CN102820134A - 可变电容系统 - Google Patents

可变电容系统 Download PDF

Info

Publication number
CN102820134A
CN102820134A CN2011101552636A CN201110155263A CN102820134A CN 102820134 A CN102820134 A CN 102820134A CN 2011101552636 A CN2011101552636 A CN 2011101552636A CN 201110155263 A CN201110155263 A CN 201110155263A CN 102820134 A CN102820134 A CN 102820134A
Authority
CN
China
Prior art keywords
electrode
electricity
dielectric layer
variable capacitive
capacitive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101552636A
Other languages
English (en)
Inventor
迪斯培司吉丝兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority to CN2011101552636A priority Critical patent/CN102820134A/zh
Publication of CN102820134A publication Critical patent/CN102820134A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明公开一种可变电容系统,其包含第一电极,第二电极,一层弹性可变行的介电层,其中该介电层位在该第一电极和第二电极间,其中驻电体和第一电极形成第一电容器,以及驻电体和第二电极形成第二电容器,第一及第二电容器的电容质随介电层的变形而变化,且第一电极、第二电极和第一驻电体随着介电层来变形,介电层的变形使得第一和第二电容器的电容值反向变化,第一电极设置有包含驻电体的沟槽,其中沟槽的边缘和位在沟槽内的驻电体形成第一电容器,其中驻电体形成在介电层的上方或内部。

Description

可变电容系统
技术领域
本发明是利用在其端子施以电压,可以用來回复能量或是作为致动器的可变电容组件,特别是有关利用一个或是多个驻极体来偏压的可变电容组件。
背景技术
在能量回复的领域里,可变电容系统是大家所熟知的,而此系统会包含至少一个固定电极,以及至少一个可动的相反电极,并且有一空气间隙在两极之间。可动电极在某一精确时刻中,通过外部的震动以及对系统的充电放电而来移动,因此可将震动的能量转换为电能。
利用可变形的高分子形成空气间隙的系统也是大家所熟悉的,例如Claire Jean-Mistral,Skandar Basrour,Jean-JacquesChaillout合着的「Dielectric polymer:scavenging energy fromhuman motion 」,由Yoseph Bar-Cohen主编的「Electroactive PolymerActuators and Devices 」(EAPAD)2008,发表于Proceedings of theSPIE,Volume 6927,pp.692716-1-692716-10(2008)。这些系统需要在每一周期对结构施以偏压来产生能量回复周期。上述的偏压需要电子装置来将电荷转移到静电结构上,提供随时可用的最小能量,以及侦测最大电容值。如此造成无法忽略的电能损失,且使得系统非常复杂。
利用驻电体来偏压电极也是大家所熟知的,如此就不需要每一周期都对结构施以偏压,也不需要控制充电放电。要提醒的是驻电体是一种储存电荷的电性绝缘物质,包括电子及离子。虽然驻电体可以强行偏压,但却无法导电。
利用驻电体来形成能量回复系统是大所熟知的。例如T.Tsutsumino,Y.Suzuki,N.Kasagi,K.Kashiwagi,Y.Morizawa于日本高松「Proceedings of the 23rd Sensor Symposium 2006」pp.521-524所发表的「Efficiency Evaluation of Micro Seismic ElectretPower Generator 」。他们所发表的结构包含一个位在基电极的驻电体,两者并形成一个具有固定电容值的电容器,以及一个可动电极。可动电极和驻电体之间由一层空气层隔开,可动电极并和驻电体形成一个可变电容器。可动电极和驻电体平行移动。由可动电极和驻电体所形成的可变电容器其电容值的变化可通过相对的两表面的变化而得。
取决在可动电极的位置,电荷会通过基电极和可动电极之间的电荷电阻器,在基电极和可动电极之间做电荷的重新分布。
其它为人所熟知的利用驻电体的可变电组能量回复系统,例如「An Electret-based Electrostatic μ-generator 」,T.Sterken,P.Fiorini,K.Baert,R.Puers,G.Borghs发表于June 8-12,2003,美国波士顿「The 12th International Conference on Solid StateSensors,Actuators and Microsystems 」的TRANSDUCERS’03,0-7803-7731-1/03/$17.00
Figure BDA0000067231530000021
2003 IEEE 1291,pages 1291-1294,以及T.Sterken,P.Fiorini,G.Altena,C.Van Hoof和R.Puers发表的「Harvesting Energy from Vibrations by a Micormachined ElectretGenerator 」,1-4244-0842-3/07/$20.00
Figure BDA0000067231530000022
2007 IEEE,pages 129-132。
因此,最好是能够形成一个可变电组系统,此系统包含一个由可变形的介电材料所形成的空气间隙,就不会有跟偏压有关的问题。
本发明的目的是在提供一个可变电组系统,此系统包含一个由可弹性变形的材料所形成的空气间隙,且和目前的系统比起来是相当简单的设计。
发明内容
上述目的可通过一系统来完成,该系统包含至少两电极,两电极之间有一介电物质,其中至少一电极包含两部位,这两部位可以移动来互相靠近或是互相远离,其中有一驻电体位在该些部位之间。驻电体和第一电极共同形成第一可变电容器,和第二电极形成第二可变电容器。
换句话说,系统是通过电极的变形来将机械能转换成电能或是将电能转换成机械能,其中该系统包含至少两可变电容器,每一可变电容器由一驻电体来偏压,而且当该系统变形时,电容器的电容值反向变化。也就是说当一个电容器的电容值上升时,另一个电容器的电容值就下降。通过电容值的反向变化来移动电极间的电荷并产生电能。
一实施例包含一结构,该结构包含可在该结构平面上弹性变形的切口(cut out),其中驻电体位在其所形成的范围中。有一包含切口的电极,通过使用该电极,则有可能在同一介电物质上得到与电容值反向的变化,如此就可使得电极间的电荷产生变化,也因而在电极间产生电流。
也可以使用包含螺旋缠绕线路的电极,其中电极由该线路螺旋缠绕而成,或以介电物质围绕而驻电体位在线路所缠绕的两围圈之间。
更佳的,两电极包含切口,因而可以增加电能回复的量,或是两电极是以螺旋缠绕的线路的形式。
本发明主要是一可变电容系统,该可变电容系统包含一第一电极,一第二电极,一层可弹性变形介电物质层,其中该介电层位在该第一及第二电极之间,一第一驻电体和该第一电极形成一第一电容器,该第一驻电体和该第二电极形成一第二电容器,其中该第一及第二电容器的电容值随该介电层变形而变化。第一电极、第二电极、第一驻电体也因而随着介电层的变形而变形,介电层的变形使该第一及第二电容器的电容值反向变化,第一电极包含至少两部位,该两部位可以互相靠近或远离,其中该驻电体该第一电极的该两部位之间,该两部位的边缘与该第一驻电体型成该第一电容器,其中该第一驻电体位在该介电层的上方或内部。
在一实施例中,至少该第一电极装置有至少一沟槽而该第一驻电体位在该沟槽,其中该槽的边缘与位在该槽的该第一驻电体形成该第一电容器,其中该第一驻电体位在该介电层的上方或内部。
在另一实施例中,该可变电容系统包含一具有纵长轴的圆柱,该第一电极由一导电线路延一纵长轴围绕形成并且形成一连串的围圈,其中该第一驻电体位在两连续围圈之间。
该第二电极大略为一固体层且被该介电层覆盖,其中该第一电极覆盖在该介电层的那一面是相对于该介电层与第二电极接触的那一面。
在一变化型中,该第二电极可以由延一纵长轴缠绕而形成一连串围圈的导电线路所形成,其中一第二驻电体位在至少两连续围圈内,其中该第一及第二电极的围圈之间有一偏移使得该第一及第二电极不会在径向方向上对齐。
在另一变化型中,该第二电极也包含至少一沟槽,一第二驻电体位在该沟槽中且其中所储存的电荷与该第一驻电体所储存的电荷电性相反,使得该第二电极与该第二驻电体形成一第四可变电容器,该第一电极与该第二驻电体形成一第五可变电容器,其中,当介电质发生变形时,该第一及第四可变电容器的电容值的变化为同相变化,第二及第五可变电容器的电容值的变化介电层的变形为同相变化。
例如,该第一及/或第二驻电体可以沉积在该沟槽中央或是两连续围圈所界定的区域的中央。这样的实施例尤其适用在刚性的驻电体。
在一变化型中,该第一及/或第二驻电体填充该沟槽并与该沟槽边缘接触,或是填充两连续围圈所界定的范围并与该些围圈接触。
在另一变化型中,该第一及/或第二驻电体可以由该沟槽来界定的介电层的离子化来形成,例如利用电晕法。这个实施例可以避免在介电层上做沉积。
在一变化型中,该第一及/或第二驻电体为堆积在介电层的粉末。
举例来说,介电层是由高分子物质所形成,例如
Figure BDA0000067231530000051
形式,更佳的为VHB F9460,VHB F9469,VHB F9473,
Figure BDA0000067231530000052
甚或
Figure BDA0000067231530000053
而该第一及第二电极是由例如铜、银、银膏、碳粉、金或导电的高分子等制成。
更佳的是,该第一及/或第二电极为可弹性变形的结构。
该第一及/或第二电极可以由一组互相连通的长条所组成,这些长条形成格子并界定出一些沟槽,而该第一及/或第二电极就位在这些沟槽中。
这个格子结构可能在其平面上的一个方向的变形不会或几乎不会在其平面的另一个方向上引起变形。例如这些长条一个接一个形成树状结构,借着分支的端点来电性相连,或者这些长条形成一列一列平行的V字图案,这些列之间以在两连续列之间延伸的连接长条来电性相连。
这个格子结构可能在其平面上的一个方向的变形会引起其平面上的另一个方向变形。在这个例子中,格子可能包含一列一列的锯尺形图案,连续的两列偏移半个齿距,使得连续的两列锯尺图案界定出一串菱形图案,其中菱形顶端有连接长条来连接连续的两列。
这些长条也可能界定出蜂巢状的沟槽。此型是特别适用在刚性的驻电体,规律地沉积在沟槽的中央。
更佳的,由介电层隔开的第一及第二电极所形成的电容器,其电容值为最小。要达到这样的结果,第二电极的结构要能使第一及第二电极相向的表面减少。
本发明的标的为一可变电容组合,至少包含根据本发明的两系统,其中该些系统为迭加在一起,且一介电层沉积在一系统的第二电极与另一系统的第一电极之间。
本发明的标的为将机械能转换成电能的一系统,包含至少一根据本发明的系统,其中机械能与电能的转换发生在该介电层初期的形式的变形阶段,以及由变形后回到初期形式的回复阶段。
将机械能转换成电能的该系统可能为开关形式,其设计为传送指令到一装置,在第一变形阶段产生的电能用来传送指令到该家用装置,然后该转换系统即可自我供电。
该可变电容系统可能为圆柱袖状体,其中导线沿着袖状体的轴部方向缠绕,其中该袖状体在其轴部的端点固定两组件,可以沿着袖状体的轴部移动来互相靠近或互相远离,如此则两组件轴向的相对运动造成袖状体的变形。在一变化型中,该可变电容系统的层与层之间,在袖状体固定在两组件的纵长轴端点上,包含一刚性膜。
本发明的标的亦为一致动器,包含根据本发明的一系统,其中在该第一及第二电极之间施以偏压,使得该系统的一均平面的变形及/或一方向变形,而该方向与该均平面正交,或者是沿着该袖状体的纵长轴来变形。
本发明的标的亦为制造方法,可以制造根据本发明的一可变电容系统,包含下列步骤:
沉积该第一电极在该介电层的一面,例如利用微影术;
在该第一电极的至少一沟槽内沉积一物质,该物质用来形成第一驻电体,例如,铁弗龙或是聚对二甲苯;
对该物质施以偏压;
在该介电层的另一面上沉积该第二电极,例如利用微影术。
根据本发明的方法可能还包含以下其它步骤:
在该第二电极的至少一沟槽中沉积一物质,该物质用来被施以偏压来形成该第二驻电体,例如,铁弗龙或是聚对二甲苯;
对该物质施以偏压。
在沉积该第一电极前,借着该介电层的延展来施以预载也可为方法所包含的一步骤,而在对该第一及第二驻电体施以偏压后调整预载,也可为方法所包含的一步骤。
根据本发明的方法可能使用一长条状介电层,其各区域可同时承受此制造方法的不同步骤。
在此制造方法的最后阶段,此长条状介电层可以自我缠绕而形成多层可变电容系统。
附图说明
图1为本发明的可变电容系统在未变形阶段的实施例的侧视图;
图1’为图1的系统的详细示意图;
图1”为图1的变化型的详细示意图;
图2为图1的系统的变形阶段的侧视图;
图3A到图3E为本发明的系统中,包含切口的电极的实施例的上视图;
图4为本发明的未变形阶段的系统的侧视图,包含两相反电性的驻电体;
图5为图4的变形阶段的系统的侧视图;
图6为本发明根据图1的系统的而制造的多层系统的侧视图;
图7为本发明简化系统的示意图;
图8A及图8B为本发明的系统作为致动器的示意图;
图9为本发明的系统作为开关的示意图;
图10A为包含本发明的可变电容系统的组件另一实施例的透视图;
图10B为图10A的纵长剖面图;以及
图11为包含本发明的系统的制造方法的实施例的示意图。
具体实施方式
图1及图2为根据本发明的可变电容系统2的实施例,分别为非变形状态以及变形状态。
根据本发明的系统2包含一第一电极4,沉积在一层介电物质6上而形成包含切口的薄膜,其中一第二电极8形成一连续的薄膜平面,而驻电体10位在第一电极4的沟槽12内,介电物质的上方或是介电物质的内部。
介电层6可弹性变形,例如可以由
Figure BDA0000067231530000091
形式的介电高分子来制造。
一般用来形成介电层的物质是不可或是几乎不可压缩的。如此低程度的可压缩性甚或完全不可压缩,其优点是在缩减厚度时可以增加表面积,而增加厚度时就可反向地缩减表面积,如此在电容值方面可以得到增强的效果。电容值确实是正比于表面积/厚度的比值,因而表面积的增加和厚度的缩减可以使电容值大幅增加。同样的,表面积的缩减也暗示厚度的增加,因而产生不可忽略的电容值的缩减。不过具可压缩性质的介电质还是可以运用在本发明,例如含有气泡的介电值。
第二电极8可以随着介电层6来变形而不会丧失其导电特性,在其表面上可以是由导电的弹性可变形的物质来形成,或是在其表面上具有可变形的结构。第二电极8可以由相关技术文献中所描述的铜、银、金、银膏(silver grease)、碳粉、导电高分子,或是离子布植在表面的高分子所形成,例如Yoseph Bar-Cohen主编的「Electroactive Polymer Actuators and Devices 」,(EAPAD)2008,Proc.of SPIE Vol.6927 69270W-1。
当铜、银,或金作为第二电极8时,就采用弹簧形式的结构,例如以图3A到图3E为例,下文并会详细介绍。
包含切口的第一电极4所具备的结构可以在空间中至少一方向变形,使其可以随着介电层6来变形而不会失去其导电的特性。
驻电体10位在第一电极的沟槽12中。
驻电体10可能:
填入沟槽12且和第一电极4接触。在此情况下,驻电体10可以随着介电层6的变形来弹性变形;
沉积在沟槽12的中央区域,使其大约是和沟槽12的两侧边缘等距离。在此情况下,驻电体10可以是刚性的,固定的位置,几乎没有或完全没有变形。
驻电体10可以用不同的方法来形成。
就固态的驻电体10的而言,驻电体10相当准确地沉积在沟槽12的中央,以避免介电层6的延展/收缩。
就此例的可变形的驻电体10而言,其为固定在介电层6上。而粉末状的驻电体10沉积在介电层6上也是可行的方法。
介电层6由第一电极4的沟槽12所界定出的自由面区域,可以藉离子化来直接施以偏压,如此在介电层6内直接形成驻电体10。此方法的优点在是不需事先固定物质,使得驻电体10的形成可以简化并且更为快速。特定的高分子,例如铁弗龙,很适合用在此偏压方法来形成驻电体10。
此偏压方法可以为电晕形式。就此方法而言,电弧可能利用某一点与介电质之间的低电流来产生,如此有将该点和介电层之间的空气分子离子化的效果,并将其布值入介电层中。也有可能通过电子枪将电子加速打入介电层内要离子化的区域。习知技艺者对这些偏压的方法都是耳熟能详的,不再多做赘述。
以优选的例子来说,介电层可能由
Figure BDA0000067231530000101
所形成,其为具有黏着特性的可变形高分子,也就能简化将固态或是粉末状的驻电体固定在介电层的制程。
以粉末状的驻电体而言,有可能:
将未偏压的粉末沉积在高分子层,例如聚对二甲苯粉末;
使用一习知的方法,例如电晕放电、电子加速或是离子加速等形式,在高分子上对其施以偏压。
第一电极4和驻电体10形成具有可变电容值的第一电容器COND1。第二电极8和驻电体10形成第二电容器COND2。
电容器COND1和COND2如图1所示,C1为第一电极4的导电长条组和驻电体10的电荷之间的等效电容值,C2为第二电极8和储存在第二电极8的电荷之间的总等效电容。
为了简化说明,我们将以C1和C2来表示由部分第一电极4、第二电极8和驻电体10所形成的电容值。
如图1所示,第二电极8和驻电体10以及介电层6形成第二电容器COND2。第二电容器COND2的电容值C2由第二电极8和驻电体10之间的距离决定,此距离也就是介电层6的厚度,另外还和第二电极8和驻电体10相向的表面有关。
要提醒的是,电容器的电容为:
C = ϵ o ϵ r S d - - - ( I )
其中εo:真空介电系数,
εr:相对介电系数,
S:电容器两相向平面的面积,
d:两平板间的距离。
在此说明中,介电层的延展是指变形而使得厚度缩减及均平面的表面积的增加。此延展可能是借着对介电层的均平面的垂直方向施力而得,或者是在其均平面的周围向外施力,根据厚度来看,此延展可能是介电质在横向压缩或伸展阶段后,回到休息位置的一个阶段。
这里的压缩所指的是增加介电层的厚度且缩减均平面的表面积。这样的压缩可能跟随在延展变形后,或者可以施加一垂直于均平面方向的力朝远离介电层的方向施力,或是施力来压缩。
当系统如图1箭头16一般,对垂直系统的均平面的方向施力来延展时,介电层6就会变形,亦即厚度缩减而表面积增加,如图2所示。第二电极8和驻电体10随着介电层6来变形。结果相向的平面面积增加而两面之间的距离缩减。利用关系式(I),介电层6的延展使得电容值C2增加。
要提醒的是,介电层6的组成物质是不可或是几乎不可收缩的。因此体积为定值,例如,表面积的增加会有相对的厚度缩减,反之亦然。
当系统在压缩时,例如在延展状态后回复到非变形的状态,两相向面缩减且第二电极8和驻电体10之间的距离增加,因而电容值C2减少。
因此,第二电容器COND2的电容值因而为可变的。
因此会有一个延展-压缩的循环,一个第二电容器COND2的电容值C2增加及减少的循环。
图3A到图3E为包含沟槽的第一电极4的其它不同的实施例。第一电极4为长条24所组成的网状结构,形成可变形的几何构造。长条相对于彼此而言是静止的,进而形成格子的结构。优选的实施方法,是借着沉积导体、离子布值在介电质表面、蚀刻或切割导体表面来一体成形的。
格子结构的优点是在可提供大量的连结。采用这样的结构,使得连结的断裂只会产生局部的缺陷。
然而,一连串的平行且互不相连的锯尺列也在本发明的范畴中。
图1’为第一电极4和驻电体10的放大图示,特别是可以看到驻电体10分隔两长条18’和18”。
第一电极4和驻电体10也形成第一电容器COND1。另一方面,第二电容器COND2的相向两面并不是如图1所示的水平结构,而是垂直的。可以从图1看出,与第一电极4相向的面20是由长条18’的横向面所产生,而与平面20相向的驻电体10的平面22是由驻电体10的纵向面所产生。一般认为驻电体10的平面22位在靠长条18’那一边的驻电体10的表面的一半的中央位置。这样的假设可以应用在驻电体10填入沟槽12的例子当中。如果驻电体10扩展到整个内电极的空间,而且整个宽度具有均匀的电荷密度,则一半的中央也就对应到两个电极18’(或两个电极18”)的电荷的平均距离。
对固定的驻电体10而言,最好是放置在两电极的中央。
因此若定义长条18’和18”之间的距离为L,则第一电容器COND1两平板间的距离为L/4。
每一长条有两平面,每一平面为一电容器的一个平板。
当介电层6延展时,长条18’和18”之间的距离增加,如图2所示。结果是相向的两面之间的距离增加。不过当驻电体和第一电极的厚度缩减而宽度增加(未图示)时,相向两面并没有改变。利用关系式(I),延展时,第一电容器COND1的电容值减少,压缩时则增加。
电容器COND1及COND2的电容值C1及C2的改变分别归纳如下:
Figure BDA0000067231530000141
在系统的变形过程中,电容器COND1及COND2的电容值成反向变化。
电荷和电容值的关系如下:
Q=C×V(II)
Q:电容器电荷
C:电容器的电容值
V:电容器两端的电压
当系统延展时,电容值C2增加且电容值C1减少。
如果第一及第二电容器两端的电压都是定值VC,则当C2增加时,电荷Q2增加;而当C1减少时,电荷Q1减少,反之亦然。
电容值C1及C2的反向变化引起第一电极及第二电极之间电荷的变化,也就导致上下电极之间透过电荷电阻器Rc来做电荷的重分配,其中电荷电阻器Rc连接在第一电极4及第二电极8之间。结果就有电能产生。电荷电阻器Rc可能是电池或是电子组件。
又如图1所示,第一电极4和第二电极8之间还有电容值C3的第三电容器COND3,电性上与电容器COND1及COND2并联。
较佳的是电容值C3相较于C1及C2为可忽略的值,以避免限制了限制电压准位及输出功率。要有如此效果,可以缩减电极4及8的相向表面积。如此则需缩小第一电极的长条的宽度,及/或使得第二电极只有部分相对于第一电极的长条。不过这样的结构必须要确保整个第二电极是电性连续的。例如,图1”图示了本发明一实施例的系统细节,其中,第二电极8表面相对于第一电极4的部分被减少了。第二电极8’的与第一电极4相向的区域8.1’已删除。因此,当确定第二电极电性连续时,产生本质上为第一电极的”负”结构的第二电极是可以设想的。
在此实施例中,第一电极4有多个沟槽,不过一个电极4只有一个沟槽12的状况也在本发明的范围内。不过大量的沟槽12可以形成大量的第一电容器COND1,如此才能增加转换的能量。沟槽12的宽度最好是相当于介电质6的厚度,如此在压缩时沟槽12的宽度可以小于介电质6的厚度,在延展时沟槽12的宽度可以大于介电质6的厚度。如此在较佳的情况下能够使得驻电体10影响电极4压缩时的位置,及电极8延展时的位置。
进一步而言,实施例中沟槽12的边缘本质上与介电层6垂直,不过其它的角度也是在本发明的范围内。
介电层可能为
Figure BDA0000067231530000151
形式。电极可能为铜、银、银膏(silvergrease)、碳粉、金等等。驻电体可能包含以先前介绍的习知技术植入电荷的聚对二甲苯、铁弗龙或
现在我们来介绍包含切口的第一电极的实施例,如图3A到图3E所示。
一般而言,第一电极会包含固定大小及形状的沟槽,已使得整个电及表面会有相当均匀的静电效应。进一步而言,其构造需要不会妨碍到介电层的变形。因而电极的结构要能够在相当程度的变形时(>1%)不会让材料本身有太大的变形;也就是说其形状的变化来自结构中不同的部位反应,而非材料本身的压缩/延展。尤其当电极材料不太适合变形时,例如,第一电极的长条为导电金属。最后,较佳的情况为长条与长条间有相当数量的连接脉络以确保良好的连续电性。
图3A图示衫木形状的长条24,一个接着一个排列且以分支的端点来连接。长条连接起来以确保整个电极的表面都能维持电性连续。
电极在箭头26的方向上可以产生变形,在箭头26的方向上可以延展,但是在箭头26的垂直方向上只能稍微变形。
电极的结构在长条之间有大量的连接网络,和其沟槽的形状相同,而后者是完全相同的。
图3B为长条形成锯尺图案的线条,彼此平行,并且由横截的连接长条18.1来互相连接。和图3A相反的是相邻的三锯尺图案线条其横截的连接长条18.1并没有对齐。
电极在箭头26的方向可以产生变形。电极会在箭头26的方向延展,但是在和箭头26正交的方向27上只能有轻微的变形。此电极也包含同样形式的沟槽,可以大致呈现均匀的静电效应。
图3C的结构和图3B相似。不同的地方是在每个锯尺图形都会有横截的连接长条18.1,相邻两锯尺线偏移半个锯尺间距。
此电极有不同形式的沟槽,会有高密度的连接网络,并提供良好的连续电性。
此结构会沿着箭头26方向来变形。
图3D的结构的优点在可以同时沿着箭头26及箭头27来变形。介电层在第一方向上的延展也会引起弹性的介电层的同一平面上和第一方向垂直的方向上的延伸。这样的结构允许电容值的有最大的变化,并且在特定的延展幅度可以回复大量的能量。
图3D的结构包含锯尺图形的线条,其中两相邻线条的锯尺图形为两两相向。横截的连接长条18.1位在相邻两线条的两锯尺图形的端点,且是相离最远的点才相连。
图3E长条的结构为蜂巢状28。此结构的优点是在可以使用较刚性的驻电体,将其固定在沟槽的中央,此沟槽的形式可以让沟槽的长条和沟槽的中央区域之间的距离,和其它的结构比起来较为均一。
很显然地,其它的电极结构也可适用在本发明。
图4及图5为根据本发明的可变电容系统的变化型,包含第一电极4旁边的驻电体10以及第二电极108旁边的驻电体110。
我们将会对此变化型详细说明。
此第一电极4类似图1的系统里的第一电极4。然而第二电极108包含切口的结构至少在其平面上为可变型的,这和图1类似。而第二驻电体110位在第二电极108的每个沟槽112中。
第一驻电体10和第二驻电体110的电荷电性相反。例如如果第一驻电体10的电荷是负电则第二驻电体110的电荷就是正电。第一驻电体10和第二驻电体110可以是由相同的材料所形成。
图4及图5的系统包含第一驻电体10和第一电极4之间电容值为C1的第一电容器COND1,第一驻电体10和第二电极108之间电容值为C2的第二电容器COND2,第一电极4和第二电极108之间电容值为C3的第三电容器COND3,第二电极108和第二驻电体110之间电容值为C4的第四电容器COND4,以及第一电极4和第二驻电体110之间电容值为C5的第五电容器COND5。
第二驻电体110位在介电层6的上方或是介电层6的内部,其位在第二电极108的沟槽112中,这点与第一驻电体10相似。
现在要解释针对介电层6变形的形式时,各种不同电容值的变化。
介电层6延展时,与图1的系统类似,第一驻电体10和第一电极4之间的距离增加而使C1减少。第四电容器COND4和第一电容器COND1的表现是一模一样,电容值C4也减少。而第二电容器COND2的电容值C2和第五电容器COND5的电容值C5都是增加,因为他们都是正比于介电层6的表面积/厚度。
在初始状态,第一电极4一开始受到沟槽12中的第一驻电体10的影响。在延展时,第一电极4越来越不受第一驻电体10的影响,而越来越受第二驻电体110的影响。这种影响的转变也发生在第二电极108,一开始受到第二驻电体110的影响,然后越来越受第一驻电体10的影响。
这种影响的转变使得第一电极4和第二电极108之间的电荷,通过第一电极4、第二电极108和第三电容器COND3之间的电荷电阻器Rc重新分布。
如同图1的系统,具有可减少第三电容器COND3的电容值C3的优点。而这优点在此例中更容易达成,因为第二电极的切口可以使得第一电极4和第二电极108的表面因为偏移而减少相向的面积。
在压缩的情况下,电容值的变化正好相反。
下表分别显示电容器COND1、COND2、COND3、COND4、COND5的电容值C1、C2、C3、C4、C5的变化:
这样的变化使得回复的能量,也就是两电极之间移动电荷的能量可以大于图1的系统。
图6为图1的系统迭加起来的多层系统的实施例。这样的堆栈下,第一电极4和第二电极8隔着介电层6彼此相向。
这种迭加的结构可以增加回复的能量。
如同此例所示,驻电体所在的区域是对齐的,但是布局方式并不限定在此方式。在图4及图5的例子中,驻电体是分别在介电层的两表面上。不过,在一优选的实施例中,在此多层系统中,会将一层的驻电体区域和另一层的电极迭加起来,如图6’所示。
现在我们举例说明类似图1的系统的回复能量的计算。
假设系统的介电层是其相对介电系数εr为4.8。在休息状态下,介电层6的厚度为e0=50μm,表面积为SO=1cm2。
为了计算方便,考虑有一第一电极4有一长条18及驻电体10,并相应于一基本图案,如图7所示。驻电体长度d0=20μm,长条18宽度L=5μm,长条18高度h=5μm。
假设长条18和驻电体10有相同的厚度。进一步假设形成第二电容器的平板的驻电体10的平面22位在驻电体表面的一半的中央,也就是电极的长条18的电荷平均距离,亦即距离平面22为5μm的距离。
更进一步,第一电极4的表面积为表面区域S0的五分之一,驻电体10的表面积为表面区域S0的五分之四。
现在计算在延展前的电容值C1、C2、C3,分别标注为C10、C20、C30:
C 10 = ϵ 0 ϵ r S lateralupperElectrode d mean 0 = ϵ 0 ϵ r 2 5 cm 2 d mean = 8.84 · 10 - 12 · 4.8 · 2 5 · 10 - 4 5 · 10 - 6 = 339 pF
C 20 = ϵ 0 ϵ r Se electret 0 e 0 = ϵ 0 ϵ r 4 5 · 10 - 4 50 · 10 - 6 = 68 pF
C 30 = ϵ 0 ϵ r S upperelectrode e 0 = ϵ 0 ϵ r 1 5 · 10 - 4 50 · 10 - 6 = 17 pF
其中dmean为驻电体上的电荷相对于上电极的平均距离。
现在计算延展后的电容值,分别标注为C11、C21、C31。假设延展的倍数为2,且体积为定值,亦即介电层的厚度减半,而介电层的表面积变为2倍。
C 11 = ϵ 0 ϵ r S lateralupperElectrode d mean 1 = ϵ 0 ϵ r 2 5 · 10 - 4 10 · 10 - 6 = 170 pF
C 21 = ϵ 0 ϵ r S electrel e 1 = ϵ 0 ϵ r 2 · 4 5 · 10 - 4 25 · 10 - 6 = 272 pF
C 31 = e 0 e 1 C 30 = 34 pF
(假设上电极的表面积不变)
也就是说负电荷Q0储存在驻电体10使得介电层6的电场强度不会超过E0=100V/μm,藉以避免介电层崩溃。在起始位置,和第一电极4的距离为dmean0时,驻电体10的电位为V0=V20=-V10=-dmean0E0=-500V(假设放电输出时V30=0V),E0=100V/μm。
以一驻电体去产生一个204V/μm的电场已被证明是可行的,已在相关技术文献中提到。例如,「Parylene HT based electret rotorgenerator 」,MEMS 2008,Tucson,AZ,USA,January 13-17,2008,p984-987。因此,100V/μm的电场是很有根据的。
初始位置时电荷的分布为:
Q0=(C10+C20)V0=-203nC
Q10=C10V10=-C10V0=169nC
Q20=C20V0=-34nC
Q30=0nC
现在计算介电层变形后无损耗的情况下的潜在电能的增益,亦即Rc为无限大。此电路则包含三个串联的电容器,电路中电流的循环使得每一电容器的电荷产生相同的变化。此系统可以由以下的方程式来描述。
- Δ Q 1 = - Δ Q 2 = Δ Q 3 where Δ Q 1 = C 11 V 11 - Q 10 Δ Q 2 = C 21 V 21 - Q 20 Δ Q 3 = C 31 V 31 - Q 30 V 31 = V 21 + V 11
V 21 = C 11 Q 20 + C 11 Q 30 + C 31 Q 20 - C 31 Q 10 C 11 C 21 + C 11 C 31 - C 21 C 31 = - 207 V V 31 = C 11 Q 20 + C 11 Q 30 + C 21 Q 10 - C 21 Q 30 C 11 C 21 + C 11 C 31 + C 21 C 31 = 658 V
由电荷电阻器Rc看过去,Ceq为电容C1和C2串联再与电容C3并联的等效电容值,因此等效电容Ceq为:
C eq = C 11 C 21 C 11 + C 21 + C 31 = 138.6 pF
变形后,系统输出的潜在电能Ep
E p = 1 2 C eq V 31 2 = 30 μ 焦尔
如果考虑一类似图6的200层多层系统,并考虑使用的介电层数量与上述潜在电能的关系,可以得到能量密度为30μJ*200层=6mJ/cm3。
要注意的是,系统回到初始状态时会回复一等效能量。一个完整的周期会有12mJ/cm 3的回复能量。例如操作频率为1赫兹时(大约是走路时力作用在鞋子上的频率),可以得到回复能量12mW/cm3。
本发明的可变电容系统可应用在能量回复,但也可应用在致动器。通过本发明的系统,可以形成一个介电层能够延展及压缩的致动器;而不只是现有已知较适合在延展时作用的致动器,其压缩只能通过介电层的内在应力来产生。
图8A为延展模式的示意图,图8B为压缩模式的示意图。变形的模式取决在第一电极4和第二电极8之间的控制电压的正负。箭头符号表示交互作用,而不是某一特定模式的交互作用。
假设驻电体10为负偏压。
当控制电压VC为负,第二电极8为正偏压且第一电极4为负偏压。结果如图8A所示,在驻电体10和第一电极4之间,有如箭头30所示的斥力产生;在驻电体10和第二电极8之间,有如箭头32所示的吸力产生。介电层6的厚度减少且表面积增加。
当控制电压VC为正,第二电极8为负偏压且第一电极4为正偏压。结果如图8B所示,在驻电体10和第二电极8之间,有如箭头30所示的斥力产生,使得介电层6的厚度增加;在驻电体10和第一电极4之间,有如箭头32所示的吸力产生,使得介电层6的表面积减少。
要注意的是,在第一电极4和第二电极8之间也会产生吸力,这和所寻求的压缩效应相反。不过通过缩小第一电极4和第二电极8之间的电容值C3,例如缩小长条的宽度,吸力效应和其它的静电作用比起来就可以忽略了。
要注意的是本发明系统的厚度,是薄得足以使因吸力效应所产生的变形及第一电极与驻电体之间的斥力能够均匀地分配到整个系统的厚度上。进一步而言,考虑到有关驻电体与第二电极间的吸力及斥力效应产生的变形充斥在整个系统中。因此在均匀分配的厚度上确实会有所增减。
本发明的能量转换系统优点为,因为使用了驻电体,可以不再需要以特定的方法在每个周期去偏压此结构以产生能量回复周期。因为可以省略传输电荷到静电结构的步骤,而可以简化系统的设计。进一步而言,不再需要最小能量来侦测最大电容值。这些电能的损耗也就可以消除。
况且,本发明的系统具有一优点,亦即在延展和释放的期间都可以回复能量。而习知技术的系统只能在释放时期回复能量。
此两阶段的能量回复的优点是在可以从介电层的延展获得电能。这种快速的电能产生对开关切换或是无线遥控特别有利,因开关切换或是无线遥控利用介电层的延展所产生的能量,在使用者放松开关或是遥控按键的压力前,就可以送出指令。因此不再需要提供储存能量的方式来传送指令,指令的传送可以立即执行,而不必如同现有技术的组件,只能在介电层释放时才能回复能量。
这样对利用变形来侦测及测量可量度的物理量的组件特别有利,例如压力或是变形感应器。包含本发明的能量产生系统的压力感应器,通过能够产生能量的介电层变形来自我供电,也使得感应器侦测到的压力值可以在该压力被移除前确认,也就是在介电层结束延展前可以确认该压力值。
进一步而言,在开关或是遥控器这样的例子中,介电层的延展是由使用者所造成,在回复到收缩状态期间,能量回复不是由介电层的行为来控制,也就可能更有效率或是作用更为快速。
图9为本发明的开关34的实施例示意图,包含本发明的可变电容系统2。
本发明的系统2是由类似图1或是图4的带状物所组成,自己缠绕成像是线圈的多层系统。
此开关34包含固定位置的下压按键36,可以在支撑组件上轴向移动。下压按键有第一末端36.1作为使用者的界面,及固定在系统2使系统2以产生变形的的第二末端36.2。系统2通过第一纵长端点42.1固定在支撑组件38,及通过第二纵长端点42.2固定在活塞36。
一空气通道44安置在活塞36上以避免系统2产生过大的压力。
当操作者按住下压按键36,下压按键36的第二端点36.2向下滑动,如图9所示,使得系统延展而缩小电容值C1并增大电容值C2,就会将移动下压按键36的机械能转换成电能,而此能量可以直接用在开关的相关指令动作。当下压按键36的作用释放后,电容值C1增加而电容值C2减少,也会将机械能转换成电能。
图10A及图10B为本发明的可变电容系统整合在一能量回复元件的另一实施例。
此组件包含具有X轴圆柱体形式的第一支撑组件40,以及沿X轴悬挂在第一支撑组件40上的第二支撑组件42。第一支撑组件40和第二支撑组件42件较佳的是刚性物体,如此能量才能主要都用在使形成电容器的膜层变形。
第二支撑组件42为圆柱体形式及X轴,其交会区域的大小类似第一支撑组件40和X轴的交会区域。
第一支撑组件40的上表面和第二支撑组件42的下表面之间的中空区域的高度标注为h。很显然地,形容词「上」「下」不受图式限制,X轴可以为水平的,两面可以是相同高度。
此组件包含袖状体46,连接第一支撑组件40和第二支撑组件42,支撑住第二支撑组件42使其可以不和第一支撑组件40接触。袖状体46在中空区域44旁形成侧壁。袖状体的高度l,径向厚度e。
如此实施例所显示,袖状体46有径向的第一内侧层48,由弹性的可变形物质组成,特别是可以在X轴方向上延长;导电线路50缠绕第一内侧层48形成螺旋形状,约与中空区域44的高度相等;导电线路50的外围有第二内侧层52,以弹性可变介电材料制成,特别是可以在X轴方向上延长;第二导电线路54螺旋状缠绕在第二内侧层52,约与中空区域44的高度相等;第三内侧层56由弹性可变型的介电物质组成,特别是可以在X轴方向上延长;第三导电线路58螺旋状缠绕第三内侧层56,约与中空区域44的高度相等。
线路50、54、58沿X轴偏移缠绕,使得两相邻的围圈膜层不会在任何径向方向上迭加起来。
线路50、54、58电性连结来产生回复的电荷。
更进一步,此组件包含驻电体10,位在两线路50和58的围圈之间;驻电体110,和驻电体10的偏压相反,位在线路54的围圈之间。例如,驻电体10和110位在介电层上。更一般而言,袖状体交替的相异极性的驻电体。
此由围圈所组成的组件,电性上绝缘的膜层,以及驻电体形成可变电容器,其中围圈形成电极。
通过驻电体10、110来施以偏压。可变电容系统非常接近图4的系统,包含切口的电极由围圈来取代。
当一应力延着X轴以箭头F的方向施加时,电容器的电容值产生变化,例如一拉力。
第一内侧层48固定第一导电线路50在支撑组件及悬挂的组件上,不是用来作为电容器的介电质。
内侧层48、52、56可以由高分子物质所组成。
其操作和先前所描述的图4和图5完全相同,就不在此赘述。
将缠绕的线路电极的其中之一由连续的导电物质层来取代也是可行的方法,这样的结构就会类似图1的系统。而交替使用膜层电极与线路电极也是可行的方法。
当然电极的数目不在此限。
较佳的,而膜层和线路是固定在一起。
在此例子中,组件会包含许多膜层,较佳的,一刚性膜会插入两膜层之间。此刚性膜所在的区域就是袖状体安置在第一及第二支撑组件的位置,也就是说刚性膜所在的区域中空区域44的任一侧。此刚性膜的存在不会妨碍膜层和中空区域的围圈的变形。刚性层的插入确保整个模层厚度的变形可以较为均匀,其中此厚度是径向延展的。
也可以缠绕的线路之间迭加上膜层50。
举例说明,中空区域的高度为3mm,袖状体的高度为20mm,袖状体的厚度为250μm。
此组件非常有效率,电极可以由简单的缠绕线路来完成,围圈不会阻碍延展。进一步而言,围圈在径向方向上撑住介电质。
很显然地,任意数量的介电层和缠绕线路都可以适用在本发明。进一步而言,也不只限制在管状的形式,例如,袖状体可能有椭圆形的截面。更进一步而言,支撑组件40和42可以通过机械式的导引装置来连接,例如滑管,来确保两袖状体在X轴上可以相对运动。这些支撑中空与否皆可,只有外表面才是重点(例如管状)。
举例来说,图10A和图10B可以根据以下方法来制造:
1.将支撑组件40及42沉积在相隔第一距离h1的位置;
2.将第一可延展膜层48缠绕住支撑组件40及42;
3.将导电线路50缠绕n圈来覆盖空气间隙h1;
4.将驻电体10沉积在导电线路50的围圈之间;
5.以可延展的介电层52来覆盖;
6.以固态可延展的电极,例如导电高分子,或是n圈的导电线路54相对于前一膜层的导电线路50来交错缠绕,且间隙填充相反偏压的驻电体110;
7.以可延展的介电层56来覆盖;
8.重复步骤3-7,直到所需膜层数目完成为止;
9.最后通过施以机械应力在空气间隙上,将袖状体预载,使空气间隙的距离h2大于h1,以确保高分子上有最小电压。
较佳的,膜层连结在一起。
组件在位置h2和h3之间操作,其中h3大于h2,而组件将如此的相对运动来转换成电能。
另外也可以在安置好第一可延展膜层48以及每一可延展介电层后,缠绕不可延展的膜层在袖状体和支撑组件40和42交会的上下区域。
现在对本发明的可变电容系统的制造方法的一实施例加以说明。
图11为根据本发明的系统在生产线制造的一实施例。
我们从缠绕的带状介电质开始。
步骤100,借着表面延展预载来使介电质成形,藉以产生其内再的弹性回复力,使系统可以回复到初始型态。
步骤200,包含切口的第一电极4沉积在介电质的一面上,例如通过微影术。
步骤300,沉积未偏压的驻电体10的基材(例如铁弗龙或聚对二甲苯),在第一电极4的沟槽12中,在整个可变形物质的表面上,其为粉末或是高分子形式,或是在固态物质的沟槽大约中央的位置。
步骤400,对驻电体的基材施以偏压来形成驻电体10,其中该偏压是以电晕放电、离子冲击(ionic blast)、电子加速或是离子加速。
步骤500,介电质反转,沉积第二电极8,例如利用微影术。第二电极8可能为固态或包含切口。
步骤600如果要制作类似图4的系统,在此步骤中驻电体的基材沉积在第二电极8的沟槽112内。
步骤700,对第一驻电体10的材料施以偏压。
步骤800,预载可以加以调整,可以增加介电质上的预载,或是确保如图6’所示的多层系统的不同组件能够同步。在此实施例中,系统包含第一驻电体10和第二驻电体110,多层系统可以借着缠绕带状物本身来形成,第一驻电体10的图案必须和第二驻电体110的图案上行或是下行的垂直辐射径向地同步。因为膜层的迭加,缠绕起来的周长也越来越长,带状物的延展也就会在图案上成垂直辐射的径向对齐。第二驻电体110的图案与上行和下行的第一电极4的图案之间也成垂直辐射对齐。对包含两种驻电体10和110的多层结构而言,要想正确地操作,需要如图6’所示根据厚度来排成一连串的膜层排列,其形式为4、6、110、6、4、6、110、6、4、6、110、6、4…,其为和一连串的10、6、108、6、10、6、108、6、10、6、108、6、10、108…膜层形式交替/并排。电极4总是和驻电体110电性相反并且紧邻驻电体10,而电极108和驻电体10电性相反且紧邻驻电体110。
步骤900,可以将带状物自我缠绕以形成多层系统。可以在带状物的围圈之间插入介电质分隔膜1000。
此方法的实施例具有的优点为可以让相同的介电质带状物的不同区域上同步实施不同步骤,其中带状物的每一区域可以接连实施每个步骤。
当然上述步骤的顺序不在此限。
更进一步来说,习知的可变电容系统的制造方法的介电层的实施步骤也包含在本发明的范围内。

Claims (35)

1.一种可变电容系统,其特征在于,其包含:
一第一电极,一第二电极,一弹性可变形介电层,其中该介电层位在该第一和第二电极之间,其中一第一驻电体和该第一电极形成一第一电容器,该第一驻电体和该第二电极形成一第二电容器,该第一和该第二电容器的电容值随该介电层的变形而变化,该第一电极,该第二电极,和该第一驻电体跟随该介电层的变形,该介电层的变形使该第一和该第二电容器的电容值反向变化,该第一电极包含至少两部位可以移动以互相靠近或互相远离,该驻电体位在该第一电极的该两部位之间,其中该些部位的边缘和该第一驻电体形成该第一电容器,该第一驻电体位在该介电层的上方或内部。
2.如权利要求1所述的可变电容系统,其特征在于,该第一电极设置至少一沟槽,该第一驻电体位在该沟槽,其中该沟槽的边缘和位在该沟槽的该第一驻电体形成该第一电容器,该第一驻电体位在该介电层的上方或内部。
3.如权利要求1所述的可变电容系统,其特征在于,进一步包含具有一纵长轴的圆柱,该第一电极由沿该纵长轴缠绕的导电线路所形成,该导电线路形成一连续围圈,该第一驻电体位在两连续围圈之间。
4.如权利要求1、2或3所述的可变电容系统,其特征在于,该第二电极由固体层所形成,被该介电层所覆盖,其中该第一电极覆盖该介电层在一表面,该表面相对于该第二电极与该介电层接触的表面。
5.如权利要求3所述的可变电容系统,其特征在于,该第二电极由另一沿该纵长轴缠绕的导电线路所形成,该导电线路形成一连续围圈,其中一第二驻电体位在至少两连续围圈之间,该第一和该第二电极的围圈互相偏移,因而该第一和该第二电极在径向方向没有对齐。
6.如权利要求2所述的可变电容系统,其特征在于,该第二电极至少包含一沟槽,一第二驻电体位在该沟槽,与该第一驻电体电性相反,使得该第二电极和该第二驻电体形成具有可变电容的一第四电容器,该第一电极和该第二驻电体形成具有可变电组的一第五电容器,其中,当该介电层变形时,该第一和该第四电容器的该些电容值朝同一方向变化,该第二和该第五电容器的该些电容值朝同一方向变化。
7.如权利要求2或3所述的可变电容系统,其特征在于,该第一和/或该第二驻电体大致位在该沟槽中央,或两连续围圈大致固定的界定区域的中央。
8.如权利要求2或3所述的可变电容系统,其特征在于,该第一和/或该第二驻电体填入该沟槽,且和该沟槽的边缘接触,或者该第一和/或该第二驻电体填入该两连续围圈界定的区域中,且和该围圈接触。
9.如权利要求1至3的任一项所述的可变电容系统,其特征在于该第一和/或该第二驻电体,由该沟槽界定的该介电层的离子化所形成,例如电晕法。
10.如权利要求1至3的任一项所述的可变电容系统,其特征在于,该第一和/或该第二驻电体由粉末沉积的形式形成在该介电层上。
11.如权利要求1至3的任一项所述的可变电容系统,其特征在于,该介电层由高分子物质所形成,例如为
Figure FDA0000067231520000031
更佳的为该第一和该第二电极可由例如铜、银、银膏(silver grease)、碳粉、金、导电高分子所形成,或在该介电层表面进行离子布值。
12.如权利要求1至3的任一项所述的可变电容系统,其特征在于,该第一和/或该第二电极具有弹性可变形的结构。
13.如权利要求12所述的可变电容系统,并结合权利要求2或6的任一项,其特征在于,该第一和/或第二电极由一组互相连结的长条所形成,该些长条形成格子结构并界定数个沟槽,每一沟槽内包含该第一和/或该第二柱电体。
14.如权利要求13所述的可变电容系统,其特征在于,该格子结构朝其平面的一方向变形时,不会或几乎不会引起该平面的另一方向的变形。
15.如权利要求14所述的可变电容系统,其特征在于,该些长条形成一并排衫木结构,并以其分支的末端电性相连。
16.如权利要求14所述的可变电容系统,其特征在于,该些长条形成多列平行的锯尺图案,其中该多列平行的锯尺图案通过联结两相邻列的多个连接长条来电性相连。
17.如权利要求13所述的可变电容系统,其特征在于,该格子结构在其平面上朝一方向的变形会引起该平面另一方向的变形。
18.如权利要求17所述的可变电容系统,其特征在于,该格子结构包含多列锯尺图案,其中任意两连续列偏移半个齿距,使得任意两连续列形成菱形,多个连接长条连接任意两连续列的菱形的顶点。
19.如权利要求13所述的可变电容系统,其特征在于,该些长条界定蜂巢状沟槽。
20.如权利要求1至3的任一项所述的可变电容系统,其特征在于,被该介电层分隔的该第一和该第二电极所形成的电容器的电容值为最小值。
21.如权利要求20所述的可变电容系统,其特征在于,该第二驻电体结构上能使其与该第一电极相向的表面积缩小,例如沟漕的结构。
22.一种可变电容组合,包含根据权利要求1至3的任一项的至少两系统,其特征在于,该些系统迭加起来,一介电层插入该些系统中的一系统的该第二电极和另一系统的该第一电极之间。
23.一种将机械能转换成电能的系统,包含根据权利要求1至3的任一项的至少一系统,其特征在于,机械能转换成电能的该转换,发生在由该介电层的初始形式开始的一变形阶段的期间,和由其变形形式到其初始形式的回复阶段。
24.如权利要求23所述的将机械能转换成电能的系统,其特征在于,进一步包含一开关形式,用以送出一指令到一装置,其中该电能产生在该第一变形阶段,用来送出该指令到该装置,该转换系统为自我供电。
25.如权利要求23所述的将机械能转换成电能的系统,其特征在于,进一步包含具备一纵长轴的一圆柱,其中该第一电极由沿该纵长轴缠绕的一导电线路所形成,该导电线路形成一连续围圈,其中该第一驻电体位在两连续围圈之间,其中该可变电容系统包含一圆柱袖状体,其中该线路沿该袖状体的一轴部缠绕,其中该袖状体固定在其轴部端点,轴部端点包含两组件可以沿该袖状体的该轴部移动以互相靠近或互相远离,该两组件的一相对运动使该袖状体轴向变形。
26.如权利要求23所述的将机械能转换成电能的系统,其特征在于,该第二电极由沿该纵长轴缠绕的一导电线路所形成,该导电线路形成一连续围圈,其中该第一驻电体位在两连续围圈之间,其中该可变电容系统包含一圆柱袖状体,其中该线路沿该袖状体的一轴部缠绕,其中该袖状体固定在该轴部端点,有两组件可以沿该袖状体的该轴部移动以互相靠近或互相远离,该两组件的一相对运动使该袖状体轴向变形。
27.如权利要求25所述的将机械能转换成电能的系统,其特征在于该可变电容系统,固定该两组件的该袖状体的纵长轴端点处,包含一刚性膜在其膜层间。
28.如权利要求26所述的将机械能转换成电能的系统,其特征在于,该可变电容系统,固定该两组件的该袖状体的纵长轴端点处,包含一刚性膜在其膜层间。
29.一种致动器,包含:根据权利要求1至3的任一项的至少一系统,其特征在于,该第一和该第二电极之间施以一电压引起该系统的一均平面的变形,和/或沿正交该均平面的一方向,或沿该袖状体的该纵长轴的变形。
30.一种根据权利要求2的可变电容系统的制造方法,其特征在于,其包含下列步骤:
沉积该第一电极在该介电层的一面上,例如,微影术;
沉积一材料并施以偏压来形成该第一驻电体在该第一电极的至少一沟槽内,例如,铁弗龙或聚对二甲苯;
偏压该材料;
沉积该第二电极在该介电层的另一面,例如,微影术。
31.如权利要求30所述的可变电容系统的制造方法,其特征在于,其进一步包含:
沉积一材料并施以偏压来形成一第二驻电体在该第二电极的至少一沟槽内,例如,铁弗龙或聚对二甲苯;
偏压该材料。
32.如权利要求30或31所述的可变电容系统的制造方法,其特征在于,其进一步包含在沉积该第一电极前,施以一延展预载在该介电层。
33.如权利要求30或31所述的可变电容系统的制造方法,其特征在于,其进一步包含对该第一或该第二驻电体施以偏压后,调整预载。
34.如权利要求30或31所述的可变电容系统的制造方法,其特征在于,该介电层为带状物,其各区域同时进行该制造方法的不同步骤。
35.如权利要求34所述的可变电容系统的制造方法,其特征在于,该制造方法的最后阶段,该带状物自我缠绕已形成一可变电容多层系统。
CN2011101552636A 2011-06-09 2011-06-09 可变电容系统 Pending CN102820134A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101552636A CN102820134A (zh) 2011-06-09 2011-06-09 可变电容系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101552636A CN102820134A (zh) 2011-06-09 2011-06-09 可变电容系统

Publications (1)

Publication Number Publication Date
CN102820134A true CN102820134A (zh) 2012-12-12

Family

ID=47304195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101552636A Pending CN102820134A (zh) 2011-06-09 2011-06-09 可变电容系统

Country Status (1)

Country Link
CN (1) CN102820134A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128551A (zh) * 2019-12-03 2020-05-08 上海理工大学 一种基于二氧化硅微球的微电发生器及制备方法
CN111835230A (zh) * 2019-04-17 2020-10-27 香港科技大学 借助相变材料的能量转换系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067810A1 (en) * 2000-03-07 2001-09-13 George Raicevich A double-capacitor microphone
WO2003079384A2 (en) * 2002-03-11 2003-09-25 Uni-Pixel Displays, Inc. Double-electret mems actuator
US20040207369A1 (en) * 2003-04-18 2004-10-21 Landolt Oliver D. Electromechanical power converter
CN1547312A (zh) * 2003-12-09 2004-11-17 重庆大学 微型发电机
US20080048521A1 (en) * 2006-07-28 2008-02-28 Sanyo Electric Co., Ltd. Electric power generator
WO2010034764A1 (fr) * 2008-09-25 2010-04-01 Commissariat A L'energie Atomique Systeme a capacite variable a dielectrique souple

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067810A1 (en) * 2000-03-07 2001-09-13 George Raicevich A double-capacitor microphone
WO2003079384A2 (en) * 2002-03-11 2003-09-25 Uni-Pixel Displays, Inc. Double-electret mems actuator
US20040207369A1 (en) * 2003-04-18 2004-10-21 Landolt Oliver D. Electromechanical power converter
CN1547312A (zh) * 2003-12-09 2004-11-17 重庆大学 微型发电机
US20080048521A1 (en) * 2006-07-28 2008-02-28 Sanyo Electric Co., Ltd. Electric power generator
WO2010034764A1 (fr) * 2008-09-25 2010-04-01 Commissariat A L'energie Atomique Systeme a capacite variable a dielectrique souple

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835230A (zh) * 2019-04-17 2020-10-27 香港科技大学 借助相变材料的能量转换系统和方法
CN111835230B (zh) * 2019-04-17 2022-02-15 香港科技大学 借助相变材料的能量转换系统和方法
CN111128551A (zh) * 2019-12-03 2020-05-08 上海理工大学 一种基于二氧化硅微球的微电发生器及制备方法

Similar Documents

Publication Publication Date Title
US7898096B1 (en) Method and apparatus for energy harvesting using microfluidics
US9812993B2 (en) Single electrode triboelectric generator
US7486004B2 (en) Piezolelectric devices
EP2539948B1 (en) Electrical components and circuits including said components
US20120181901A1 (en) Method and Apparatus For Mechanical Energy Harvesting Using Planar Microfluidic Device
CN205195598U (zh) 复合纳米发电机
US11527967B2 (en) Rhomboid structured triboelectric nanogenerator based on built-in U-shaped support
CN103415994B (zh) 用于转换表面声波的装置
Woo et al. Study on increasing output current of piezoelectric energy harvester by fabrication of multilayer thick film
CN103531230B (zh) 一种基于忆阻器的浮地忆容器和忆感器模拟器
CN101764532A (zh) 压电超磁致伸缩复合式宽频振动能量采集器
CN109474200B (zh) 基于miura-ori折叠并具有压电增强效应的摩擦发电机
ATE287121T1 (de) Verbessertes bauelement aus leitendem polymer und seine herstellungsmethode
JP5443496B2 (ja) 可撓性誘電体を有する可変静電容量システム
US11863087B2 (en) Stackable actuating element with profiled insulated electrode structures
US20160104581A1 (en) Integrated Super-Capacitor
US20240120853A1 (en) Stackable actuating element with profiled insulated electrode structures
CN102820134A (zh) 可变电容系统
JP6073697B2 (ja) アクチュエータ素子及びアクチュエータ素子の製造方法
ATE274287T1 (de) Überbrückungskondensator-verfahren zum erreichen eines gewünschten elektrischen impedanzwerts zwischen parallelen planaren leitern einer elektrischen stromverteilungsstruktur, und zugehörige elektrische stromverteilungsstrukturen
CN218916613U (zh) 一种柔弹性薄膜传感阵列
CN110323963A (zh) 具有拉压双向输出的驻极体复合材料单电极作动器及方法
CN204794762U (zh) 一种悬臂式压电材料能量采集器
CN104779341B (zh) Eap装置、eap连续混合膜的应用以及用于制造eap装置的方法
WO2010031416A1 (en) Capacitive method of mechanical energy conversion into electric energy and capacitive high voltage dc generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121212