298023B2 (en) 2015-09-25 2019-05-21 Dell Products, Lp Universal power converter having variable voltage capability and method therefor
CN110168883B (zh) * 2017-01-27 2022-02-01 株式会社村田制作所 利用pir控制的llc转换器及控制llc转换器的方法
US9997996B1 (en) * 2017-05-19 2018-06-12 Nxp B.V. Power converter system and method for operating a power converter system
US10079541B1 (en) * 2017-05-23 2018-09-18 Murata Manufacturing Co., Ltd. Wide input, wide output, high efficiency, isolated DC-DC converter-battery charger
US10476395B2 (en) * 2017-11-30 2019-11-12 Futurewei Technologies, Inc. Voltage converting system and method of using the same
CN108011395B (zh) * 2017-12-11 2021-04-02 江苏辉伦太阳能科技有限公司 一种混合逆变器中充放电回路自动寻优的控制方法
CN108512421B (zh) * 2018-04-24 2019-08-27 上海推拓科技有限公司 一种pfwm控制方法
CN108900085B (zh) * 2018-07-25 2019-10-29 易事特集团股份有限公司 软开关变换器参数优化方法和软开关变换电路
CN112806101A (zh) * 2018-10-26 2021-05-14 赤多尼科两合股份有限公司 调节电气设备的参数的方法和装置
JP7194654B2 (ja) * 2019-08-09 2022-12-22 Tvs Regza株式会社 スイッチング電源装置
KR20230020269A (ko) * 2021-08-03 2023-02-10 현대자동차주식회사 Llc 공진 컨버터 제어 장치 및 이의 제어 방법
CN117833686B (zh) * 2024-03-05 2024-05-28 广东省洛仑兹技术股份有限公司 一种具有宽增益调节范围的llc谐振变换器控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置
CN201750352U (zh) * 2010-06-18 2011-02-16 武汉市通益电气有限公司 提高llc谐振电路工作效率的控制电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
US4814685A (en) * 1987-12-04 1989-03-21 Pacesetter Infusion, Ltd. Inductive power converter for use with variable input and output voltages
EP1138110A1 (en) 1999-09-17 2001-10-04 Koninklijke Philips Electronics N.V. Llc converter, and method for controlling an llc converter
US6850044B2 (en) * 2003-03-13 2005-02-01 Semiconductor Components Industries, L.L.C. Hybrid regulator with switching and linear sections
US7324354B2 (en) * 2005-07-08 2008-01-29 Bio-Rad Laboratories, Inc. Power supply with a digital feedback loop
US7952892B2 (en) 2006-04-04 2011-05-31 Power Integrations, Inc. DC converters with constant and variable duty ratio switching
US7848117B2 (en) * 2007-01-22 2010-12-07 Power Integrations, Inc. Control arrangement for a resonant mode power converter
US8564976B2 (en) * 2008-11-19 2013-10-22 General Electric Company Interleaved LLC power converters and method of manufacture thereof
EP2204898A1 (en) 2008-12-31 2010-07-07 STMicroelectronics Srl Switching power supply system comprising cascaded PFC and resonant converters
WO2011001369A2 (en) 2009-07-03 2011-01-06 Koninklijke Philips Electronics N.V. Low cost power supply circuit and method
KR101031217B1 (ko) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 고정 시비율로 동작하는 llc 공진 컨버터를 사용한 2단 방식 절연형 양방향 dc/dc 전력변환기
US8018740B2 (en) 2010-01-07 2011-09-13 Texas Instruments Incorporated LLC soft start by operation mode switching
CN101820222B (zh) 2010-06-18 2012-06-27 陶顺祝 全电压范围llc谐振变换器及控制方法
US9083242B2 (en) 2010-12-17 2015-07-14 General Electric Company Interleaved LLC converter employing active balancing
US9496828B2 (en) 2011-07-22 2016-11-15 Texas Instruments Incorporated System and method for envelope tracking power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置
CN201750352U (zh) * 2010-06-18 2011-02-16 武汉市通益电气有限公司 提高llc谐振电路工作效率的控制电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3kWLLC谐振式模块化通信电源";周伟成;《中国优秀硕士学位论文全文数据库信息科技辑2008年第5期》;20080515;21-26页 *

Also Published As

Publication number Publication date
US8681513B2 (en) 2014-03-25
CN102857095A (zh) 2013-01-02
US20130003430A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
CN102857095B (zh) 采用llc变换器的功率变换器和操作功率变换器的方法
US9190899B2 (en) Power factor correction (PFC) circuit configured to control high pulse load current and inrush current
US6034513A (en) System and method for controlling power factor and power converter employing the same
US8004260B2 (en) Method and apparatus for multi-stage power supplies
US8125805B1 (en) Switch-mode converter operating in a hybrid discontinuous conduction mode (DCM)/continuous conduction mode (CCM) that uses double or more pulses in a switching period
US8184456B1 (en) Adaptive power converter and related circuitry
US9281753B2 (en) LLC converter with dynamic gain transformation for wide input and output range
CN101674016B (zh) 电源供应装置及均流控制方法
JP5104947B2 (ja) スイッチング電源装置
TWI395082B (zh) 用於變頻式電壓調節器的頻率控制電路及方法
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
KR101228797B1 (ko) 전원 공급 장치
WO1996007960A1 (en) A synchronous switching cascade connected offline pfc-pwm combination power converter controller
CN101728953A (zh) 交错控制电源装置、该电源装置的控制电路和控制方法
WO2012030959A2 (en) Switching method for switched-mode power converters employing a bridge topology
JP2003510001A (ja) Llc変換器及びllc変換器を制御する方法
JP2013021861A (ja) 電源装置及びその制御方法
CN103633831B (zh) 控制电路、时间计算单元及控制电路操作方法
JP2000152647A (ja) 系統連系インバータ
CN108696125B (zh) 一种具有占空比偏置的Buck-Boost变换器控制方法
KR101870749B1 (ko) 계통연계형 싱글스테이지 플라이백 인버터의 제어 장치
US20220294332A1 (en) Compensating gain loss for a power converter in dcm and ccm
Kanaan et al. Design, study, modelling and control of a new single-phase high power factor rectifier based on the single-ended primary inductance converter and the Sheppard–Taylor topology
US11095206B2 (en) AC-DC converter with boost front end having flat current and active blanking control
US20230076899A1 (en) Digital nonlinear transformation for voltage-mode control of a power converter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: GENERAL ELECTRIC CO.

Free format text: FORMER OWNER: GENERAL ELECTRIC POWER ELECTRONICS CORPORATION

Effective date: 20130826

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Texas in the United States

Applicant after: Ge

Address before: Texas in the United States

Applicant before: Lineage Power Corp.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: LINEAGE POWER CORP. TO: GENERAL ELECTRIC POWER ELECTRONICS CORPORATION

TA01 Transfer of patent application right

Effective date of registration: 20130826

Address after: American New York

Applicant after: General Electric Co.

Address before: Texas in the United States

Applicant before: Ge

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190729

Address after: Baden, Switzerland

Patentee after: ABB Switzerland Co.,Ltd.

Address before: American New York

Patentee before: General Electric Co.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200817

Address after: Texas, USA

Patentee after: ABB power electronics

Address before: Baden, Switzerland

Patentee before: ABB Switzerland Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20230223

Address after: Swiss Baden

Patentee after: ABB Switzerland Co.,Ltd.

Address before: Texas, USA

Patentee before: ABB power electronics

TR01 Transfer of patent right