CN102841334A - 一种获取定位点的方法和装置 - Google Patents

一种获取定位点的方法和装置 Download PDF

Info

Publication number
CN102841334A
CN102841334A CN2012103055295A CN201210305529A CN102841334A CN 102841334 A CN102841334 A CN 102841334A CN 2012103055295 A CN2012103055295 A CN 2012103055295A CN 201210305529 A CN201210305529 A CN 201210305529A CN 102841334 A CN102841334 A CN 102841334A
Authority
CN
China
Prior art keywords
anchor point
kalman filter
vector value
current
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103055295A
Other languages
English (en)
Inventor
徐连明
邓中亮
陈沛
刘雯
高鹏
王文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN2012103055295A priority Critical patent/CN102841334A/zh
Publication of CN102841334A publication Critical patent/CN102841334A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

本发明公开了一种获取定位点的方法和装置,属于定位技术领域。所述方法包括:获取用户的当前定位点、行走步长和行走角度;判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;如果没有存在,则将当前定位点、行走步长和行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;根据第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。所述装置包括:获取模块、判断模块、第一处理模块和计算模块。本发明可以消除误差的影响,可以获得比较精确的定位效果,提高了定位精度。

Description

一种获取定位点的方法和装置
技术领域
本发明涉及定位技术领域,特别涉及一种获取定位点的方法和装置。
背景技术
随着科学技术的发展,定位技术的种类也越来越多,如GPS(GlobalPositioning System,全球卫星定位系统)定位技术、CELL ID(小区识码)基站定位技术、WIFI(Wireless Fidelity,无线保真)定位技术、基于行人行迹推算算法PDR(Pedestrian Dead Reckoning)定位技术等。
现有的定位技术中,GPS定位技术是将高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。CELL ID定位技术是根据移动台(如手机)所处的蜂窝小区的CELL ID来确定用户的位置,具体地,移动台在当前蜂窝小区注册后,在网络中就会有相对应的CELL ID,当移动台收到相应的基站信号后,就可以解析出CELL ID,根据此CELL ID确定用户的位置。WIFI定位技术是检测用户设备周围的WIFI热点的信号强弱,然后将检测到的WIFI热点的信号强弱信息与数据库中预存的WIFI热点的信号强弱信息匹配得到用户的位置。基于行人行迹推算算法PDR定位技术是通过重力加速度计和电子罗盘获取用户在行走时的行走步数和行走角度,根据预设或通过步长分析模型得出的行走步长,以及行走步数和行走角度,得出用户行走的路线。
然而,在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
无论是GPS定位技术、CELL ID定位技术还是WIFI定位技术,信号都是以电磁波的形式传播的,而电磁波的传播会受到温度、湿度及地磁的影响,使得在实际应用中,会因为受到温度、湿度及地磁的影响而无法获得比较精确的定位效果,定位精度低。基于行人行迹推算算法PDR定位技术中的三个基本要素:行走步数、行走步长和行走角度,需要通过如重力加速度器,电子罗盘等设备获取数据,而如今这些设备在获取数据时都存在一定的误差,无法获得比较精确的定位效果,定位精度低。
发明内容
为了提高定位精度,本发明实施例提供了一种获取定位点的方法和装置。所述技术方案如下:
一种获取定位点的方法,所述方法包括:
获取用户的当前定位点、行走步长和行走角度;
判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;
如果没有存在,则将所述当前定位点、所述行走步长和所述行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;
根据所述第一状态向量值和所述第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
一种获取定位点的装置,所述装置包括:
获取模块,用于获取用户的当前定位点、行走步长和行走角度;
判断模块,用于判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;
第一处理模块,用于当所述判断模块的判断结果是没有存在时,将所述当前定位点、所述行走步长和所述行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;
计算模块,用于根据所述第一状态向量值和所述第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
本发明实施例提供的技术方案的有益效果是:
通过将获取的用户的当前定位点、行走步长和行走角度作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算即可得到当前有效定位点,不会受到温度、湿度及地磁的影响,且对重力加速度器,电子罗盘等设备获取数据的数据进行了迭代计算,可以消除误差的影响,可以获得比较精确的定位效果,提高了定位精度。
附图说明
图1是本发明实施例1提供的一种获取定位点的方法流程图;
图2是本发明实施例2提供的一种获取定位点的方法流程图;
图3是本发明实施例2提供的一种通过数字罗盘测得的用户的行走角度的示意图;
图4是本发明实施例3提供的一种获取定位点的装置结构示意图;
图5是本发明实施例3提供的另一种获取定位点的装置结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
参见图1,本发明实施例提供了一种获取定位点的方法,包括:
101:获取用户的当前定位点、行走步长和行走角度。
102:判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值。
103:如果没有存在,则将当前定位点、行走步长和行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值。
104:根据第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
进一步地,获取用户的当前定位点、行走步长和行走角度,包括:
利用全球卫星定位系统定位技术、小区识码基站定位技术、无线保真定位技术、或基于行人行迹推算算法定位技术,获取用户的当前定位点;
利用基于行人行迹推算算法定位技术,获取用户的行走步长和行走角度。
进一步地,预设的定位点卡尔曼滤波器如下:
定位点卡尔曼滤波器的状态向量X为:
Figure BDA00002052092500031
定位点卡尔曼滤波器的观测向量Z为:
Figure BDA00002052092500032
定位点卡尔曼滤波器的状态方程为:
Figure BDA00002052092500033
定位点卡尔曼滤波器的状态转移矩阵A为:
Figure BDA00002052092500041
定位点卡尔曼滤波器的观测矩阵H为:
H = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ;
定位点卡尔曼滤波器的状态协方差矩阵Q为:
Q = 0.2 0 0 0 0 0.2 0 0 0 0 0.01 0 0 0 0 25 ;
定位点卡尔曼滤波器的测量协方差矩阵R为:
R = 4 0 0 0 0 4 0 0 0 0 0.01 0 0 0 0 25 ;
定位点卡尔曼滤波器的控制矩阵B=0;
其中,Px、Py分别为当前定位点的X坐标、Y坐标;S为行走步长;
Figure BDA00002052092500045
为行走角度。
进一步地,判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值之后,该方法还包括:
如果存在有,则将利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将当前定位点、行走步长和行走角度,作为第一观测向量值;然后执行根据第一状态向量值和第一观测向量值的步骤。
本发明实施例所述的获取定位点的方法,通过将获取的用户的当前定位点、行走步长和行走角度作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算即可得到当前有效定位点,不会受到温度、湿度及地磁的影响,且对重力加速度器,电子罗盘等设备获取数据的数据进行了迭代计算,可以消除误差的影响,可以获得比较精确的定位效果,提高了定位精度。
本发明实施例所述的获取定位点的方法,可以利用GPS定位技术、CELL ID基站定位技术、或WIFI定位技术等获取用户的当前定位点,下面以利用WIFI定位技术获取用户的当前定位点为例进行进一步地说明。
实施例2
参见图2,本发明实施例提供了一种获取定位点的方法,包括:
201:利用WIFI定位技术获取用户的当前定位点,利用基于行人行迹推算算法定位技术获取用户的行走步长和行走角度。
202:判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值,如果存在有,则执行203;否则,执行204。
具体地,卡尔曼滤波器是一种递归的估计,只要获知上一时刻状态的估计值以及当前状态的观测值就可以计算出当前状态的估计值,卡尔曼滤波器的五个基本公式如下:
X(K|K-1)=AX(K-1|K-1)+BU(K)                  (1)
P(K|K-1)=AP(K-1|K-1)A'+Q                    (2)
X(K|K)=X(K|K-1)+Kg(K)(Z(K)-HX(K|K-1))       (3)
Kg ( K ) = P ( K | K - 1 ) H ′ HP ( K | K - 1 ) H ′ + R - - - ( 4 )
P(K|K)=(I-Kg(K)H)P(K|K-1)                   (5)
(1)、(2)、(3)、(4)和(5)各个式中,X(K|K-1)是当前状态的预测值;X(K-1|K-1)是上一时刻状态的最优化估计值;U(K)为当前状态的控制量,如果没有控制量,它可以为0;A表示状态转移矩阵,A'表示A的转置矩阵;B表示控制矩阵;P(K|K-1)是X(K|K-1)对应的协方差矩阵;P(K-1|K-1)是X(K-1|K-1)对应的协方差矩阵;H表示观测矩阵;Q是状态协方差矩阵;R是测量协方差矩阵;X(K|K)是当前状态(K)的最优化估计值;Kg为卡尔曼增益;P(K|K)是X(K|K)对应的协方差矩阵;Z表示观测向量。
参见图3,根据基于行人行迹推算算法定位技术,D点为当前定位点,F点为基于行人行迹推算算法得到的定位点,F点的坐标可根据D点的坐标、行走步长S和行走角度值β来确定即F(x,y)=A(x+S*cos(β),y+S*sin(β))(6)。
根据F点的坐标公式设置定位点卡尔曼滤波器如下:
定位点卡尔曼滤波器的状态向量X为:
Figure BDA00002052092500052
定位点卡尔曼滤波器的观测向量Z为:
Figure BDA00002052092500053
式(7)、(8)中,Px、Py分别为当前定位点的X坐标和Y坐标;S为行走步长,该行走步长可为固定值,也可为通过PDR步长模型得到的动态值;
Figure BDA00002052092500061
为电子罗盘得到的行走角度。
定位点卡尔曼滤波器的状态方程为:
Figure BDA00002052092500062
因为定位点卡尔曼滤波器的状态方程为非线性方程组,根据式(6),将定位点卡尔曼滤波器的状态转移矩阵A设置为:
定位点卡尔曼滤波器的观测矩阵H为单位矩阵,即:
H = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
根据实验,将定位点卡尔曼滤波器的状态协方差矩阵Q和测量协方差矩阵R分别设为如下:
Q = 0.2 0 0 0 0 0.2 0 0 0 0 0.01 0 0 0 0 25
R = 4 0 0 0 0 4 0 0 0 0 0.01 0 0 0 0 25
设置定位点卡尔曼滤波器的控制矩阵B=0。
通过上述设置的定位点卡尔曼滤波器进行迭代计算,将每一次迭代计算得到的当前状态的最优化估计值X(K|K)将作为当前有效定位点。
203:将当前定位点、行走步长和行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值,然后执行205。
204:将利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将当前定位点、行走步长和行走角度,作为第一观测向量值;然后执行205。
205:根据第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
具体地,在通过设置的定位点卡尔曼滤波器进行迭代计算时,如果是第一次进行计算,则将当前定位点、行走步长和行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;如果已经计算过一次了,则以后计算时,可以将上次利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将当前获取的当前定位点、行走步长和行走角度,作为第一观测向量值。具体计算过程如下:
根据上述设置的
Figure BDA00002052092500071
B=0,第一状态向量值和第一观测向量值为当前定位点、行走步长和行走角度,利用式(1),得到当前状态的预测值X(K|K-1)如下:
Figure BDA00002052092500072
可简写为:
Figure BDA00002052092500073
此时定位点卡尔曼滤波器已经更新,对当前状态的预测值X(K|K-1)的协方差矩阵P(K|K-1)也进行更新,即对式(2)进行更新,并且,初始的协方差P(K-1|K-1)为0,因此此时的P(K|K-1)=Q,即:
P ( K | K - 1 ) = 0.2 0 0 0 0 0 . 2 0 0 0 0 0.01 0 0 0 0 25
根据当前状态的预测值X(K|K-1),结合式(3)和(4)收集当前状态的测量值。此测量值为最新的WIFI定位坐标、行走角度和行走步长,初始值为上次有效定位点、当时的行走角度和行走步长。结合当前状态的预测值和当前状态的测量值,得到当前状态的最优化估计值X(K|K)。
由于H为单位矩阵,此时的
Figure BDA00002052092500081
即:
K g ( K ) ≈ 0.05 0 0 0 0 0.05 0 0 0 0 0.5 0 0 0 0 0.5
代入式(3)得:
可简写为:
Figure BDA00002052092500084
其中,Px"(K-1)、Py"(K-1)分别为该次迭代计算得到的当前有效定位点的X坐标值和Y坐标值。
为了使得定位点卡尔曼滤波器不断地运行下去,使得最优化估计值不断更新,将上次利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值,将当前获取的当前定位点、行走步长和行走角度,作为第一观测向量值,并通过式(5)更新当前状态X(K|K)的协方差矩阵P(K|K),得到
P ( K | K ) = 0.19 0 0 0 0 0.19 0 0 0 0 0.01 0 0 0 0 12.5
这样又可将P(K|K)与X(K|K)的值分别赋给P(K-1|K-1)和X(K-1|K-1)代入式(1)、(2)进行循环迭代计算,从而可以不断地迭代计算,不断获得最新最优的当前有效定位点。
本发明实施例所述的获取定位点的方法,通过将获取的用户的当前定位点、行走步长和行走角度作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算即可得到当前有效定位点,不会受到温度、湿度及地磁的影响,且对重力加速度器,电子罗盘等设备获取数据的数据进行了迭代计算,可以消除误差的影响,可以获得比较精确的定位效果,提高了定位精度。
实施例3
参见图4,本发明实施例提供了一种获取定位点的装置,该装置包括:
获取模块301,用于获取用户的当前定位点、行走步长和行走角度;
判断模块302,用于判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;
第一处理模块303,用于当判断模块302的判断结果是没有存在时,将当前定位点、行走步长和行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;
计算模块304,用于根据第一状态向量值和第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
进一步地,获取模块301具体包括:
第一获取单元,用于利用全球卫星定位系统定位技术、小区识码基站定位技术、无线保真定位技术、或基于行人行迹推算算法定位技术,获取用户的当前定位点;
第二获取单元,用于利用基于行人行迹推算算法定位技术,获取用户的行走步长和行走角度。
进一步地,预设的定位点卡尔曼滤波器如下:
定位点卡尔曼滤波器的状态向量X为:
Figure BDA00002052092500091
定位点卡尔曼滤波器的观测向量Z为:
Figure BDA00002052092500092
定位点卡尔曼滤波器的状态方程为:
定位点卡尔曼滤波器的状态转移矩阵A为:
定位点卡尔曼滤波器的观测矩阵H为:
H = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ;
定位点卡尔曼滤波器的状态协方差矩阵Q为:
Q = 0.2 0 0 0 0 0 . 2 0 0 0 0 0.01 0 0 0 0 25 ;
定位点卡尔曼滤波器的测量协方差矩阵R为:
R = 4 0 0 0 0 4 0 0 0 0 0.01 0 0 0 0 25 ;
定位点卡尔曼滤波器的控制矩阵B=0;
其中,Px、Py分别为当前定位点的X坐标、Y坐标;S为行走步长;为行走角度。
进一步地,参见图5,该装置还包括:
第二处理模块305,用于当判断模块302的判断结果是存在有时,将利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将当前定位点、行走步长和行走角度,作为第一观测向量值;然后通知计算模块304执行根据第一状态向量值和第一观测向量值的步骤。
本发明实施例所述的获取定位点的装置,通过将获取用户的当前定位点、行走步长和行走角度作为预设的定位点卡尔曼滤波器的初始值,利用预设的卡尔曼滤波器进行迭代计算即可得到当前有效定位点,不会受到温度、湿度及地磁的影响,且对重力加速度器,电子罗盘等设备获取数据的数据进行了迭代计算,可以消除误差的影响,可以获得比较精确的定位效果,提高了定位精度。
以上实施例提供的技术方案中的全部或部分内容可以通过软件编程实现,其软件程序存储在可读取的存储介质中,存储介质例如:计算机中的硬盘、光盘或软盘。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种获取定位点的方法,其特征在于,所述方法包括:
获取用户的当前定位点、行走步长和行走角度;
判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;
如果没有存在,则将所述当前定位点、所述行走步长和所述行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;
根据所述第一状态向量值和所述第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
2.根据权利要求1所述的获取定位点的方法,其特征在于,获取用户的当前定位点、行走步长和行走角度,具体包括
利用全球卫星定位系统定位技术、小区识码基站定位技术、无线保真定位技术、或基于行人行迹推算算法定位技术,获取用户的当前定位点;
利用基于行人行迹推算算法定位技术,获取用户的行走步长和行走角度。
3.根据权利要求1所述的获取定位点的方法,其特征在于,预设的定位点卡尔曼滤波器如下:
所述定位点卡尔曼滤波器的状态向量X为:
Figure FDA00002052092400011
所述定位点卡尔曼滤波器的观测向量Z为:
Figure FDA00002052092400012
所述定位点卡尔曼滤波器的状态方程为:
Figure FDA00002052092400013
所述定位点卡尔曼滤波器的状态转移矩阵A为:
Figure FDA00002052092400014
所述定位点卡尔曼滤波器的观测矩阵H为:
H = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ;
所述定位点卡尔曼滤波器的状态协方差矩阵Q为:
Q = 0.2 0 0 0 0 0.2 0 0 0 0 0.01 0 0 0 0 25 ;
所述定位点卡尔曼滤波器的测量协方差矩阵R为:
R = 4 0 0 0 0 4 0 0 0 0 0.01 0 0 0 0 25 ;
所述定位点卡尔曼滤波器的控制矩阵B=0;
其中,Px、Py分别为当前定位点的X坐标、Y坐标;S为行走步长;为行走角度。
4.根据权利要求1-3任意一项权利要求所述的获取定位点的方法,其特征在于,判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值之后,所述方法还包括:
如果存在有,则将利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将所述当前定位点、所述行走步长和所述行走角度,作为第一观测向量值;然后执行根据所述第一状态向量值和所述第一观测向量值的步骤。
5.一种获取定位点的装置,其特征在于,所述装置包括:
获取模块,用于获取用户的当前定位点、行走步长和行走角度;
判断模块,用于判断当前是否存在有利用预设的定位点卡尔曼滤波器计算得到的状态向量值;
第一处理模块,用于当所述判断模块的判断结果是没有存在时,将所述当前定位点、所述行走步长和所述行走角度,作为预设的定位点卡尔曼滤波器的第一状态向量值和第一观测向量值;
计算模块,用于根据所述第一状态向量值和所述第一观测向量值,利用预设的卡尔曼滤波器进行计算,得到第二状态向量值和第一当前有效定位点。
6.根据权利要求5所述的获取定位点的装置,其特征在于,所述获取模块具体包括:
第一获取单元,用于利用全球卫星定位系统定位技术、小区识码基站定位技术、无线保真定位技术、或基于行人行迹推算算法定位技术,获取用户的当前定位点;
第二获取单元,用于利用基于行人行迹推算算法定位技术,获取用户的行走步长和行走角度。
7.根据权利要求5或6所述的获取定位点的装置,其特征在于,预设的定位点卡尔曼滤波器如下:
所述定位点卡尔曼滤波器的状态向量X为:
Figure FDA00002052092400031
所述定位点卡尔曼滤波器的观测向量Z为:
Figure FDA00002052092400032
所述定位点卡尔曼滤波器的状态方程为:
Figure FDA00002052092400033
所述定位点卡尔曼滤波器的状态转移矩阵A为:
Figure FDA00002052092400034
所述定位点卡尔曼滤波器的观测矩阵H为:
H = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ;
所述定位点卡尔曼滤波器的状态协方差矩阵Q为:
Q = 0.2 0 0 0 0 0.2 0 0 0 0 0.01 0 0 0 0 25 ;
所述定位点卡尔曼滤波器的测量协方差矩阵R为:
R = 4 0 0 0 0 4 0 0 0 0 0.01 0 0 0 0 25 ;
所述定位点卡尔曼滤波器的控制矩阵B=0;
其中,Px、Py分别为当前定位点的X坐标、Y坐标;S为行走步长;
Figure FDA00002052092400042
为行走角度。
8.根据权利要求5-7任意一项权利要求所述的获取定位点的装置,其特征在于,所述装置还包括:
第二处理模块,用于当所述判断模块的判断结果是存在有时,将利用预设的定位点卡尔曼滤波器计算得到的状态向量值作为第一状态向量值;将所述当前定位点、所述行走步长和所述行走角度,作为第一观测向量值;然后通知所述计算模块执行根据所述第一状态向量值和所述第一观测向量值的步骤。
CN2012103055295A 2012-08-24 2012-08-24 一种获取定位点的方法和装置 Pending CN102841334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103055295A CN102841334A (zh) 2012-08-24 2012-08-24 一种获取定位点的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103055295A CN102841334A (zh) 2012-08-24 2012-08-24 一种获取定位点的方法和装置

Publications (1)

Publication Number Publication Date
CN102841334A true CN102841334A (zh) 2012-12-26

Family

ID=47368871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103055295A Pending CN102841334A (zh) 2012-08-24 2012-08-24 一种获取定位点的方法和装置

Country Status (1)

Country Link
CN (1) CN102841334A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471586A (zh) * 2013-09-22 2013-12-25 重庆绿色智能技术研究院 一种传感器辅助的终端组合定位方法及装置
CN104808174A (zh) * 2014-11-27 2015-07-29 卫民 基于卡尔曼滤波器和航位推测法的核电站无线定位系统
CN105548956A (zh) * 2014-10-28 2016-05-04 中国移动通信集团公司 车联网系统中行人定位系统、方法和相关设备
CN106092095A (zh) * 2016-05-31 2016-11-09 天津大学 一种地磁修正惯导的智能手机用户室内定位方法
CN109470238A (zh) * 2017-09-08 2019-03-15 中兴通讯股份有限公司 一种定位方法、装置和移动终端
CN110160524A (zh) * 2019-05-23 2019-08-23 深圳市道通智能航空技术有限公司 一种惯性导航系统的传感器数据获取方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334284A (zh) * 2008-07-03 2008-12-31 上海交通大学 适用于步行者组合定位的同步采样方法
US20100079334A1 (en) * 2008-09-24 2010-04-01 Texas Instruments Incorporated Low-complexity tightly-coupled integration filter for sensor-assisted gnss receiver
US20100109945A1 (en) * 2008-11-06 2010-05-06 Texas Instruments Incorporated Loosely-coupled integration of global navigation satellite system and inertial navigation system: speed scale-factor and heading bias calibration
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334284A (zh) * 2008-07-03 2008-12-31 上海交通大学 适用于步行者组合定位的同步采样方法
US20100079334A1 (en) * 2008-09-24 2010-04-01 Texas Instruments Incorporated Low-complexity tightly-coupled integration filter for sensor-assisted gnss receiver
US20100109945A1 (en) * 2008-11-06 2010-05-06 Texas Instruments Incorporated Loosely-coupled integration of global navigation satellite system and inertial navigation system: speed scale-factor and heading bias calibration
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈伟: "基于GPS和自包含传感器的行人室内外无缝定位算法研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471586A (zh) * 2013-09-22 2013-12-25 重庆绿色智能技术研究院 一种传感器辅助的终端组合定位方法及装置
CN103471586B (zh) * 2013-09-22 2016-01-06 中国科学院重庆绿色智能技术研究院 一种传感器辅助的终端组合定位方法及装置
CN105548956A (zh) * 2014-10-28 2016-05-04 中国移动通信集团公司 车联网系统中行人定位系统、方法和相关设备
CN105548956B (zh) * 2014-10-28 2017-11-21 中国移动通信集团公司 车联网系统中行人定位系统、方法和相关设备
CN104808174A (zh) * 2014-11-27 2015-07-29 卫民 基于卡尔曼滤波器和航位推测法的核电站无线定位系统
CN106092095A (zh) * 2016-05-31 2016-11-09 天津大学 一种地磁修正惯导的智能手机用户室内定位方法
CN109470238A (zh) * 2017-09-08 2019-03-15 中兴通讯股份有限公司 一种定位方法、装置和移动终端
CN109470238B (zh) * 2017-09-08 2023-09-01 中兴通讯股份有限公司 一种定位方法、装置和移动终端
CN110160524A (zh) * 2019-05-23 2019-08-23 深圳市道通智能航空技术有限公司 一种惯性导航系统的传感器数据获取方法及装置

Similar Documents

Publication Publication Date Title
CN102841334A (zh) 一种获取定位点的方法和装置
CN105849589B (zh) 全球导航卫星系统、定位终端、定位方法以及记录介质
US20090247186A1 (en) Dynamic Localization Using Geographical Information Systems
CN103369466B (zh) 一种地图匹配辅助室内定位方法
CN103370601A (zh) 确定海拔的系统和方法
CN105044668A (zh) 一种基于多传感器装置的wifi指纹数据库构建方法
CN102692179A (zh) 定位设备、定位方法、程序和记录介质
CN103175529A (zh) 基于室内磁场特征辅助的行人惯性定位系统
US8565528B2 (en) Magnetic deviation determination using mobile devices
CN108020813B (zh) 定位方法、定位装置和电子设备
CN107431995A (zh) 实现对移动装置的估计位置的验证
CN103238043A (zh) 移动终端、系统以及方法
CN104507097A (zh) 一种基于WiFi位置指纹的半监督训练方法
CN105974449A (zh) 处理信号的方法及系统
CN106093992A (zh) 一种基于cors的亚米级组合定位导航系统及导航方法
CN103808349A (zh) 矢量传感器的误差校正方法和装置
CN104216405B (zh) 田间机器人的导航方法及设备
Islam et al. An Effective Approach to Improving Low‐Cost GPS Positioning Accuracy in Real‐Time Navigation
US8929658B2 (en) Providing magnetic deviation to mobile devices
CN104792321A (zh) 一种基于辅助定位的土地信息采集系统及方法
CN103024673A (zh) 一种gsm网络中的终端定位方法和装置
CN103453880A (zh) 空间参数测量方法和用户终端
US9146105B2 (en) System and method for accuracy certification of geographical locations on a land tract
CN106717083A (zh) 用于检测移动计算设备的位置的方法和执行该方法的移动计算设备
Ratsameethammawong et al. Mobile phone location tracking by the combination of GPS, Wi-Fi and cell location technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121226