CN102840966A - 全密封式平行光管结构 - Google Patents

全密封式平行光管结构 Download PDF

Info

Publication number
CN102840966A
CN102840966A CN2012103514879A CN201210351487A CN102840966A CN 102840966 A CN102840966 A CN 102840966A CN 2012103514879 A CN2012103514879 A CN 2012103514879A CN 201210351487 A CN201210351487 A CN 201210351487A CN 102840966 A CN102840966 A CN 102840966A
Authority
CN
China
Prior art keywords
parallel light
sealed
light tube
housing
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103514879A
Other languages
English (en)
Other versions
CN102840966B (zh
Inventor
毕勇
胡明勇
李雪姣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Astronomical Instruments Co Ltd
Original Assignee
Nanjing Astronomical Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Astronomical Instruments Co Ltd filed Critical Nanjing Astronomical Instruments Co Ltd
Priority to CN201210351487.9A priority Critical patent/CN102840966B/zh
Publication of CN102840966A publication Critical patent/CN102840966A/zh
Application granted granted Critical
Publication of CN102840966B publication Critical patent/CN102840966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

全密封式平行光管结构,特征是平行光管主体是一个完整的密封壳体,安装在工作平台上;同时密封壳体内部设置有光学元件;所有光学元件,均通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上,不与壳体发生直接联系。平行光管的出光口安装有高透密封窗口或者与另一密封装置相连,构成更大的密封检测空间。本发明的优点是:一体化,稳定性好,精度高,并具有空间可扩展性。本发明自身构成一个完整的密封系统,降低调试和检测难度,提高了调试和检测效率。能够避免内外压力差引起的结构变形对光学系统的影响。避免了环境对光学检测的不良影响。可根据检测需要与其他密封装置连接,组成复合的仪器设备或构建更大的密封检测空间。

Description

全密封式平行光管结构
技术领域
本发明属于光学仪器领域,具体涉及一种全密封式平行光管结构。
背景技术
平行光管是一种高精度的光学检测仪器。一方面,在平行光管焦点处放置点光源,可以用来发射大口径平行光,模拟无穷远光学发射系统;另一方面,在焦点处放置测量器件,如分划板、光学相机等,可以用来辅助高精密光学及机械系统的装校,也可以用来测量光学系统的发散角、同轴度等性能指标;根据特殊需要,还可进行其它更复杂的光学系统检测工作。
首先,随着平行光管与待检系统的光学口径和主镜曲率半径的增加,环境的影响已经成为不可忽略的因素。环境的影响主要来源于空气扰动和温度梯度影响。在使用大口径长焦距的平行光管进行高精度的光学检测中,必须考虑湍流和温差的影响,一个有效的方法就是构建全封闭的测量环境,在此环境下进行装调和检测。
其次,随着相关光学工程的发展,尤其是空间光学和激光通讯中科学研究与工程技术的发展,需要研制空间对地、空间对天体的光学观测系统,星地光通信,深空光通信系统。这些空间光学系统的光学载荷研制过程中,其装调与检测一般需要经过空间环境模拟测试,这一测试主要模拟真空或低温等空间条件,通过这些环境测试的光机载荷才能投入使用。
因为上述原因,光学系统常常需要在全封闭或者真空的环境下进行,因此要求平行光管能够稳定可靠地运行在相同环境中。
传统技术的平行光管往往需要将其置于更大的密封装置中对被测系统进行检测,增加了调试和检测难度,并且密封装置内外压力不相等产生的结构变形会对光学系统造成一定的影响,降低了检测精度。
发明内容
为了克服传统技术的上述不足,本发明提供一种新的封闭式平行光管结构。新结构将避免使用更大的密封装置来构建测试环境;避免内外压力差引起的结构变形对光学系统的影响,保证光学系统和支撑结构的稳定性;提供精度,满足空间光学、地面观测等领域对高精度检测仪器设备的要求;并且具有空间可扩展性:可根据检测需要与其他密封装置连接接通,组成复合的仪器设备或构建更大的密封检测空间。
 
完成上述发明任务的技术方案是:一种全密封式平行光管结构,其特征在于,该平行光管主体是一个完整的密封壳体,安装在工作平台上;同时该密封壳体内部设置有光学元件;所述内部设置的所有光学元件,均通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上,不与壳体发生直接联系。
所述“内部设置的所有光学元件通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上”,本发明推荐以下结构:
参照附图2:穿过密封壳体是指光学元件的支撑机构2穿过密封壳体5的开口直接安装固定于工作平台上,用柔性密封管9(波纹管)的两端法兰分别与支撑机构和密封壳体开口上设有的密封法兰10、11固定连接。这样,所有的部件全部包含在密封环境中,且由于柔性密封管具有弹性缓冲的特性可以隔离来自于密封壳体的震动,对光学元件不造成影响。简单来说,即壳体的作用是提供一个密封环境,而光学元件的稳定度则通过处于密封环境外的工作平台1实现。
优化方案中,所述平行光管的出光口安装有高透密封窗口,直接检测大气环境中的光学仪器设备,或者所述平行光管的出光口安装有柔性密封管,管口配有标准法兰接口与另一密封装置的密封法兰或阀门连接接通,构成更大的密封空间,将待检测的光学仪器设备放置其中进行密封环境下的高精度检测。
以上方案中,所述的光学元件包括有:平行光管主系统所包含的全部光学镜片;可放置在平行光管焦点处的点光源,可以用来发射大口径平行光,模拟无穷远光学发射系统;可放置于焦点处的测量器件,如分划板、光学相机等,可以用来辅助高精密光学及机械系统的装校,也可以用来测量光学系统的发散角、同轴度等性能指标,根据特殊需要,还可进行其它更复杂的光学系统检测工作。
本发明与传统的平行光管相比所具有的优点是:
1、一体化:本发明避免了使用更大的密封装置来构建测试环境,其自身构成一个完整的密封系统,降低调试和检测难度,提高了调试和检测效率。
2、稳定性好:光学系统和密封装置分别支撑,避免内外压力差引起的结构变形对光学系统的影响,光学系统和支撑结构的稳定性都得到了保证。
3、精度高:密封环境,避免了环境对光学检测的不良影响,提高了检测精度,可以满足空间光学、地面观测等领域对高精度检测仪器设备的要求。
4、空间可扩展性:可根据检测需要与其他密封装置连接接通,组成复合的仪器设备或构建更大的密封检测空间。
附图说明
图1为本发明全密封式平行光管结构的示意图;
图2为柔性密封连接示意图。
具体实施方式
实施例1,全密封式平行光管,参照图1:在工作平台1上,通过密封装置的支撑结构3,固定安装有密封装置(密封壳体)5;安装在该密封装置(密封壳体)中的光学元件及其支撑和密封结构2、4、7。所述内部设置的所有光学元件,均通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上,不与壳体发生直接联系。图中,6为光线; 8为光线出口。
光学元件的支撑机构2穿过密封壳体5的开口直接安装固定于工作平台上,用柔性密封管9(波纹管)的两端法兰分别与支撑机构和密封壳体开口上设有的密封法兰10、11固定连接。
实施例2,与实施例1基本相同,但所述的平行光管的出光口8安装有柔性密封管,管口配有标准法兰接口与另一密封装置的密封法兰或阀门连接接通,构成更大的密封检测空间。

Claims (5)

1. 一种全密封式平行光管结构,其特征在于,该平行光管主体是一个完整的密封壳体,安装在工作平台上;同时该密封壳体内部设置有光学元件;所述内部设置的所有光学元件,均通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上,不与壳体发生直接联系。
2. 根据权利要求1所述的全密封式平行光管结构,其特征在于,所述“内部设置的所有光学元件通过独立于壳体的支撑及密封件穿过密封壳体直接固定在工作平台上”,采用以下结构:
光学元件的支撑机构穿过密封壳体的开口直接安装固定于工作平台上,“穿过”处是用柔性密封管的两端法兰分别与支撑机构和密封壳体开口上设有的密封法兰固定连接。
3. 根据权利要求2所述的全密封式平行光管结构,其特征在于,所述平行光管的出光口安装有高透密封窗口或者与另一密封装置相连,构成更大的密封检测空间。
4. 根据权利要求3所述的全密封式平行光管结构,其特征在于,所述“平行光管另一密封装置相连”的连接方式是:所述的平行光管的出光口安装有柔性密封管,管口配有标准法兰接口与另一密封装置的密封法兰或阀门连接接通,构成更大的密封检测空间。
5. 根据权利要求1-4之一所述的全密封式平行光管结构,其特征在于,所述的光学元件包括有:平行光管主系统所包含的全部光学镜片;可放置在平行光管焦点处的点光源;可放置于焦点处的测量器件。
CN201210351487.9A 2012-09-20 2012-09-20 全密封式平行光管结构 Active CN102840966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210351487.9A CN102840966B (zh) 2012-09-20 2012-09-20 全密封式平行光管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210351487.9A CN102840966B (zh) 2012-09-20 2012-09-20 全密封式平行光管结构

Publications (2)

Publication Number Publication Date
CN102840966A true CN102840966A (zh) 2012-12-26
CN102840966B CN102840966B (zh) 2015-03-25

Family

ID=47368531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210351487.9A Active CN102840966B (zh) 2012-09-20 2012-09-20 全密封式平行光管结构

Country Status (1)

Country Link
CN (1) CN102840966B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426448A (zh) * 2020-03-27 2020-07-17 中国科学院西安光学精密机械研究所 一种光学组件性能测试平台
CN112665832A (zh) * 2020-12-30 2021-04-16 中国科学院西安光学精密机械研究所 一种温度试验箱光学玻璃窗控温装置及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147649A1 (en) * 2002-02-06 2003-08-07 Shigeki Nagasaka Optical module
CN101819307A (zh) * 2010-04-19 2010-09-01 中国科学院西安光学精密机械研究所 一种大口径长焦距平行光管主结构
CN201600295U (zh) * 2009-11-27 2010-10-06 沈阳仪表科学研究院 金属波纹管省力疲劳试验装置
CN202393958U (zh) * 2011-05-16 2012-08-22 于书奎 新型平行光管
CN102680214A (zh) * 2012-01-15 2012-09-19 河南科技大学 波纹管隔振性能试验装置与试验方法
CN102681196A (zh) * 2012-05-25 2012-09-19 中国人民解放军武汉军械士官学校 一种高精度便携式宽光谱平行光管装置
CN202928780U (zh) * 2012-09-20 2013-05-08 南京中科天文仪器有限公司 全密封式平行光管结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147649A1 (en) * 2002-02-06 2003-08-07 Shigeki Nagasaka Optical module
CN201600295U (zh) * 2009-11-27 2010-10-06 沈阳仪表科学研究院 金属波纹管省力疲劳试验装置
CN101819307A (zh) * 2010-04-19 2010-09-01 中国科学院西安光学精密机械研究所 一种大口径长焦距平行光管主结构
CN202393958U (zh) * 2011-05-16 2012-08-22 于书奎 新型平行光管
CN102680214A (zh) * 2012-01-15 2012-09-19 河南科技大学 波纹管隔振性能试验装置与试验方法
CN102681196A (zh) * 2012-05-25 2012-09-19 中国人民解放军武汉军械士官学校 一种高精度便携式宽光谱平行光管装置
CN202928780U (zh) * 2012-09-20 2013-05-08 南京中科天文仪器有限公司 全密封式平行光管结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许亮等: "光学窗口形变对平行光管光学性能影响分析", 《应用光学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426448A (zh) * 2020-03-27 2020-07-17 中国科学院西安光学精密机械研究所 一种光学组件性能测试平台
CN111426448B (zh) * 2020-03-27 2021-06-22 中国科学院西安光学精密机械研究所 一种光学组件性能测试平台
CN112665832A (zh) * 2020-12-30 2021-04-16 中国科学院西安光学精密机械研究所 一种温度试验箱光学玻璃窗控温装置及使用方法

Also Published As

Publication number Publication date
CN102840966B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2017201918A1 (zh) 一种适用于燃烧流场气体二维重建的测量装置
CN202928780U (zh) 全密封式平行光管结构
CN104315348A (zh) 基于多次反射光路的天然气管道泄漏车载检测设备
CN101231343A (zh) 基于液晶调制的激光测距机瞄准与接收轴平行性测量装置
CN102840966B (zh) 全密封式平行光管结构
CN106441166A (zh) 一种光纤连接器同轴度的检测方法及其装置
CN104457731A (zh) 一种双轴光纤陀螺仪
CN109087719A (zh) 一种安全壳内主蒸汽管道泄漏监测系统
CN101581580A (zh) 空间数字化大地测量方法及装置
CN207729254U (zh) 用于地下管廊的气体泄漏检测系统
CN103713383B (zh) 一种光束精确引导和校准的辅助装置
CN203606565U (zh) 有限远双波段光轴调校装置
CN206378393U (zh) 一种光纤式粉尘浓度测量装置
CN109655386A (zh) 颗粒物浓度检测装置及检测方法
CN105425821B (zh) 诊断设备准直装置及方法
CN103105360B (zh) 一种可测微量浓度的臭氧浓度仪
CN104456091A (zh) 基于3×3耦合器的光纤干涉仪co2管道泄漏检测装置
CN104089583A (zh) 一种光学系统波前的子孔径反演方法
CN103196598A (zh) 一种光电式力传感器
CN204346907U (zh) 一种自校准气室及光纤气体传感器检测系统
CN103217066A (zh) 一种双自准直光学系统检调管
CN103791843B (zh) 可实现离轴反射镜离轴参数精确测量的系统及方法
JP6820731B2 (ja) ガス検知装置
Korotaev et al. The choice of marks for systems with noncontact position control
CN106290173B (zh) 气体浓度多维分布的检测装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 210042 Huayuan Road, Nanjing, Jiangsu Province, No. 6-10

Patentee after: Chinese Academy of Sciences, Nanjing Astronomical Instrument Co., Ltd.

Address before: 210042 Huayuan Road, Nanjing, Jiangsu Province, No. 6-10

Patentee before: CAS Nanjing Astronomical Instruments Co., Ltd.

CP01 Change in the name or title of a patent holder