CN102820433A - Anti-reflection structure of organic light emitting diode (OLED) - Google Patents

Anti-reflection structure of organic light emitting diode (OLED) Download PDF

Info

Publication number
CN102820433A
CN102820433A CN 201210320027 CN201210320027A CN102820433A CN 102820433 A CN102820433 A CN 102820433A CN 201210320027 CN201210320027 CN 201210320027 CN 201210320027 A CN201210320027 A CN 201210320027A CN 102820433 A CN102820433 A CN 102820433A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
layer
material
oled
refractive index
anti
Prior art date
Application number
CN 201210320027
Other languages
Chinese (zh)
Other versions
CN102820433B (en )
Inventor
陈红
邱勇
黄秀颀
Original Assignee
昆山工研院新型平板显示技术中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides an anti-reflection structure of an organic light emitting diode (OLED). An anti-reflection layer is added on a negative pole of a top lighting OLED or a positive pole of a bottom lighting OLED, and refraction rate of the anti-reflection layer is between those of an upper medium layer and a lower medium layer, so that light emitting efficiency is improved, and OLED performance is improved. When the anti-reflection layer is located at the negative pole of the top lighting OLED, the anti-reflection layer can be arranged above or below a negative pole material layer; and when the anti-reflection layer is located at the positive pole of the bottom lighting OLED, the anti-reflection layer can be arranged above or below a positive pole material layer. Anti-reflection effects can be achieved by both modes.

Description

OLED的增透结构 OLED antireflection structure

技术领域 FIELD

[0001] 本发明涉及一种OLED的阳极或阴极结构,能够应用到顶发光或者底发光AMOLED结构中。 [0001] The present invention relates to an OLED structure of the anode or cathode can be applied to the top or the bottom emission structure emitting AMOLED. 背景技术 Background technique

[0002] 相比现在的主流平板显示技术薄膜晶体管液晶显示器(TFT-IXD),有源矩阵有机发光二极管显示器(AMOLED)具有高对比度、广视角、低功耗、更轻更薄等优点,有望成为继LCD之后的下一代平板显示技术,是目前平板显示技术中受到关注最多的技术之一。 [0002] Thin-film transistor liquid crystal display display (TFT-IXD) compared to the current mainstream flat, active matrix organic light emitting diode display (AMOLED) has a high contrast, wide viewing angle, low power consumption, lighter and thinner, etc., are expected to after becoming the next generation flat panel LCD display technology, it is currently one of the largest flat panel display technology by technical concerns.

[0003] 有机发光二级管显示器(OLED)是一种主动发光器件,其不仅可以用作构成AMOLED显示器的像素,也可以作为固态照明的光源。 [0003] The organic light emitting diode display (OLED) is an active light emitting device which can be used not only as a pixel constituting an AMOLED display, a light source can be used as solid-state lighting. 所以OLED性能的提高,尤其是效率的提升直接影响到它的应用。 OLED is improved performance, especially to enhance the efficiency of a direct impact on its application.

[0004] 其中,提高顶发光OLED阴极的透过率和底发光OLED阳极的透过率都有利于提高OLED及其对应器件的效率。 [0004] wherein, to improve the transmittance of the top emission OLED cathode and the transmittance of the anode has a bottom-emitting OLED help to improve the efficiency of the OLED and its corresponding device.

发明内容 SUMMARY

[0005] 针对现有技术的不足,本发明的目的在于:提供一种OLED的增透结构,以提升OLED的出光效率。 [0005] for the deficiencies of the prior art, an object of the present invention is: to provide a light extraction efficiency of an OLED AR structure, to improve the OLED.

[0006] 为实现上述目的,本发明采用的技术方案包括: [0006] To achieve the above object, the present invention adopts the technical solution comprising:

[0007] —种OLED的增透结构,在所述OLED的阳极上依次覆盖着功能层、阴极材料层与覆盖层,其特征在于:在所述阴极材料层与所述覆盖层之间增加具有导电性的增透层,所述阴极材料层的折射率为C,所述覆盖层的折射率为a,而所述增透层的折射率b满足:c>b>a,或者c〈b〈a。 [0007] - The OLED structure of the AR, on the anode of the OLED are sequentially covered with a functional layer, a cathode material layer and the cover layer, wherein: the increase between the cathode layer and the cover layer material having a conductive anti-reflection layer, the refractive index of the cathode material layer is C, the refractive index of the cover layer as a, and the refractive index of the antireflective layer b satisfy: c> b> a, or c <b <a.

[0008] 所述覆盖层是选择Alq3、Liq、有机发光层材料、LiF、ZnSe中的任意一个材料构成的单层结构,或是选择其中任意至少两个材料构成的叠层结构; [0008] The cover layer is selected Alq3, Liq, the organic light emitting layer material, LiF, any of a single layer structure composed of ZnSe in a material, or choose a laminate structure wherein at least two of any material;

[0009] 所述阴极材料层的材料是Al、Ag、ΙΤ0, ΙΖ0, ΑΖ0, MgiAg或石墨烯; [0009] The material of the cathode material layer is Al, Ag, ΙΤ0, ΙΖ0, ΑΖ0, MgiAg or graphene;

[0010] 所述增透层的材料是Al、Ag、ΙΤ0, IZO或ΑΖ0。 [0010] The antireflection layer material is Al, Ag, ΙΤ0, IZO or ΑΖ0.

[0011] 所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于a与c之间。 [0011] The antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index which b 'is interposed between a and c.

[0012] 为实现上述目的,本发明采用的技术方案还包括: [0012] To achieve the above object, the present invention adopts the technical scheme further comprises:

[0013] 一种OLED的增透结构,在所述OLED的阳极上依次覆盖着功能层与阴极材料层,其特征在于:在所述阴极材料层与所述功能层之间增加具有导电特性的增透层,所述增透层的功函数小于4eV,所述功能层中与所述增透层最贴近的一层材料的折射率为d,而所述增透层的折射率b满足:c>b>d,或者c〈b〈d。 AR structure [0013] of an OLED, the anode of the OLED in order to cover the functional layer and the layer of cathode material, comprising: having increased conductivity characteristic between the cathode material layer and the functional layer anti-reflection layer, increasing the work function of the transparent layer is less than 4 eV, the functional layer with increasing the layer of permeable material layer closest refractive index of d, and the refractive index of the antireflective layer b satisfy: c> b> d, or c <b <d.

[0014] 所述功能层中与所述增透层最贴近的一层材料是选择LiF、CsF、Liq、K、Mg、Ca中的一个; [0014] The functional layer and the antireflective layer is the closest layer material is selected LiF, CsF, Liq, K, Mg, Ca one;

[0015] 所述阴极材料层的材料是Al、Ag、ΙΤ0, IZ0、AZ0、Mg:Ag或石墨烯;[0016] 所述增透层的材料是Al、Ag、ΙΤ0, ΙΖ0、ΑΖ0或石墨烯。 [0015] The material of the cathode material layer is Al, Ag, ΙΤ0, IZ0, AZ0, Mg: Ag or graphene; [0016] The antireflection layer material is Al, Ag, ΙΤ0, ΙΖ0, ΑΖ0 or graphite ene.

[0017] 所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于c与d之间。 [0017] The antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index which b 'is between c and d.

[0018] 为实现上述目的,本发明采用的技术方案还包括: [0018] To achieve the above object, the present invention adopts the technical scheme further comprises:

[0019] 一种OLED的增透结构,在所述OLED的阴极下方依次覆盖着功能层与阳极材料层,其特征在于:在所述阳极材料层与所述功能层之间添加有具有导电特性的增透层,所述增透层的功函数大于4. 5eV,所述阳极材料层的折射率为e,所述功能层中最贴近所述增透层的一层材料的折射率为f,所述增透层的折射率b满足:e>b>f,或者e〈b〈f。 AR structure [0019] of an OLED, below the cathode of the OLED are sequentially covered with the functional layer and the anode material layer, characterized in that: having a conductive property is added between the anode material layer and the functional layer anti-reflection layer, the work function of increasing the refractive index of the transparent layer is greater than 4. 5eV, the refractive index of the anode material layer is e, the functional layer is the closest layer of the antireflective layer material is f , increasing the refractive index of the transparent layer b satisfy: e> b> f, or e <b <f.

[0020] 所述功能层中与所述增透层最贴近的一层材料是NPB、TPD、m-MTDATA中的一种; [0020] The functional layer and the antireflective layer closest to the layer of material is NPB, TPD, m-MTDATA of one;

[0021] 所述阳极材料层的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯; [0021] The material of the anode material layer are Al, Ag, ΙΤ0, IZO, AZO, or graphene;

[0022] 所述增透层的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯。 [0022] The antireflection layer material is Al, Ag, ΙΤ0, IZO, AZO, or graphene.

[0023] 所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于e与f之间。 [0023] The antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index which b 'is between e and f.

[0024] 为实现上述目的,本发明采用的技术方案还包括: [0024] To achieve the above object, the present invention adopts the technical scheme further comprises:

[0025] 一种OLED的增透结构,在所述OLED的阴极下方依次覆盖着功能层与阳极材料层,其特征在于:在所述阳极材料层下方添加有具有导电特性的增透层,所述阳极材料层的折射率为e,所述功能层中最贴近所述阳极材料层的一层材料的折射率为f,所述增透层的折射率b满足:f > e > b,或者f < e < b。 AR structure [0025] of an OLED, below the cathode of the OLED are sequentially covered with the functional layer and the anode material layer, characterized in that: below the anode material layer is added with reflection layer having a conductive property, the said refractive index of the anode material layer is e, the refractive index of the functional layer is a layer of material closest to the anode material layer is f, increasing the refractive index of the transparent layer b satisfy: f> e> b, or f <e <b.

[0026] 所述功能层中最贴近所述阳极材料层的一层材料是NPB、TPD、m-MTDATA中的一种; [0026] The functional layer closest to the anode material layer is a layer of material NPB, TPD, m-MTDATA of one;

[0027] 所述阳极材料层的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯; [0027] The material of the anode material layer are Al, Ag, ΙΤ0, IZO, AZO, or graphene;

[0028] 所述增透层的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯。 [0028] The antireflection layer material is Al, Ag, ΙΤ0, IZO, AZO, or graphene.

[0029] 所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'满足:f> e>b' 或者f < e〈b'。 [0029] The antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index thereof b 'satisfies: f> e> b' or f <e <b '.

[0030] 与现有技术相比较,本发明具有的有益效果是:本发明在顶发光OLED的阴极或者在底发光OLED的阳极上增加一个增透层,并使得该增透层的折射率介于其上、下两层介质的折射率之间,能够提高出光效率,从而改善OLED的性能。 [0030] Compared with the prior art, the present invention has the advantages that: the cathode of the top emission OLED or add a antireflective layer on a bottom-emitting OLED anode, and such that the refractive index of the antireflective dielectric layers of the present invention on thereon, the refractive index between the two layers of the medium, the light extraction efficiency can be improved, thereby improving the performance of the OLED.

附图说明 BRIEF DESCRIPTION

[0031] 图I是光从介质SO经过介质膜SI入射到基底S2的反射与折射示意图; [0031] Figure I is an optical medium through the dielectric film SI SO incident from the reflection and refraction of the substrate S2 is a schematic diagram;

[0032] 图2是单层膜反射率R随薄膜光学厚度nih的变化曲线图; [0032] FIG 2 is a single layer film reflectance curve R in FIG. Nih with an optical thickness of a thin film;

[0033] 图3是本发明提供的一种顶发光OLED阴极的增透结构示意图; [0033] FIG. 3 is a schematic diagram of a top-emitting OLED of the present invention to provide a cathode structure of AR;

[0034] 图4是本发明提供的另一种顶发光OLED阴极的增透结构示意图; [0034] FIG. 4 is another of the present invention provides a top-emitting OLED cathode structure diagram AR;

[0035] 图5是本发明提供的一种底发光OLED阳极的增透结构示意图; [0035] FIG. 5 is a schematic structure of a substrate AR light-emitting OLED of the present invention provides an anode;

[0036] 图6是本发明提供的另一种底发光OLED阳极的增透结构示意图。 [0036] FIG. 6 is a schematic diagram of another OLED light emitting structure AR anode substrate according to the present invention is provided.

具体实施方式 detailed description

[0037] 首先介绍基本的光学原理如下: [0037] First, the following describes the basic optical principles:

[0038] 如图I所示,光从折射率为Iici的介质SO经过折射率为Ii1、厚度为h的介质膜SI入射到折射率为η 2的基底S2,在介质膜SI上的反射率公式如下: [0038] As shown in FIG I, of light from the refractive index of the medium Iici through the refractive index of Ii1 SO, SI thickness H of the dielectric film is incident on the refractive index of the substrate S2 2 η, the reflectance of the dielectric film SI formula is as follows:

[0039] [0039]

Figure CN102820433AD00061

[0040] 其中:R是在介质膜SI上的反射率; [0040] wherein: R is the reflectivity of the dielectric film in the SI;

[0041] φ=η〗ίΐ,是介质膜SI的光学厚度。 [0041] φ = η〗 ίΐ, SI is the optical thickness of the dielectric film.

[0042] 上式表明,对于一定的基底S2和介质膜SLn1和n2为常数,R随φ(即随Ii1Ii)变化。 [0042] The formula shows that, for a given substrate and a dielectric film SLn1 S2 and n2 is constant, R with [Phi] (i.e., with Ii1Ii) changes.

[0043] 下面以:冕牌Κ9玻璃(折射率η2=1. 52)表面镀一层薄膜(折射率为Ii1),波长为λ的光从空气(折射率为Iitl)中垂直入射为例,对给定波长λ和不同折射率Il1的介质膜,可计算出的单层膜反射率R随薄膜光学厚度nih的变化曲线,如图2所示。 [0043] In the following: Κ9 crown glass (refractive index η2 = 1 52) plated thin film (refractive index of Ii1), a wavelength λ of light vertically incident from air (refractive index Iitl) in, for example, of the dielectric film and the wavelength λ given Il1 different refractive indices, the calculated reflectance R of a single layer film with an optical film thickness of nih curve, as shown in FIG.

[0044] 根据对薄膜总反射率的分析,从图2上可以看出: [0044] The analysis of the overall reflectivity of the thin film, it can be seen from Figure 2:

[0045] (I)无论何种折射率的薄膜,只要膜的光学厚度nih为λ/2的整数倍(SP λ/4的偶数倍),反射率都等于基底未镀膜前的反射率,既不增透也不增反。 [0045] (I) regardless of the refractive index of the film, as long as the reflectance of the optical thickness of the film is an integer multiple nih λ / 2 of (SP λ even multiple of / 4), the reflectance is equal to uncoated substrate before, both AR does not increase reversed.

[0046] (2)当膜层的折射率Ii1小于玻璃基底折射率η2,只要薄膜光学厚度nih不是λ/2的整数倍,都有增透作用,且Ii1越小,反射率R越小,增透效果越好,当薄膜的光学厚度nih为λ /4的奇数倍时,反射率达到最小,为增透膜; [0046] (2) When the refractive index film layer Ii1 [eta] 2 is smaller than the refractive index of the glass substrate, as long as the optical film thickness nih not an integral multiple of λ / 2, have antireflection effect, and the smaller Ii1, the smaller the reflectance R, better antireflection effect, when the optical thickness of the film odd nih of λ / 4 times the reflectance minimum, for the antireflection coating;

[0047] (3)当膜层的折射率Ii1大于玻璃基底折射率η2,只要薄膜光学厚度nih不是λ/2的整数倍,都会有增加反射的作用,且Ill越大,反射率R越大,反射效果越好,当薄膜光学厚度为λ/4的奇数倍时,反射率出现最大值,为增反膜。 [0047] (3) When the film substrate is larger than the refractive index of the refractive index of the glass Ii1 integer multiple of [eta] 2, as long as the optical film thickness nih than λ / 2, will increase the reflection effect, Ill and larger, the larger the reflectance R better reflection effect, when the optical film thickness of an odd λ / 4 times the reflectance maximum occurs, as enhanced reflection film.

[0048] 因此,本发明基于上述光学原理,提供了一种提高顶发光OLED阴极透过率和底发光OLED阳极透过率的OLED的增透结构。 [0048] Accordingly, the present invention is based on the optical principle, a top antireflective structure for improving light emission and bottom emission OLED cathode transmittance transmittance of the OLED anode of the OLED.

[0049] 如图3所示,是本发明提供的一种顶发光OLED阴极的增透结构,所述顶发光OLED的阳极可由两层铟锡氧化物10、12 (ITO)中间夹一个阳极层11 (如Al)构成,现有技术中,一般在所述阳极上覆盖功能层20,所述功能层20上再覆盖阴极材料层30与覆盖层40。 [0049] FIG. 3 is a top-AR structure of a light-emitting OLED of the present invention provides a cathode, the anode of the OLED may be a top emission of indium tin oxide layers 10,12 (ITO) anode layer sandwiched a 11 (e.g., Al) configuration, in the prior art, generally covers the functional layer 20 on the anode, the cathode functional layer is then covered with a material layer 30 and the cover layer 40 on 20. 其中,所述功能层20的结构形式有很多的变化形式,在本申请中无法一一列举,在图3中,仅以最常见的结构形式举例如下,其包括:空穴注入层22 (HIL)、空穴传输层、发光层、电子传输层以及电子注入层21 (EIL),并称空穴注入层22与电子注入层21之间的部分为有机层23。 Wherein the functional layer structure 20 has a lot of variations, not enumerated in the present application, in FIG. 3, only the most common way of example the following structure, comprising: a hole injection layer 22 (HIL ), a hole transport layer, emission layer, electron transport layer and an electron injection layer 21 (the EIL), and said hole injection layer 22 and the electron injection layer 21 between the portion 23 is an organic layer. 所述OLED工作时,所述功能层20由于电子和空穴的辐射复合而发光,光线透过阴极材料层30以及覆盖层40而向顶部射出。 When the OLED is in operation, the functional layer 20 due to the radiative recombination of electrons and holes to emit light, light is emitted through the top layer of cathode material 30 and a cover layer 40.

[0050] 为了提高光线透过率,本发明在所述阴极材料层30(折射率为c)与所述覆盖层40(折射率为a)之间增加一层具有导电特性的增透层50 (折射率为b,厚度为H),根据上述原理分析可知,只要所述增透层50的折射率满足:c>b>a,或者c〈b〈a,即可使得所述增透层50具有增透效果。 Increase between [0050] In order to improve light transmittance in the present invention the cathode material layer 30 (refractive index c) and the cover layer 40 (refractive index a) a layer having a conductive property antireflective layer 50 (refractive index is b, a thickness H), seen from the analysis of the above principle, as long as the refractive index of the antireflective layer 50 satisfies: c> b> a, or c <b <a, so that the antireflective layer can 50 has the antireflection effect.

[0051] 至于说所述增透层50的光学厚度还有另外的要求:bXH不能是光线波长的四分之一的偶数倍,在实际的OLED中却不用过多地考虑这一因素。 [0051] As for the anti-reflection layer there is a further requirement of optical thickness 50: bXH is not an even multiple of a quarter wavelength of light, but do not consider this factor too much in practice in an OLED. 理由是:有机层20的空穴注入层(HIL)与所述电子注入层21 (EIL)辐射复合发光产生的光线的波长范围是一个连续区间,假设为[λΐ,λ 2],其光谱并非只有一个或数个离散点,因此,即使所述增透层50对于[λΐ,λ 2]中的某一个波长值或某几个波长值不具有增透作用,但对于整个波长范围[入1,λ 2]来说,所述增透层50整体上仍然能够起到增透效果,但具体的厚度需要根据实际情况进行厚度优化调节。 The reason is: an organic hole injection layer (HIL) 20 wavelength range of light produced by the (EIL) radiative recombination emission electron injection layer 21 is a continuous range, assuming [λΐ, λ 2], which is not a spectrum only one or a plurality of discrete points, and therefore, even if the anti-reflection layer 50 for [λΐ, λ 2] a value of a wavelength or several wavelengths values ​​having no anti-reflection effect, but for the entire wavelength range [1 into , λ 2], the gain on the reflection layer 50 is still able to play the entire antireflection effect, but the specific thickness needs to be adjusted to optimize the thickness of the actual situation.

[0052] 当然,对应于不同发光特性的OLED (如红光、绿光、蓝光0LED、白光0LED),其要求主要通过的光线波长也不相同,因此需要对所述增透层50的光学厚度bXH进行调整。 [0052] Of course, corresponding to the different emission characteristics of the OLED (such as red, green, blue 0LED, white 0LED), primarily by the wavelength of light which is not the same requirement, it is necessary for the optical thickness of the antireflective layer 50 bXH be adjusted. 以要求主要通过人眼最敏感的500nm的光为例,此时,应当尽量避免所述增透层50的光学厚度b XH的靠近500nm的四分之一的偶数倍,并尽量使所述增透层50的光学厚度bXH靠近500nm的四分之一的奇数倍,以使波长为500nm的光能够最大程度地由顶发光OLED的顶部穿出。 Most sensitive to the human eye 500nm light primarily by requiring for example, the case should be avoided by an even multiple of a quarter of the thickness of the optical transparent layer 50 b XH near 500nm and try to increase the permeable layer 50 of the optical thickness of 500nm bXH close to an odd multiple of one quarter, so that light having a wavelength of 500nm to the greatest extent from the top piercing the top emission OLED. 值得一提的是,具体增透层的厚度需要根据实际情况和需要进行厚度优化调节(厚度可能会比四分之一的波长更小,但是依然有增透的功能),以使得透过率极大。 It is worth mentioning that the specific thickness of the antireflective layer thickness needs to be optimized in accordance with actual situation and needs adjustment (may be smaller than the thickness of a quarter wavelength, but still functional AR), so that the transmittance great.

[0053] 为了使所述阴极材料层30 (折射率为C)、所述覆盖层40 (折射率为a)以及所述增透层50 (折射率为b)的折射率满足:c>b>a,或者c〈b〈a,所述阴极材料层30、所述覆盖层40以及所述增透层50的材料可做多种选择,在此分两种情况举例说明: [0053] In order to make the cathode material layer 30 (refractive index C), the cover layer 40 (refractive index a) and the anti-reflection layer 50 (refractive index b) the refractive index satisfies: c> b > a, or c <b <a, the cathode material layer 30, the covering material 40 and the layer of anti-reflection layer 50 to do a variety of options, here exemplified two cases:

[0054] (I) c>b>a [0054] (I) c> b> a

[0055] 所述覆盖层40选用LiF(折射率为I. 4)或者其他的有机材料如NPB、TPD(折射率约I. 8左右)或者Alq3 (折射率为1.71)。 [0055] The cover layer 40 is chosen LiF (refractive index I. 4) or other organic materials such as NPB, TPD (refractive index of about about I. 8) or Alq3 (refractive index 1.71).

[0056] 此时,若所述阴极材料层30的材料选用ΙΖ0,则所述增透层50的材料可选用ΙΤ0。 [0056] At this time, if the cathode material layer material 30 is selected ΙΖ0, then the antireflective layer material 50 may be selected ΙΤ0.

[0057] 如表I所示,是各种材料在550nm波长处的折射率和消光系数: [0057] As shown in Table I, the refractive index and extinction coefficient at a wavelength of 550nm in a variety of materials:

[0058]表 I [0058] TABLE I

[0059] [0059]

Figure CN102820433AD00071
Figure CN102820433AD00081

[0060](注:表I只是用来做参考,并不表示都可以用来做阳极或阴极。) [0060] (Note: only used for reference in Table I, does not mean that can be used as the anode or cathode.)

[0061] (2)c〈b〈a [0061] (2) c <b <a

[0062] 所述覆盖层40可选用ΝΡΒ、ΊΉ)或者Alq3等有机材料(折射率约在I. 8-1. 9之间)或者ZnSe (折射率为2. 89)或Ta2O5 (折射率为2. 16)。 [0062] The cover layer 40 may be selected ΝΡΒ, ΊΉ) or an organic material such as Alq3 (a refractive index between about I. 8-1. 9) or the ZnSe (refractive index 2.89) or Ta205 (refractive index 2.16).

[0063] 此时,由表I可知,若所述阴极材料层30的材料选用Al,则所述增透层50的材料可选用ΙΤ0、ΙΖ0 (如果选择ZnSe做覆盖层时)等;若所述阴极材料层30的材料选用Ag,则所述增透层50的材料可选用Al、ITO或IZO……如此等等。 [0063] In this case, seen from Table I, if the material of the cathode material layer 30 of the selection of Al, the material of the antireflective layer 50 may be selected ΙΤ0, ΙΖ0 (if selected as the covering layer, ZnSe) and the like; if the said layer of cathode material 30 material selection Ag, the material of the antireflective layer 50 may be selected Al, ITO or the IZO ...... and so on.

[0064] 再详细举例如下: [0064] As another example in detail as follows:

[0065] 所述覆盖层40是选择Alq3、Liq、EML (有机发光层材料)、LiF、ZnSe中的任意一个材料构成的单层结构,或是选择其中任意至少两个材料构成的叠层结构; [0065] The cover layer 40 is selected Alq3, Liq, EML (light emitting layer is an organic material), of LiF, any of a single layer structure composed of ZnSe in a material, or choose a stacked structure in which any of the at least two material ;

[0066] 所述阴极材料层30的材料是Al、Ag、ΙΤ0, IZO、ΑΖ0、Mg:Ag或石墨烯; [0066] The material of the cathode material layer 30 is Al, Ag, ΙΤ0, IZO, ΑΖ0, Mg: Ag or graphene;

[0067] 所述增透层50的材料是Al、Ag、ΙΤ0, IZO或ΑΖ0。 [0067] The antireflective layer 50 materials are Al, Ag, ΙΤ0, IZO or ΑΖ0.

[0068] 在上述情况(I)与情况(2)中,所述增透层50的材料除了选择上述表I中列举的材料之外,还可以是复合结构的材料(例如多层不同材料组成的复合结构)或者纳米结构的材料,只要其具有导电特性以及半透明性(实际上只要足够薄均具有半透明性),并且其等效折射率b'介于a与c之间即可。 [0068] In the case of (I) and (2), the antireflective layer material 50 in addition to the choice of materials listed in Table I in addition, may also be composite structures (e.g., layers of different materials composite material) or nanostructures, as long as it has translucency and conductivity properties (actually long thin enough to have translucency), and the equivalent refractive index thereof b 'can be interposed between a and c.

[0069] 如图4所示,是本发明提供的另一种顶发光OLED阴极的增透结构,其包括阳极、功能层20、阴极材料层30 (折射率为c)与覆盖层40,为了提高光线透过率,本发明在所述阴极材料层30与所述功能层20之间增加一层具有导电特性且功函数较小(如,小于4eV)的增透层50 (折射率为b,厚度为H),并且,假设所述功能层20中与所述增透层50最贴近的一层材料的折射率为d,则只要满足公式:c>b>d,或者c〈b〈d,即可实现增透功能。 [0069] As shown in FIG 4 is another top emitting OLED antireflection structure according to the present invention provides a cathode comprising an anode, a functional layer 20, the cathode material layer 30 (refractive index c) a cover layer 40, for improve the light transmittance, the present invention adds a layer of material between the cathode layer 30 and the functional layer 20 having a conductive property and a small work function (e.g., less than 4 eV) of the anti-reflection layer 50 (refractive index b and a thickness of H), and, assuming that the functional layer 20 and the anti-reflection layer 50 closest to the refractive index of the material layer is d, as long as satisfying the formula: c> b> d, or c <b < d, antireflection function can be realized.

[0070] 在本实施例中,所述功能层20中与所述增透层50最贴近的一层是电子注入层21,此处所述的电子注入层21,既可以是仅具有电子注入功能的材料层,也可以是兼具电子注入功能与电子传输功能的掺杂层,在此以电子注入层21统称之。 [0070] In the present embodiment, the functions of the anti-reflection layer 20 and the layer 50 closest to the layer 21 is an electron injection layer, where the electron injection layer 21, may be an electron injection only function material layer, a doped layer may be both electron injection function and electron transport functions, here in the electron injection layer 21 collectively.

[0071] 本实施例中,所述阴极材料层30、所述电子注入层21以及所述增透层50的材料可做多种选择,在此分两种情况举例说明: [0071] In this embodiment, the 30, the material of the electron injection layer 21 and the anti-reflection layer 50 to do a variety of selection of the cathode material layer, two cases in this example:

[0072] (l)c〈b〈d [0072] (l) c <b <d

[0073] 所述电子注入层21选用LiF (折射率为I. 4)或者Liq (折射率为I. 7左右)。 [0073] The electron injection layer 21 is selected LiF (refractive index I. 4) or Liq (refractive index of about I. 7).

[0074] 此时,若所述阴极材料层30的材料选用Al,则所述增透层50的材料可选用Ag。 [0074] In this case, if the material of the cathode material layer 30 is selected Al, then the anti-reflection layer 50 of the material could be Ag.

[0075] (2) c>b>d [0075] (2) c> b> d

[0076] 所述电子注入层21选用K或者Ca或Mg。 The [0076] selection of the electron injection layer 21 K or Ca or Mg. 而增透层50的材料可选用Al,阴极材料层30可选用ITO或者IZO等。 AR and the material layer 50 can be selected Al, the choice of the cathode material layer 30 may be ITO or IZO and the like.

[0077] 再详细举例如下: [0077] As another example in detail as follows:

[0078] 所述功能层20中与所述增透层50最贴近的一层材料是选择LiF、CsF、Liq、K、Mg、Ca中的一个; [0078] The material layer and the functional layer 20 of the anti-reflection layer 50 is to choose the closest LiF, CsF, Liq, K, Mg, Ca in a;

[0079] 所述阴极材料层30的材料是Al、Ag、ΙΤ0, IZO、ΑΖ0、Mg:Ag或石墨烯; [0079] The material of the cathode material layer 30 is Al, Ag, ΙΤ0, IZO, ΑΖ0, Mg: Ag or graphene;

[0080] 所述增透层50的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯。 [0080] The antireflective layer 50 materials are Al, Ag, ΙΤ0, IZO, AZO, or graphene.

[0081] 同样地,在上述情况(I)与情况(2)中,所述增透层50的材料除了选择上述表I中列举的材料之外,还可以是复合结构的材料(例如多层不同材料组成的复合结构)或者纳米结构的材料,只要其具有半透明性和导电特性,并且功函数较小(如,小于4eV),并且其等效折射率b'介于c与d之间即可。 Materials [0081] Similarly, in the case of (I) and (2), the antireflective layer 50 in addition to the choice of materials listed in Table I in addition, it may be a material (e.g., a multilayer composite structure the composite structure of different materials), or nano structures, as long as it has translucency and conductivity characteristics and a small work function (e.g., less than 4 eV), and the equivalent refractive index which b 'is between c and d It can be.

[0082] 如图5所示,是本发明提供的一种底发光OLED阳极的增透结构,所述底发光OLED的阴极60的结构在此不予赘述,在所述阴极60下方还覆盖有功能层20与阳极材料层70(折射率为e),而本发明更在所述阳极材料层70与所述功能层20之间添加了增透层50(折射率为b),而且所述功能层20中最贴近所述增透层50的一层材料的折射率为f,此时,要求所述增透层50具有导电特性和较高的功函数(如大于4. 5eV,以利于空穴的注入),并且满足公式:e>b>f,或者e〈b〈f。 [0082] As shown in FIG 5 is a bottom antireflection structure of a light-emitting OLED of the present invention provides an anode, a cathode structure of the bottom emitting OLED 60 is not described herein further below the cover 60 has a cathode functional layer 20 and the anode material layer 70 (refractive index e), but the present invention is more material between the anode layer 70 and the functional layer 20 adds antireflective layer 50 (refractive index b), and the functional layer 20 closest to the permeable layer of material increasing the refractive index of layer 50 is f, at this time, the required anti-reflection layer 50 having a conductive property and a high work function (e.g., greater than 4. 5eV, in order to facilitate injection of holes), and satisfies the equation: e> b> f, or e <b <f.

[0083] 在本实施例中,所述功能层20中与所述增透层50最贴近的一层是空穴注入层22(HIL),此处所述的空穴注入层22,既可以是仅具有空穴注入功能的材料层,也可以是兼具空穴注入功能与空穴传输功能的掺杂层,在此以空穴注入层22统称之。 [0083] In the present embodiment, in the functional layer 20 and the anti-reflection layer 50 is a layer closest to the hole injection layer 22 (the HIL), the hole injection layer 22 herein, either only the hole injection layer of a material having a function of, and may be both a hole injection function and hole transport function doped layers in this order of the hole injection layer 22 collectively.

[0084] 在本实施例中,所述阳极材料层70、所述空穴注入层22以及所述增透层50的材料可做多种选择,在此分两种情况举例说明: [0084] In the present embodiment, the anode material layer 70, the material of the hole injection layer 22 and the anti-reflection layer 50 to do a variety of options, here exemplified two cases:

[0085] (I) e<b<f [0085] (I) e <b <f

[0086] 所述空穴注入层22选用NPB、TPD,或m-MTDATA等中的一种。 One kind of [0086] selection of the hole injection layer 22 NPB, TPD, m-MTDATA, or the like.

[0087] 此时,若所述阳极材料层70的材料选用Al,则所述增透层50的材料可选用ΙΤ0。 Materials [0087] In this case, if the material of the anode material layer 70 of the selection Al, then the anti-reflection layer 50 may be selected ΙΤ0.

[0088] (2) e>b>f [0088] (2) e> b> f

[0089] 所述空穴注入层22选用NPB、TPD,或m-MTDATA等中的一种。 One kind of [0089] selection of the hole injection layer 22 NPB, TPD, m-MTDATA, or the like.

[0090] 此时,若所述阳极材料层70的材料选用ΙΖ0,则所述增透层50的材料可选用ΙΤ0。 [0090] In this case, if the material of the anode material layer 70 of the selection ΙΖ0, then the antireflective layer material 50 may be selected ΙΤ0.

[0091] 再详细举例如下: [0091] As another example in detail as follows:

[0092] 所述功能层20中与所述增透层50最贴近的一层材料是NPB、TPD或m-MTDATA ; [0092] The functional layer 20 and the anti-reflection layer 50 closest to the layer of material is NPB, TPD or m-MTDATA;

[0093] 所述阳极材料层70的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯; Materials [0093] The anode material layer 70 is Al, Ag, ΙΤ0, IZO, AZO, or graphene;

[0094] 所述增透层50的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯。 [0094] The antireflective layer 50 materials are Al, Ag, ΙΤ0, IZO, AZO, or graphene.

[0095] 同样地,在上述情况(I)与情况(2)中,所述增透层50的材料除了选择上述表I中列举的材料之外,还可以是复合结构的材料(例如多层不同材料组成的复合结构)或者纳米结构的材料,只要其具有半透明、导电特性和较高的功函数(如大于4. 5eV),并且其等效折射率b'介于e与f之间即可。 Materials [0095] Similarly, in the case of (I) and (2), the antireflective layer 50 in addition to the choice of materials listed in Table I in addition, it may be a material (e.g., a multilayer composite structure the composite structure of different materials), or nano structures, as long as it has translucency, conductive properties and high work function (e.g., greater than 4. 5eV), and the equivalent refractive index which b 'is interposed between the e and f It can be.

[0096] 如图6所示,是本发明提供的另一种底发光OLED阳极的增透结构,所述底发光OLED的阴极下方还覆盖有功能层20与阳极材料层70 (折射率为e),而本发明更在所述阳极材料层70下方覆盖一层增透层50 (折射率为b),而且所述功能层20中最贴近所述阳极材料层70的一层材料的折射率为f,此时,要求所述增透层50具有半透明和导电特性,并且满足公式:f > e > b,或者f < e〈b。 6 [0096], is the antireflection structure of the present invention provides another bottom emitting OLED anode, a cathode of the bottom emission OLED below is further covered with a functional layer 20 and the anode material layer 70 (refractive index e ), but the present invention is more in the anode material layer 70 covering the lower layer anti-reflection layer 50 (refractive index B), and the functional layer 20 closest to the refractive index of the material layer of the anode material layer 70 is f, at this time, the required anti-reflection layer 50 having a translucent and conductive property, and satisfies the equation: f> e> b, or f <e <b.

[0097] 在本实施例中,所述功能层20中与所阳极材料层70最贴近的一层是空穴注入层22 (HIL),此处所述的空穴注入层22,既可以是仅具有空穴注入功能的材料层,也可以是兼具空穴注入功能与空穴传输功能的掺杂层,在此以空穴注入层22统称之。 [0097] In the present embodiment, the functional layer 20 and the anode material layer 70 is a layer closest to the hole injection layer 22 (the HIL), the hole injection layer 22 herein, may be a only the hole injection layer of a material having a function of, and may be both a hole injection function and hole transport function doped layers in this order of the hole injection layer 22 collectively.

[0098] 本实施例中,所述阳极材料层70、所述空穴注入层22以及所述增透层50的材料可做多种选择,在此分两种情况举例说明: [0098] In this embodiment, the anode material layer 70, the material of the hole injection layer 22 and the anti-reflection layer 50 to do a variety of options, here exemplified two cases:

[0099] (I) f < e<b [0099] (I) f <e <b

[0100] 所述空穴注入层22选用NPB、TPD,或m-MTDATA等中的一种。 One kind of [0100] selection of the hole injection layer 22 NPB, TPD, m-MTDATA, or the like.

[0101] 此时,若所述阳极材料层70的材料选用ΙΤ0,则所述增透层50的材料可选用ΙΖ0。 [0101] In this case, if the material of the anode material layer 70 of the selection ΙΤ0, then the antireflective layer material 50 may be selected ΙΖ0.

[0102] (2) f > e > b [0102] (2) f> e> b

[0103] 所述空穴注入层22选用NPB、TPD,或m-MTDATA等中的一种。 One kinds [0103] selection of the hole injection layer 22 NPB, TPD, m-MTDATA, or the like. [0104] 此时,若所述阳极材料层70的材料选用ΙΤ0,则所述增透层50的材料可选用Al、 [0104] In this case, if the material of the anode material layer 70 of the selection ΙΤ0, then the antireflective layer material 50 may be selected Al,

Ag或石墨烯。 Ag or graphene.

[0105] 再详细举例如下: [0105] As another example in detail as follows:

[0106] 所述功能层20中与所阳极材料层70最贴近的一层材料是ΝΡΒ、ΊΉ)或m-MTDATA ; [0106] The functional layer 20 and the layer 70 closest to the anode material layer is a material ΝΡΒ, ΊΉ), or m-MTDATA;

[0107] 所述阳极材料层70的材料是Al、Ag、ΙΤ0, IZO、AZO或石墨烯; Materials [0107] The anode material layer 70 is Al, Ag, ΙΤ0, IZO, AZO, or graphene;

[0108] 所述增透层50的材料是Al、Ag、ΙΤ0, ΙΖ0、ΑΖ0或石墨烯。 [0108] The antireflective layer 50 materials are Al, Ag, ΙΤ0, ΙΖ0, ΑΖ0 or graphene.

[0109] 同样地,在上述情况(I)与情况(2)中,所述增透层50的材料除了选择上述表I中列举的材料之外,还可以是复合结构的材料(例如多层不同材料组成的复合结构)或者纳米结构的材料,只要其具有半透明和导电特性,并且其等效折射率b'满足f > e > b'或者f< e < b'即可。 Materials [0109] Similarly, in the case of (I) and (2), the antireflective layer 50 in addition to the choice of materials listed in Table I in addition, it may be a material (e.g., a multilayer composite structure the composite structure of different materials), or nano structures, as long as it has translucency and conductivity properties, and the equivalent refractive index thereof b 'satisfies f> e> b' or f <e <b 'can.

[0110] 以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离权利要求所限定的精神和范围的情况下,可作出许多修改、变化或等效,但都将落入本发明的保护范围之内。 [0110] For the present invention described above is illustrative only, and not restrictive, those of ordinary skill in the art understand that in the claims without departing from the spirit and scope defined, many modifications, variations, or the like effect, but it will fall within the scope of the present invention.

Claims (12)

  1. 1. 一种OLED的增透结构,在所述OLED的阳极上依次覆盖着功能层、阴极材料层与覆盖层,其特征在于:在所述阴极材料层与所述覆盖层之间增加具有导电性的增透层,所述阴极材料层的折射率为C,所述覆盖层的折射率为a,而所述增透层的折射率b满足:c>b>a,或者c〈b〈a。 An antireflective structure of the OLED, the anode of the OLED in turn covered with a functional layer, a cathode material layer and the cover layer, wherein: the cathode material added between the cover layer and the conductive layer having of the anti-reflection layer, the refractive index of the cathode material layer is C, the refractive index of the cover layer is a, and the refractive index of the antireflective layer b satisfy: c> b> a, or c <b < a.
  2. 2.根据权利要求I所述的OLED的增透结构,其特征在于: 所述覆盖层是选择Alq3、Liq、有机发光层材料、LiF、ZnSe中的任意一个材料构成的单层结构,或是选择其中任意至少两个材料构成的叠层结构; 所述阴极材料层的材料是Al、Ag、ΙΤ0, ΙΖ0, ΑΖ0, MgiAg或石墨烯; 所述增透层的材料是Al、Ag、ΙΤ0, IZO或ΑΖ0。 The anti-reflection structure I OLED according to claim, wherein: said cover layer is selected Alq3, Liq, the organic light emitting layer material, LiF, any of a single-layer structure in ZnSe material, or select laminated structure wherein at least two of any material; the material layer of the cathode material is Al, Ag, ΙΤ0, ΙΖ0, ΑΖ0, MgiAg or graphene; material of the anti-reflection layer is Al, Ag, ΙΤ0, IZO or ΑΖ0.
  3. 3.根据权利要求I所述的OLED的增透结构,其特征在于:所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于a与c之间。 The anti-reflection structure I OLED according to claim, wherein: the antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index which b 'is interposed between the a and c .
  4. 4. 一种OLED的增透结构,在所述OLED的阳极上依次覆盖着功能层与阴极材料层,其特征在于:在所述阴极材料层与所述功能层之间增加具有导电特性的增透层,所述增透层的功函数小于4eV,所述功能层中与所述增透层最贴近的一层材料的折射率为d,而所述增透层的折射率b满足:c>b>d,或者c〈b〈d。 An antireflection structure of an OLED, the anode of the OLED in order to cover the functional layer and the cathode material layer, wherein: by having increased conductivity characteristic between the cathode material layer and the functional layer permeable layer, the antireflective layer is a work function less than 4 eV, the functional layer with increasing the layer of permeable material layer closest refractive index of d, and the refractive index of the antireflective layer b satisfy: c > b> d, or c <b <d.
  5. 5.根据权利要求4所述的OLED的增透结构,其特征在于: 所述功能层中与所述增透层最贴近的一层材料是选择LiF、CsF, Liq、K、Mg、Ca中的一个; 所述阴极材料层的材料是Al、Ag、ΙΤ0, ΙΖ0, ΑΖ0, MgiAg或石墨烯; 所述增透层的材料是Al、Ag、ΙΤ0, ΙΖ0, AZO或石墨烯。 The antireflection structure of an OLED according to claim 4, wherein: the functional layer and the antireflective layer in the closest layer of material is selected LiF, CsF, Liq, K, Mg, Ca in one; material of the cathode material layer is Al, Ag, ΙΤ0, ΙΖ0, ΑΖ0, MgiAg or graphene; material of the anti-reflection layer is Al, Ag, ΙΤ0, ΙΖ0, AZO, or graphene.
  6. 6.根据权利要求4所述的OLED的增透结构,其特征在于:所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于c与d之间。 The antireflection structure of an OLED according to claim 4, wherein: the antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index which b 'is between c and d .
  7. 7. —种OLED的增透结构,在所述OLED的阴极下方依次覆盖着功能层与阳极材料层,其特征在于:在所述阳极材料层与所述功能层之间添加有具有导电特性的增透层,所述增透层的功函数大于4. 5eV,所述阳极材料层的折射率为e,所述功能层中最贴近所述增透层的一层材料的折射率为f,所述增透层的折射率b满足:e>b>f,或者e〈b〈f。 7. - The OLED structure of the AR, below the cathode of the OLED are sequentially covered with the functional layer and the anode material layer, wherein: added between the anode material layer and the functional layer having a conductive property anti-reflection layer, increasing the work function of the transparent layer is larger than 4. 5eV, the refractive index of the anode material layer is e, the functional layer closest to the permeable layer of material increasing the refractive index of layer is f, increasing the refractive index of the transparent layer b satisfy: e> b> f, or e <b <f.
  8. 8.根据权利要求7所述的OLED的增透结构,其特征在于: 所述功能层中与所述增透层最贴近的一层材料是NPB、TPD、m-MTDATA中的一种; 所述阳极材料层的材料是Al、Ag、ΙΤ0, ΙΖ0, AZO或石墨烯; 所述增透层的材料是Al、Ag、ΙΤ0, ΙΖ0, AZO或石墨烯。 8. The antireflective structure according to claim 7 OLED, wherein: the functional layer and the antireflective layer in the closest layer of material is a NPB, TPD, m-MTDATA in; the said anode material layer material is Al, Ag, ΙΤ0, ΙΖ0, AZO or graphene; material of the anti-reflection layer is Al, Ag, ΙΤ0, ΙΖ0, AZO, or graphene.
  9. 9.根据权利要求7所述的OLED的增透结构,其特征在于:所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'介于e与f之间。 Between the antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index thereof b 'between e and f: 9. antireflective structure according to claim 7 OLED, wherein .
  10. 10. 一种OLED的增透结构,在所述OLED的阴极下方依次覆盖着功能层与阳极材料层,其特征在于:在所述阳极材料层下方添加有具有导电特性的增透层,所述阳极材料层的折射率为e,所述功能层中最贴近所述阳极材料层的一层材料的折射率为f,所述增透层的折射率b满足:f > e>b,或者f < e〈b。 AR is an OLED structure 10, below the cathode of the OLED are sequentially covered with the functional layer and the anode material layer, wherein: the anode material is added below the anti-reflection layer having a layer of conductive property, the refractive index of the anode material layer is e, the refractive index of the functional layer closest to the anode material layer of the layer of material is f, increasing the refractive index of the transparent layer b satisfy: f> e> b, or f <e <b.
  11. 11.根据权利要求10所述的OLED的增透结构,其特征在于: 所述功能层中最贴近所述阳极材料层的一层材料是NPB、TPD、m-MTDATA中的一种; 所述阳极材料层的材料是Al、Ag、ΙΤ0, ΙΖ0, AZO或石墨烯;所述增透层的材料是Al、Ag、ITO, ΙΖ0, AZO或石墨烯。 11. The antireflection structure of an OLED according to claim 10, wherein: said functional layer closest to the anode material layer is a layer of material NPB, TPD, m-MTDATA of one; the material of the anode material layer are Al, Ag, ΙΤ0, ΙΖ0, AZO or graphene; material of the anti-reflection layer is Al, Ag, ITO, ΙΖ0, AZO, or graphene.
  12. 12.根据权利要求10所述的OLED的增透结构,其特征在于:所述增透层是复合结构的材料或者纳米结构的材料,且其等效折射率b'满足:f > e>b'或者f < e〈b'。 12. The antireflection structure of an OLED according to claim 10, wherein: the antireflective layer is a material or a material nanostructured composite structure, and the equivalent refractive index thereof b 'satisfies: f> e> b 'or f <e <b'.
CN 201210320027 2012-08-31 2012-08-31 Oled antireflection structure CN102820433B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210320027 CN102820433B (en) 2012-08-31 2012-08-31 Oled antireflection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210320027 CN102820433B (en) 2012-08-31 2012-08-31 Oled antireflection structure

Publications (2)

Publication Number Publication Date
CN102820433A true true CN102820433A (en) 2012-12-12
CN102820433B CN102820433B (en) 2016-05-25

Family

ID=47304404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210320027 CN102820433B (en) 2012-08-31 2012-08-31 Oled antireflection structure

Country Status (1)

Country Link
CN (1) CN102820433B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594489A (en) * 2013-11-29 2014-02-19 信利半导体有限公司 Organic light-emitting diode (OLED) display device with touch control function
CN103840088A (en) * 2013-12-20 2014-06-04 友达光电股份有限公司 Organic electroluminescence element
CN103928635A (en) * 2014-04-18 2014-07-16 上海和辉光电有限公司 OLED device anode structure
CN104425747A (en) * 2013-08-23 2015-03-18 业鑫科技顾问股份有限公司 Organic light-emitting diode packaging structure and preparation method thereof
CN104485429A (en) * 2014-12-31 2015-04-01 北京维信诺科技有限公司 OLED device with optical resonance layer, manufacturing method of OLED device and displayer
CN104752621A (en) * 2013-12-26 2015-07-01 昆山工研院新型平板显示技术中心有限公司 Method for improving the display quality of active matrix organic light-emitting display
CN105514293A (en) * 2016-01-21 2016-04-20 深圳市华星光电技术有限公司 Organic light-emitting diode and organic light-emitting diode display panel
CN105720208A (en) * 2016-02-29 2016-06-29 广州新视界光电科技有限公司 Organic light-emitting device
CN105810842A (en) * 2014-12-29 2016-07-27 昆山国显光电有限公司 Anode structure of organic light emitting diode
CN105826354A (en) * 2016-04-14 2016-08-03 鄂尔多斯市源盛光电有限责任公司 Array substrate, display panel and display device
WO2017020475A1 (en) * 2015-08-04 2017-02-09 京东方科技集团股份有限公司 Oled light-emitting device, preparation method therefor and display device
WO2017075880A1 (en) * 2015-11-04 2017-05-11 深圳市华星光电技术有限公司 Oled display and display module thereof
CN106848083A (en) * 2017-03-22 2017-06-13 上海天马有机发光显示技术有限公司 OLED (Organic Light Emitting Diode) display panel, manufacturing method thereof and electronic equipment including OLED display panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032576A1 (en) * 2002-10-01 2004-04-15 Philips Intellectual Property & Standards Gmbh Electroluminescent display with improved light outcoupling
CN1596040A (en) * 2003-09-10 2005-03-16 三星Sdi株式会社 Light-emitting device substrate and light-emitting device using the same
US20070159087A1 (en) * 2006-01-09 2007-07-12 Au Optronics Corp. Organic light-emitting device
CN101044642A (en) * 2004-11-16 2007-09-26 国际商业机器公司 Organic light emitting devices comprising dielectric capping layers
US20080157664A1 (en) * 2006-12-27 2008-07-03 Cok Ronald S Oled with protective bi-layer electrode
CN101978780A (en) * 2008-03-28 2011-02-16 住友化学株式会社 Organic electroluminescent device
CN102110784A (en) * 2011-01-17 2011-06-29 西安文景光电科技有限公司 OLED (organic light-emitting diode) device with all-inorganic auxiliary layer and preparation method thereof
CN102569663A (en) * 2010-12-16 2012-07-11 财团法人工业技术研究院 Stacked electrode and photo-electric device having the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032576A1 (en) * 2002-10-01 2004-04-15 Philips Intellectual Property & Standards Gmbh Electroluminescent display with improved light outcoupling
CN1596040A (en) * 2003-09-10 2005-03-16 三星Sdi株式会社 Light-emitting device substrate and light-emitting device using the same
CN101044642A (en) * 2004-11-16 2007-09-26 国际商业机器公司 Organic light emitting devices comprising dielectric capping layers
US20070159087A1 (en) * 2006-01-09 2007-07-12 Au Optronics Corp. Organic light-emitting device
US20080157664A1 (en) * 2006-12-27 2008-07-03 Cok Ronald S Oled with protective bi-layer electrode
CN101978780A (en) * 2008-03-28 2011-02-16 住友化学株式会社 Organic electroluminescent device
CN102569663A (en) * 2010-12-16 2012-07-11 财团法人工业技术研究院 Stacked electrode and photo-electric device having the same
CN102110784A (en) * 2011-01-17 2011-06-29 西安文景光电科技有限公司 OLED (organic light-emitting diode) device with all-inorganic auxiliary layer and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. RIEL等人: "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study", 《JOURNAL OF APPLIED PHYSICS》, vol. 94, no. 8, 15 October 2003 (2003-10-15), XP012060416, DOI: doi:10.1063/1.1605256 *
JIN CAO等: "RGB tricolor produced by white-based top-emitting organic light-emitting diodes with microcavity structure", 《CURRENT APPLIED PHYSICS》, vol. 7, 9 November 2006 (2006-11-09), pages 300 - 304, XP029154376, DOI: doi:10.1016/j.cap.2006.09.002 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425747A (en) * 2013-08-23 2015-03-18 业鑫科技顾问股份有限公司 Organic light-emitting diode packaging structure and preparation method thereof
CN103594489B (en) * 2013-11-29 2016-04-13 信利光电股份有限公司 oled having a touch function of the display device
CN103594489A (en) * 2013-11-29 2014-02-19 信利半导体有限公司 Organic light-emitting diode (OLED) display device with touch control function
US9190625B2 (en) 2013-12-20 2015-11-17 Au Optronics Corporation Organic electroluminescent device having conductive layers in a cathode layer and an electron transporting layer having a metal complex
CN103840088A (en) * 2013-12-20 2014-06-04 友达光电股份有限公司 Organic electroluminescence element
CN104752621A (en) * 2013-12-26 2015-07-01 昆山工研院新型平板显示技术中心有限公司 Method for improving the display quality of active matrix organic light-emitting display
CN104752621B (en) * 2013-12-26 2017-05-17 昆山工研院新型平板显示技术中心有限公司 A method of increasing active matrix organic light emitting display quality display method
CN103928635A (en) * 2014-04-18 2014-07-16 上海和辉光电有限公司 OLED device anode structure
CN105810842A (en) * 2014-12-29 2016-07-27 昆山国显光电有限公司 Anode structure of organic light emitting diode
CN104485429A (en) * 2014-12-31 2015-04-01 北京维信诺科技有限公司 OLED device with optical resonance layer, manufacturing method of OLED device and displayer
WO2017020475A1 (en) * 2015-08-04 2017-02-09 京东方科技集团股份有限公司 Oled light-emitting device, preparation method therefor and display device
US9899633B2 (en) 2015-11-04 2018-02-20 Shenzhen China Star Optoelectronics Technology Co., Ltd OLED display and display module having gradient change of reflectivities
WO2017075880A1 (en) * 2015-11-04 2017-05-11 深圳市华星光电技术有限公司 Oled display and display module thereof
CN105514293A (en) * 2016-01-21 2016-04-20 深圳市华星光电技术有限公司 Organic light-emitting diode and organic light-emitting diode display panel
CN105720208A (en) * 2016-02-29 2016-06-29 广州新视界光电科技有限公司 Organic light-emitting device
CN105826354A (en) * 2016-04-14 2016-08-03 鄂尔多斯市源盛光电有限责任公司 Array substrate, display panel and display device
CN106848083A (en) * 2017-03-22 2017-06-13 上海天马有机发光显示技术有限公司 OLED (Organic Light Emitting Diode) display panel, manufacturing method thereof and electronic equipment including OLED display panel

Also Published As

Publication number Publication date Type
CN102820433B (en) 2016-05-25 grant

Similar Documents

Publication Publication Date Title
US20100001301A1 (en) Organic light emitting device, method for producing thereof and array of organic light emitting devices
US6989280B2 (en) Organic light-emitting diode devices having reduced ambient-light reflection and method of making the same
Hong et al. Recent developments in light extraction technologies of organic light emitting diodes
US20070063641A1 (en) OLED device having improved light output
US20080297045A1 (en) Led device having improved light output
US20070063628A1 (en) OLED device having improved light output
CN202145468U (en) Flexible organic electroluminescent device
Cho et al. Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics
Yang et al. High-contrast top-emitting organic light-emitting devices for active-matrix displays
JP2008251217A (en) Organic electroluminescent element
Yang et al. Organic light-emitting devices integrated with solar cells: High contrast and energy recycling
JP2009266524A (en) Organic el display device
WO2013024787A1 (en) Organic electroluminescent element
US7825570B2 (en) LED device having improved contrast
CN104124259A (en) Organic light emitting diode display device and method of fabricating the same
JP2006165034A (en) Organic el device
CN101540373A (en) Blue-light top luminous organic diode structure and fabricating method thereof
CN102832356A (en) Organic light-emitting diode (OLED) packaging structure, manufacturing method thereof and luminescent device
CN102054938A (en) Sandwich anode structure of organic electroluminescent device and preparation method thereof
US20100194267A1 (en) Light Emitting Device with High Outcoupling
CN1518132A (en) Organic light-emitting dipolar body fer lowering external light reflection and its manufacturing process
JP2012227122A (en) Organic el device
Ho et al. Enhanced light out-coupling of organic light-emitting diode using metallic nanomesh electrodes and microlens array
CN103872261A (en) Organic electroluminescent device and display device
CN102074568A (en) The organic light emitting diode display

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model