CN102856261A - Method for preparing metal, ferroelectric substance, insulator and semiconductor structure - Google Patents
Method for preparing metal, ferroelectric substance, insulator and semiconductor structure Download PDFInfo
- Publication number
- CN102856261A CN102856261A CN2012103301497A CN201210330149A CN102856261A CN 102856261 A CN102856261 A CN 102856261A CN 2012103301497 A CN2012103301497 A CN 2012103301497A CN 201210330149 A CN201210330149 A CN 201210330149A CN 102856261 A CN102856261 A CN 102856261A
- Authority
- CN
- China
- Prior art keywords
- minutes
- bifeo
- film
- ferroelectric
- spin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 title claims description 5
- 239000002184 metal Substances 0.000 title claims description 5
- 239000012212 insulator Substances 0.000 title description 4
- 239000000126 substance Substances 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 8
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 27
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000013313 FeNO test Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 238000005235 decoking Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000007669 thermal treatment Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 4
- 229910000416 bismuth oxide Inorganic materials 0.000 abstract description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 150000003839 salts Chemical class 0.000 abstract description 2
- 239000013589 supplement Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 21
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
一种金属-铁电体-绝缘体-半导体结构的制备方法,它是一种MFIS结构中Bi2SiO5绝缘层的原位生长技术,其特征在于:利用氧化铋易挥发性,通过Bi盐前驱体溶胶在热处理过程中生成Bi2O3,在铁电层BiFeO3生长温度下一方面与Si衬底上的非晶SiO2反应生成绝缘层,同时另一方面补充铁电层生长过程中所缺失的Bi;该方法有七大步骤。本发明构思科学,工艺简单,在微电子新材料技术领域里具有较好的实用价值和广阔的应用前景。
A method for preparing a metal-ferroelectric-insulator-semiconductor structure, which is an in-situ growth technology of a Bi 2 SiO 5 insulating layer in an MFIS structure, characterized in that: the volatility of bismuth oxide is utilized, and the Bi salt precursor The bulk sol generates Bi 2 O 3 during the heat treatment process, and at the growth temperature of the ferroelectric layer BiFeO 3 , it reacts with the amorphous SiO 2 on the Si substrate on the one hand to form an insulating layer, and on the other hand, it supplements the ferroelectric layer during the growth process. Missing Bi; the method has seven major steps. The invention has scientific conception and simple process, and has better practical value and broad application prospect in the technical field of new microelectronic materials.
Description
技术领域 technical field
本发明涉及一种金属-铁电体-绝缘体-半导体结构的制备方法,尤其涉及一种原位生长绝缘层的金属-铁电体-绝缘体-半导体(MFIS)结构的制备方法,它是一种薄膜原位生长技术以及利用该技术制备一种用于非易失铁电储存器的铁电金属-铁电体-绝缘体-半导体结构,属于微电子新材料技术领域。The invention relates to a method for preparing a metal-ferroelectric-insulator-semiconductor structure, in particular to a method for preparing a metal-ferroelectric-insulator-semiconductor (MFIS) structure in which an insulating layer is grown in situ, which is a The film in-situ growth technology and the use of the technology to prepare a ferroelectric metal-ferroelectric-insulator-semiconductor structure for non-volatile ferroelectric storage devices belong to the technical field of new microelectronic materials.
背景技术 Background technique
铁电材料具有自发极化、存在两种极化状态,因此可用于信息存储领域。作为一种非易失存储器,其存储的信息不会因为断电而丢失,铁电存储器(Ferroelectric RandomAccess Memory,FeRAM)有着很好的应用前景。目前商用FeRAM主要由一个晶体管和一个铁电电容器构成(1T-1C),多用于智能卡、移动通信和个人用数据存储器,如:U盘、personal digital assistant(PDA)等。但是FeRAM数据存储密度低,数据的读出操做具有破坏性,为改进这些缺点,在FeRAM基础上发展了场效应晶体管FeRAM(FETFeRAM)。改进后的FETFeRAM具有存储单元小、低能耗、非破坏性读数据操纵等优点,但是这种结构中存在铁电薄膜与Si基片在界面处有互扩散、两者的热应力不匹配(Si的热膨胀系数一般小于常见氧化物)等不利因素,降低了FETFeRAM的性能。为克服以上缺点,在铁电层与半导体Si层之间插入一层绝缘材料,构成金属-铁电体-绝缘体-半导体结构(Metal Ferroelectric Insulator Semiconductor,MFIS)。MFIS结构中绝缘层作用为隔离铁电层与Si衬底,避免二者在界面处反应。因此要求绝缘材料具有好的热稳定性、低漏电流、较高的介电常数、以及能与Si形成良好的界面。常用于MFIS结构的绝缘材料有:Y2O3,HfO2,ZrO2,Al2O3,SrTiO3等。构成MFIS结构的铁电材料有:(Bi,La)4Ti3O12,SrBi2Ta2O9,SrBi2Nb2O9等Bi层状钙钛矿结构,因为它们具有良好的铁电性能、且耐疲劳性好、保持力长,在FETFeRAM领域十分有潜力。Ferroelectric materials have spontaneous polarization and two polarization states, so they can be used in the field of information storage. As a non-volatile memory, the information stored in it will not be lost due to power failure. Ferroelectric Random Access Memory (FeRAM) has a good application prospect. At present, commercial FeRAM is mainly composed of a transistor and a ferroelectric capacitor (1T-1C), and is mostly used in smart cards, mobile communications and personal data storage, such as: U disk, personal digital assistant (PDA), etc. However, the data storage density of FeRAM is low, and the data readout operation is destructive. In order to improve these shortcomings, a field effect transistor FeRAM (FETFeRAM) was developed on the basis of FeRAM. The improved FET FeRAM has the advantages of small memory cells, low energy consumption, and non-destructive read data manipulation. However, in this structure, there is interdiffusion between the ferroelectric film and the Si substrate at the interface, and the thermal stress of the two does not match (Si The thermal expansion coefficient is generally smaller than that of common oxides) and other unfavorable factors, which reduce the performance of FETFeRAM. In order to overcome the above shortcomings, a layer of insulating material is inserted between the ferroelectric layer and the semiconductor Si layer to form a metal-ferroelectric-insulator-semiconductor structure (Metal Ferroelectric Insulator Semiconductor, MFIS). In the MFIS structure, the insulating layer is used to isolate the ferroelectric layer from the Si substrate, so as to avoid the reaction between the two at the interface. Therefore, it is required that the insulating material has good thermal stability, low leakage current, high dielectric constant, and can form a good interface with Si. Insulating materials commonly used in MFIS structures include: Y 2 O 3 , HfO 2 , ZrO 2 , Al 2 O 3 , SrTiO 3 and so on. The ferroelectric materials that make up the MFIS structure are: (Bi,La) 4 Ti 3 O 12 , SrBi 2 Ta 2 O 9 , SrBi 2 Nb 2 O 9 and other Bi layered perovskite structures, because they have good ferroelectric properties , and has good fatigue resistance and long retention, and has great potential in the field of FET FeRAM.
BiFeO3作为近几年兴起的一种具有优良铁电性能的无铅铁电材料,其薄膜的剩余极化强度(Pr)高达~100μC/cm2,有望替代传统铁电材料Pb(ZixTi1-x)O3。目前,将BiFeO3应用到FETFeRAM领域的研究还比较少,已有报道的结构有:BiFeO3/SrTiO3/GaN,BiFeO3/ZrO2/Si和BiFeO3/Bi2Ti2O7/Si。电容-电压(C-V)曲线是MFIS结构重要的电性能表征,由于MFIS结构中铁电材料的极化翻转引起C-V曲线出现明显的滞回特征,常用“记忆窗口”(memorywindow,Vm)来评价MFIS结构的性能;Vm的大小为来回两条C-V曲线在不重合处的宽度,理论上记忆窗口等于2Vc(Vc:铁电薄膜矫顽电压)。但目前报导的这些MFIS记忆窗口值离理论值差距较大,最主要的原因来自于半导体Si或是金属电极中的电荷注入。为此提高铁电体/绝缘层和绝缘层/Si两个界面结合是降低Si电荷注入提高MFIS性能的有效途径。寻找合适的中间绝缘层材料是实现MFIS结构良好性能的关键。考虑到Bi2SiO5为Bi-O和Si-O层状结构,介电常数在30左右,具有好的热稳定性,漏电流小。更重要的是,Bi2SiO5(100)面与Si(100)面失配度为~0.5%,可与Si形成良好的界面;且研究表明,在Bi2SiO5/Si界面处电荷的注入和捕获很少,因此选用Bi2SiO5作为基于BiFeO3铁电薄膜的MFIS结构的绝缘层,构建Pt/BiFeO3/Bi2SiO5/Si铁电存储器。As a lead-free ferroelectric material with excellent ferroelectric properties, BiFeO 3 has emerged in recent years. The remanent polarization (P r ) of its thin film is as high as ~100μC/cm 2 , which is expected to replace the traditional ferroelectric material Pb(Zi x Ti 1-x )O 3 . At present, there are relatively few studies on the application of BiFeO 3 to FETFeRAM. The reported structures include: BiFeO 3 /SrTiO 3 /GaN, BiFeO 3 /ZrO 2 /Si and BiFeO 3 /Bi 2 Ti 2 O 7 /Si. The capacitance-voltage (CV) curve is an important characterization of the electrical properties of the MFIS structure. Since the polarization reversal of the ferroelectric material in the MFIS structure causes the CV curve to have obvious hysteresis characteristics, the "memory window" (memory window, V m ) is often used to evaluate MFIS The performance of the structure; the size of V m is the width of the two back and forth CV curves where they do not overlap, and the theoretical memory window is equal to 2V c (V c : coercive voltage of ferroelectric film). However, these MFIS memory window values reported so far are far from the theoretical values, and the main reason comes from the charge injection in semiconductor Si or metal electrodes. Therefore, improving the interface combination of ferroelectric/insulating layer and insulating layer/Si is an effective way to reduce Si charge injection and improve the performance of MFIS. Finding a suitable material for the intermediate insulating layer is the key to realize the good performance of the MFIS structure. Considering that Bi 2 SiO 5 has a layered structure of Bi-O and Si-O, its dielectric constant is around 30, it has good thermal stability and low leakage current. More importantly, the mismatch between the Bi 2 SiO 5 (100) plane and the Si (100) plane is ~0.5%, which can form a good interface with Si; and studies have shown that the charge at the Bi 2 SiO 5 /Si interface The injection and capture are very few, so Bi 2 SiO 5 is selected as the insulating layer of the MFIS structure based on the BiFeO 3 ferroelectric film to construct the Pt/BiFeO 3 /Bi 2 SiO 5 /Si ferroelectric memory.
发明内容 Contents of the invention
本发明提供了一种金属-铁电体-绝缘体-半导体结构的制备方法,它是一种MFIS结构中Bi2SiO5绝缘层的原位生长技术,其特征在于:利用氧化铋易挥发性,通过Bi盐前驱体溶胶在热处理过程中生成Bi2O3,在铁电层BiFeO3生长温度下一方面与Si衬底上的非晶SiO2反应生成绝缘层,同时另一方面补充铁电层生长过程中所缺失的Bi。The invention provides a method for preparing a metal-ferroelectric-insulator-semiconductor structure, which is an in-situ growth technology of a Bi 2 SiO 5 insulating layer in an MFIS structure, and is characterized in that: the volatility of bismuth oxide is utilized, Bi 2 O 3 is generated during heat treatment through the Bi salt precursor sol, and at the growth temperature of the ferroelectric layer BiFeO 3 , on the one hand, it reacts with amorphous SiO 2 on the Si substrate to form an insulating layer, and on the other hand, it supplements the ferroelectric layer. Bi that is missing during growth.
本发明另一方面是构建了一种基于BiFeO3铁电薄膜的MFIS结构,其特征为生长在单晶Si上的Pt/BiFeO3/Bi2SiO5多层膜,具有较优异的性能,记忆窗口可达3.5伏。Another aspect of the present invention is to build a MFIS structure based on BiFeO 3 ferroelectric thin film, which is characterized by Pt/BiFeO 3 /Bi 2 SiO 5 multilayer film grown on single crystal Si, which has excellent performance, memory window up to 3.5 volts.
本发明一种金属-铁电体-绝缘体-半导体结构的制备方法,该方法具体步骤如下:A method for preparing a metal-ferroelectric-insulator-semiconductor structure of the present invention, the specific steps of the method are as follows:
步骤一:Bi氧化物前驱体溶胶由硝酸铋(Bi(NO3)3·6H2O)与柠檬酸按摩尔比1:1.5溶于乙二醇独甲醚中,所得溶液浓度为0.15mol/L。Step 1: The Bi oxide precursor sol is dissolved in ethylene glycol monomethyl ether by bismuth nitrate (Bi(NO 3 ) 3 6H 2 O) and citric acid at a molar ratio of 1:1.5, and the concentration of the obtained solution is 0.15mol/ L.
步骤二:BiFeO3溶胶前驱体溶液由硝酸铋(Bi(NO3)3·6H2O),硝酸铁((FeNO3)3·6H2O)与柠檬酸按阳离子摩尔比1:1.5溶于乙二醇独甲醚中,所得溶液浓度为0.2mol/L,搅拌均匀后静置24小时。Step 2: The BiFeO 3 sol precursor solution is composed of bismuth nitrate (Bi(NO 3 ) 3 6H 2 O), iron nitrate ((FeNO 3 ) 3 6H 2 O) and citric acid in a cation molar ratio of 1:1.5 In ethylene glycol monomethyl ether, the concentration of the obtained solution was 0.2 mol/L, stirred evenly and then left to stand for 24 hours.
步骤三:Si基片依次采用去离子水、无水乙醇和去离子水在超声环境中清洗10分钟,之后置于快速热处理炉中迅速升温至500°C保温5分钟后冷却至室温。Step 3: The Si substrate is cleaned with deionized water, absolute ethanol and deionized water in an ultrasonic environment for 10 minutes in sequence, and then placed in a rapid heat treatment furnace to rapidly raise the temperature to 500°C for 5 minutes and then cool to room temperature.
步骤四:将处理后的Si基片置于匀胶机上,旋涂一层Bi氧化物前驱体溶胶,转速3000rpm,旋涂时间30秒,成膜后将所成膜在80°C下烘干半小时,放入快速热处理炉,迅速升温至200°C保温5分钟,然后再快速升温至400°C保温5分钟,降温后得到由一层薄Bi2O3覆盖的Si基片。Step 4: Place the treated Si substrate on a homogenizer, spin-coat a layer of Bi oxide precursor sol, rotate at 3000 rpm, and spin-coat for 30 seconds. After film formation, dry the film at 80°C For half an hour, put it into a rapid heat treatment furnace, rapidly raise the temperature to 200°C for 5 minutes, then rapidly raise the temperature to 400°C for 5 minutes, and obtain a Si substrate covered by a thin layer of Bi 2 O 3 after cooling down.
步骤五:在Bi2O3覆盖的基片上旋涂BiFeO3溶胶,转速4000rpm,旋涂时间30秒,成膜,将所成湿膜在80°C下烘干半小时,放入快速热处理炉进行有机物分解排焦热处理:迅速升温至200°C保温5分钟,然后再快速升温至400°C保温5分钟,降温后重复以上工艺,通过控制旋涂次数,得到预定厚度的无定形薄膜。Step 5: Spin-coat BiFeO 3 sol on the substrate covered with Bi 2 O 3 at a speed of 4000rpm and spin-coat for 30 seconds to form a film. Dry the formed wet film at 80°C for half an hour and put it in a rapid heat treatment furnace Carry out thermal treatment of organic matter decomposition and decoking: quickly raise the temperature to 200°C and keep it for 5 minutes, then quickly raise the temperature to 400°C and keep it for 5 minutes, repeat the above process after cooling down, and obtain an amorphous film with a predetermined thickness by controlling the number of times of spin coating.
步骤六:最后一次旋涂的BiFeO3薄膜在400°C保温5分钟后迅速升温至结晶温度625°C保温5分钟,使得BiFeO3薄膜结晶的同时,Bi2O3与Si表面自然氧化形成的无定型SiO2反应原位生成Bi2SiO5,得到BiFeO3/Bi2SiO5/Si结构。Step 6: The last spin-coated BiFeO 3 film is heated rapidly to the crystallization temperature of 625°C for 5 minutes after being held at 400°C for 5 minutes, so that the BiFeO 3 film is crystallized while the Bi 2 O 3 and Si surface are naturally oxidized. Amorphous SiO 2 reacts to generate Bi 2 SiO 5 in situ, and a BiFeO 3 /Bi 2 SiO 5 /Si structure is obtained.
步骤七:溅射电极材料——金属铂电极104,即构成基于BiFeO3铁电薄膜的如图1所示的MFIS结构。Step 7: sputtering the electrode material—platinum metal electrode 104 , that is to form the MFIS structure based on BiFeO 3 ferroelectric thin film as shown in FIG. 1 .
优点及功效:本发明与现有技术比较,其主要优点是:工艺步骤简便,充分利用Bi系化合物特点,同时生成MFIS结构中的绝缘层和铁电层,所得MFIS结构性能优异,主要技术指标记忆窗口值在电场强度35kV/mm时可达3.5V。Advantages and effects: Compared with the prior art, the present invention has the main advantages of simple process steps, making full use of the characteristics of Bi-based compounds, and simultaneously generating the insulating layer and ferroelectric layer in the MFIS structure. The resulting MFIS structure has excellent structural performance, and the main technical indicators The memory window value can reach 3.5V when the electric field strength is 35kV/mm.
附图说明: Description of drawings:
图1:本发明MFIS结构示意图Figure 1: Schematic diagram of the structure of the MFIS of the present invention
101—半导体Si衬底,102—原位生长的中间绝缘层,103—多铁性薄膜,104—金属铂电极101—semiconductor Si substrate, 102—interlayer insulating layer grown in situ, 103—multiferroic film, 104—metal platinum electrode
图2:本发明MFIS结构中多铁性(BFO)/绝缘体(BSO)/半导体Si界面处高分辨透射电子显微镜(HRTEM)图Figure 2: High-resolution transmission electron microscope (HRTEM) image at the multiferroic (BFO)/insulator (BSO)/semiconductor Si interface in the MFIS structure of the present invention
图3:本发明MFIS结构扫描电子显微镜(SEM)图及紫色线所示区域内沿线扫描的X射线能谱(EDX)Figure 3: Scanning electron microscope (SEM) image of the MFIS structure of the present invention and the X-ray energy spectrum (EDX) scanned along the line in the area indicated by the purple line
图4:不同电压条件下本发明MFIS结构的电容-电压(C-V)曲线Figure 4: Capacitance-voltage (C-V) curves of the MFIS structure of the present invention under different voltage conditions
图5:为本发明流程框图。Fig. 5: is the flow chart of the present invention.
具体实施方式: Detailed ways:
见图5,本发明一种金属-铁电体-绝缘体-半导体(MFIS)结构的制备方法,该方法具体步骤如下:See Figure 5, a method for preparing a metal-ferroelectric-insulator-semiconductor (MFIS) structure according to the present invention. The specific steps of the method are as follows:
步骤一:Bi氧化物前驱体溶胶由硝酸铋(Bi(NO3)3·6H2O)与柠檬酸按摩尔比1:1.5溶于乙二醇独甲醚中,所得溶液浓度为0.15mol/L。Step 1: The Bi oxide precursor sol is dissolved in ethylene glycol monomethyl ether by bismuth nitrate (Bi(NO 3 ) 3 6H 2 O) and citric acid at a molar ratio of 1:1.5, and the concentration of the obtained solution is 0.15mol/ L.
步骤二:BiFeO3溶胶前驱体溶液由硝酸铋(Bi(NO3)3·6H2O),硝酸铁((FeNO3)3·6H2O)与柠檬酸按阳离子摩尔比1:1.5溶于乙二醇独甲醚中,所得溶液浓度为0.2mol/L,搅拌均匀后静置24小时。Step 2: The BiFeO 3 sol precursor solution is composed of bismuth nitrate (Bi(NO 3 ) 3 6H 2 O), iron nitrate ((FeNO 3 ) 3 6H 2 O) and citric acid in a cation molar ratio of 1:1.5 In ethylene glycol monomethyl ether, the concentration of the obtained solution was 0.2 mol/L, stirred evenly and then left to stand for 24 hours.
步骤三:Si基片依次采用去离子水、无水乙醇和去离子水在超声环境中清洗10分钟,之后置于快速热处理炉中迅速升温至500°C保温5分钟后冷却至室温。Step 3: The Si substrate is cleaned with deionized water, absolute ethanol and deionized water in an ultrasonic environment for 10 minutes in sequence, and then placed in a rapid heat treatment furnace to rapidly raise the temperature to 500°C for 5 minutes and then cool to room temperature.
步骤四:将处理后的Si基片置于匀胶机上,旋涂一层Bi氧化物前驱体溶胶,转速3000rpm,旋涂时间30秒,成膜后将所成膜在80°C下烘干半小时,放入快速热处理炉,迅速升温至200°C保温5分钟,然后再快速升温至400°C保温5分钟,降温后得到由一层薄Bi2O3覆盖的Si基片;Step 4: Place the treated Si substrate on a homogenizer, spin-coat a layer of Bi oxide precursor sol, rotate at 3000 rpm, and spin-coat for 30 seconds. After film formation, dry the film at 80°C For half an hour, put into a rapid heat treatment furnace, rapidly heat up to 200° C. for 5 minutes, then rapidly heat up to 400° C. for 5 minutes, and obtain a Si substrate covered by a thin layer of Bi 2 O 3 after cooling down;
步骤五:在Bi2O3覆盖的基片上旋涂BiFeO3溶胶,转速4000rpm,旋涂时间30秒,成膜,将所成湿膜在80°C下烘干半小时,放入快速热处理炉进行有机物分解排焦热处理:迅速升温至200°C保温5分钟,然后再快速升温至400°C保温5分钟,降温后重复以上工艺,通过控制旋涂次数,得到预定厚度的无定形薄膜。Step 5: Spin-coat BiFeO 3 sol on the substrate covered with Bi 2 O 3 at a speed of 4000rpm and spin-coat for 30 seconds to form a film. Dry the formed wet film at 80°C for half an hour and put it in a rapid heat treatment furnace Carry out thermal treatment of organic matter decomposition and decoking: quickly raise the temperature to 200°C and keep it for 5 minutes, then quickly raise the temperature to 400°C and keep it for 5 minutes, repeat the above process after cooling down, and obtain an amorphous film with a predetermined thickness by controlling the number of times of spin coating.
步骤六:最后一次旋涂的BiFeO3薄膜在400°C保温5分钟后迅速升温至结晶温度625°C保温5分钟,使得BiFeO3薄膜结晶的同时,Bi2O3与Si表面自然氧化形成的无定型SiO2反应原位生成Bi2SiO5,得到BiFeO3/Bi2SiO5/Si结构。Step 6: The last spin-coated BiFeO 3 film is heated rapidly to the crystallization temperature of 625°C for 5 minutes after being held at 400°C for 5 minutes, so that the BiFeO 3 film is crystallized while the Bi 2 O 3 and Si surface are naturally oxidized. Amorphous SiO 2 reacts to generate Bi 2 SiO 5 in situ, and a BiFeO 3 /Bi 2 SiO 5 /Si structure is obtained.
步骤七:溅射电极材料——金属铂电极104,即构成基于BiFeO3铁电薄膜的如图1所示的MFIS结构。Step 7: sputtering the electrode material—platinum metal electrode 104 , that is to form the MFIS structure based on BiFeO 3 ferroelectric thin film as shown in FIG. 1 .
在上电极与下电极间施加从负电压到正电压,再从正电压降低到负电压的变换电场强度,测得该MFIS结构的电容变化曲线如图4所示。当最高电场强度为25kV/mm时,记忆窗口值达到2伏。升高电场强度至35kV/mm时,记忆窗口值增大至3.5伏。A changing electric field strength is applied between the upper electrode and the lower electrode from negative voltage to positive voltage, and then from positive voltage to negative voltage. The measured capacitance change curve of the MFIS structure is shown in Figure 4. When the highest electric field strength is 25kV/mm, the memory window value reaches 2 volts. When the electric field strength is increased to 35kV/mm, the memory window value increases to 3.5 volts.
图2是本发明MFIS结构中多铁性(BFO)/绝缘体(BSO)/半导体Si界面处高分辨透射电子显微镜(HRTEM)图;图3是本发明MFIS结构扫描电子显微镜(SEM)图及紫色线所示区域内沿线扫描的X射线能谱(EDX);图4是不同电压条件下本发明MFIS结构的电容-电压(C-V)曲线示意图。Fig. 2 is a high-resolution transmission electron microscope (HRTEM) picture at the interface of multiferroic (BFO)/insulator (BSO)/semiconductor Si in the MFIS structure of the present invention; Fig. 3 is a scanning electron microscope (SEM) picture of the MFIS structure of the present invention and purple The X-ray energy spectrum (EDX) scanned along the line in the area indicated by the line; Fig. 4 is a schematic diagram of the capacitance-voltage (C-V) curve of the MFIS structure of the present invention under different voltage conditions.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210330149.7A CN102856261B (en) | 2012-09-07 | 2012-09-07 | Method for preparing metal, ferroelectric substance, insulator and semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210330149.7A CN102856261B (en) | 2012-09-07 | 2012-09-07 | Method for preparing metal, ferroelectric substance, insulator and semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102856261A true CN102856261A (en) | 2013-01-02 |
CN102856261B CN102856261B (en) | 2014-08-20 |
Family
ID=47402716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210330149.7A Expired - Fee Related CN102856261B (en) | 2012-09-07 | 2012-09-07 | Method for preparing metal, ferroelectric substance, insulator and semiconductor structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102856261B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103771532A (en) * | 2014-03-04 | 2014-05-07 | 西北大学 | Preparation method of BiFeO3 material, BiFeO3/TiO2 composite film and application of the composite film |
CN103839946A (en) * | 2014-03-10 | 2014-06-04 | 中国科学院半导体研究所 | MFIS structure based on tetragonal phase bismuth ferrite and preparation method thereof |
CN105788864A (en) * | 2016-02-29 | 2016-07-20 | 湘潭大学 | Method for improving negative capacitance of PZT ferroelectric thin film |
CN110451810A (en) * | 2019-09-20 | 2019-11-15 | 陕西科技大学 | A kind of CuO doping Bi2SiO5The preparation method of polycrystalline glass |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224537A1 (en) * | 2002-05-28 | 2003-12-04 | National Chiao Tung University | Ferroelectric thin film processing for ferroelectric field-effect transistor |
CN101050120A (en) * | 2007-05-11 | 2007-10-10 | 清华大学 | Method for preparing bismuth ferrite based multifunctioanl oxide ceramic material |
-
2012
- 2012-09-07 CN CN201210330149.7A patent/CN102856261B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224537A1 (en) * | 2002-05-28 | 2003-12-04 | National Chiao Tung University | Ferroelectric thin film processing for ferroelectric field-effect transistor |
CN101050120A (en) * | 2007-05-11 | 2007-10-10 | 清华大学 | Method for preparing bismuth ferrite based multifunctioanl oxide ceramic material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103771532A (en) * | 2014-03-04 | 2014-05-07 | 西北大学 | Preparation method of BiFeO3 material, BiFeO3/TiO2 composite film and application of the composite film |
CN103771532B (en) * | 2014-03-04 | 2016-02-10 | 西北大学 | BiFeO 3the preparation method of material, BiFeO 3/ TiO 2the application of laminated film and this laminated film |
CN103839946A (en) * | 2014-03-10 | 2014-06-04 | 中国科学院半导体研究所 | MFIS structure based on tetragonal phase bismuth ferrite and preparation method thereof |
CN103839946B (en) * | 2014-03-10 | 2016-09-14 | 中国科学院半导体研究所 | MFIS structure based on Tetragonal bismuth ferrite and preparation method |
CN105788864A (en) * | 2016-02-29 | 2016-07-20 | 湘潭大学 | Method for improving negative capacitance of PZT ferroelectric thin film |
CN105788864B (en) * | 2016-02-29 | 2017-12-08 | 湘潭大学 | A kind of method of raising PZT ferroelectric thin film negative capacitances |
CN110451810A (en) * | 2019-09-20 | 2019-11-15 | 陕西科技大学 | A kind of CuO doping Bi2SiO5The preparation method of polycrystalline glass |
CN110451810B (en) * | 2019-09-20 | 2021-08-03 | 陕西科技大学 | A kind of preparation method of CuO doped Bi2SiO5 polycrystalline glass |
Also Published As
Publication number | Publication date |
---|---|
CN102856261B (en) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Thickness‐dependent dielectric, ferroelectric, and magnetodielectric properties of BiFeO3 thin films derived by chemical solution deposition | |
CN102222672B (en) | A bismuth ferrite-based thin film laminated structure capacitor and its preparation method | |
Chen et al. | Ferroelectricity of low thermal-budget HfAlO x for devices with metal–ferroelectric–insulator–semiconductor structure | |
CN102856261B (en) | Method for preparing metal, ferroelectric substance, insulator and semiconductor structure | |
CN110047916B (en) | Silicon-based charge trapping memory device and preparation method thereof | |
Yi et al. | Outstanding Ferroelectricity in Sol–Gel-Derived Polycrystalline BiFeO3 Films within a Wide Thickness Range | |
CN100424878C (en) | Ferroelectric film capacitor for ferroelectric memory and preparation method thereof | |
Tang et al. | Impact of HfTaO buffer layer on data retention characteristics of ferroelectric-gate FET for nonvolatile memory applications | |
Li et al. | In-Depth Investigation of Seed Layer Engineering in Ferroelectric Hf 0.5 Zr 0.5 O 2 Film: Wakeup-Free Achievement and Reliability Mechanisms | |
Singh et al. | Lead-zirconate-titanate based metal/ferroelectric/high-K/semiconductor (M/Fe/High-K/S) gate stack for non-volatile memory applications | |
Zhang et al. | Improved electric behaviors of the Pt/Bi 1− x La x Fe 0.92 Mn 0.08 O 3/n+-Si heterostructure for nonvolatile ferroelectric random-access memory | |
Debnath et al. | Sol–gel derived BST (Ba x Sr 1− x TiO 3) thin film ferroelectrics for non-volatile memory application with metal–ferroelectric–semiconductor (MFS) structure | |
Zhang et al. | Effect of Y2O3 interlayer on the electric properties of Y-doped HfO2 film deposited by chemical solution deposition | |
Debnath et al. | Fabrication and characterization of metal-ferroelectric-semiconductor non-volatile memory using BaTiO 3 film prepared through sol–gel process | |
Zhang et al. | Effect of BFO layer position on energy storage properties of STO/BFO thin films | |
CN115621259A (en) | A method for improving the performance of ferroelectric devices by using hard electrodes under low temperature annealing conditions | |
CN103839946B (en) | MFIS structure based on Tetragonal bismuth ferrite and preparation method | |
Li et al. | Investigation of electric displacement characteristics in sol–gel derived BaTiO3 polycrystalline films | |
Debnath et al. | Improvement in ferroelectric properties of BaTiO3 film by mn/sr doping for non-volatile memory applications | |
Debnath et al. | Investigations on BaMn x Ti 1-x O 3 ferroelectric film based MFS structure for non-volatile memory application | |
Zhou et al. | Characteristics of metal-Pb (Zr 0.53 Ti 0.47) O 3-TiO 2-Si capacitor for nonvolatile memory applications | |
Geng et al. | Influence of precursor solution concentration on the microstructure, leakage current and dielectric tunability of Zn-doped Na0. 5Bi0. 5TiO3 thin films prepared by metal organic decomposition | |
Wang et al. | CMOS-compatible Hf 0.5 Zr 0.5 O 2-based ferroelectric capacitors for negative capacitance and non-volatile applications | |
Singh et al. | Lanthanum-doped BiFeO3/ZrO2 gate stack for ferroelectric field effect transistors | |
Hao et al. | Structure and dielectric tunability of (Pb0. 5Ba0. 5) ZrO3 thin films derived on (Sr0. 95La0. 05) TiO3 buffer-layered substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140820 |