CN102819839A - 多特征多级别的红外与高光谱图像的高精度配准方法 - Google Patents

多特征多级别的红外与高光谱图像的高精度配准方法 Download PDF

Info

Publication number
CN102819839A
CN102819839A CN2012102515376A CN201210251537A CN102819839A CN 102819839 A CN102819839 A CN 102819839A CN 2012102515376 A CN2012102515376 A CN 2012102515376A CN 201210251537 A CN201210251537 A CN 201210251537A CN 102819839 A CN102819839 A CN 102819839A
Authority
CN
China
Prior art keywords
characteristic
image
high spectrum
sift
millet cake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102515376A
Other languages
English (en)
Other versions
CN102819839B (zh
Inventor
张秀玲
霍春雷
江碧涛
潘春洪
李京龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Beijing Institute of Remote Sensing Information
Original Assignee
Institute of Automation of Chinese Academy of Science
Beijing Institute of Remote Sensing Information
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science, Beijing Institute of Remote Sensing Information filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN201210251537.6A priority Critical patent/CN102819839B/zh
Publication of CN102819839A publication Critical patent/CN102819839A/zh
Application granted granted Critical
Publication of CN102819839B publication Critical patent/CN102819839B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种红外图像与高光谱图像的配准方法,包括对红外图像进行降采样,生成低分辨率红外图像,并根据高光谱图像生成显著波段图像;在低分辨率红外图像和显著波段图像上提取SIFT特征、并在低分辨率红外图像和显著波段图像的多个尺度上提取角点特征和面点特征;对低分辨率红外图像和显著波段图像提取的SIFT特征进行匹配,得到匹配的SIFT特征对,并利用匹配的SIFT特征对和GDBICP方法获得变换模型;在原始红外图像和显著波段图像上,利用初始变换模型据提供的几何约束,进行基于图像块对的多尺度角点特征、面点特征的提取,并根据初始变换模型、多尺度角点特征和多尺度面点特征确定更精确的变换模型;根据变换模型对高光谱图像进行变换,得到变换后的高光谱图像。

Description

多特征多级别的红外与高光谱图像的高精度配准方法
技术领域
本发明属于图像处理技术领域,具体涉及遥感图像的配准方法,特别是一种多特征多级别的红外与高光谱图像的高精度配准方法。本发明可以广泛适用于航天、航空传感器平台所获取的遥感图像的配准。
背景技术
与可见光图像相比,红外图像和高光谱图像具有独特的优势:红外图像反映了目标的温度信息,可以识别目标的工作状态;高光谱图像反映了目标的材质信息,可以识别目标的材质以用于区分目标的真伪。因此,综合利用不同传感器的互补特性,对红外图像与高光谱图像进行融合,对情报获取和分析具有重要的作用。作为红外图像与高光谱图像融合的前提是红外图像与高光谱图像必须进行自动、高精度配准。红外与高光谱图像高精度自动配准技术是制约红外与高光谱图像融合应用的关键技术,具有重要的应用价值。
然而,由于成像机理和空间分辨率等方面的差异,同一物体在红外与高光谱图像上的表现差异很大,这种差异给传统的特征匹配方法带来了很大的挑战。实际上,即使让判图专家在红外与高光谱图像中手工快速标定一些控制点对也是一件很困难的事情。也正是因为红外与高光谱图像的较大差异,目前红外与高光谱图像配准技术基本上仍处于研究阶段,尚未有专门的红外-高光谱图像配准软件。尽管商业软件,如Erdas和Envi,都提供了配准功能,但这些配准功能都是为可见光图像设计的。在这些软件上对红外和高光谱图像进行配准,成功的概率很小。在这种情况下,必须另辟思路研究新的配准方法,在保证配准精度的同时,尽可能提供其自动化程度和计算速度。
发明内容
(一)要解决的技术问题
本发明所要解决的技术问题是针对红外图像与高光谱图像的互补性而提出一种特别适合于红外与高光谱图像的自动、高效、高精度的配准方法,以推动遥感识别技术的发展。
(二)技术方案
本发明提出一种红外图像与高光谱图像的配准方法,包括如下步骤:
步骤S1、对红外图像进行降采样,生成低分辨率红外图像,并根据高光谱图像生成显著波段图像;
步骤S2、在所述低分辨率红外图像和显著波段图像上提取SIFT特征、并在所述低分辨率红外图像和显著波段图像的多个尺度上提取角点特征和面点特征;
步骤S3、对低分辨率红外图像和显著波段图像提取的SIFT特征进行匹配,得到匹配的SIFT特征对,并利用匹配的SIFT特征对和GDBICP方法获得变换模型,所谓变换模型是指红外图像和高光谱图像之间的一种几何变换关系;
步骤S4、在所述原始红外图像和显著波段图像上,利用所述初始变换模型据提供的几何约束,进行基于图像块对的多尺度角点特征、面点特征的提取,并根据初始变换模型、多尺度角点特征和多尺度面点特征确定更精确的变换模型;
步骤S5、根据所述变换模型对高光谱图像进行变换,得到变换后的高光谱图像。
(三)有益效果
本发明的红外与高光谱图像高精度自动配准方法基于多特征多级别的配准,综合利用了模式识别、计算机视觉领域中最新的特征提取和特征匹配技术及并行计算技术,有效地解决了红外与高光谱图像的配准问题,弥补了现有配准软件对红外与高光谱图像配准方面的缺陷。
本发明的配准方法对红外与高光谱图像配准具有很好的通用性和实用性,能够大大推动红外与高光谱图像的广泛应用,具有很好的经济效益。
附图说明
图1是本发明的红外与高光谱图像高精度自动配准方法的流程图;
图2是本发明的方法的一个具体实施例的原始红外图像和生成的低分辨率图像的例图;
图3是本发明的方法的一个具体实施例的原始高光谱图像与生成的显著波段图像的例图;
图4是本发明的方法的一个具体实施例的提取SIFT特征的例图;
图5是本发明的方法的一个具体实施例的SIFT特征提取中DOG构建图例;
图6是本发明的方法的一个具体实施例的SIFT特征提取中极值点提取图例;
图7是本发明的方法的一个具体实施例的SIFT特征提取中主方向检测图例;
图8是本发明的一个具体实施例的为特征点构造描述向量的一个示意图;
图9是粗配准流程;
图10是GDBICP核心流程。
具体实施方式
本发明的多特征多级别的红外与高光谱图像的高精度配准方法既可以硬件方式实现,也可以软件方式实现。例如在个人计算机、工控机及服务器上以软件的形式安装并执行,也可本发明的方法做成嵌入式芯片以硬件的形式来体现。下面参照附图对本发明的具体实施方式进行说明。
在下面的描述中,所述的“图像”特指通过遥感设备获得的遥感图像,并且是已进行了数字化的数字图像。然而,本发明并不限于遥感图像,对于其它技术领域中获得的需要配准的红外图像和高光谱图像,本发明也可适用。
图1是本发明的红外与高光谱图像高精度自动配准方法的流程图。如图1所示,总的来说,本发明的方法包括如下步骤:
步骤S1:对红外图像进行降采样,生成低分辨率红外图像,并根据高光谱图像生成显著波段图像。
根据本发明的一种具体实施方式,将高光谱图像的各波段的均值图像作为显著波段图像。
步骤S2:在低分辨率红外图像和显著波段图像上提取SIFT(ScaleInvariant Feature Transform)特征、并在所述低分辨率红外图像和显著波段图像的多个尺度上提取角点特征和面点特征。
根据本发明的一种具体实施方式,角点特征分为主动匹配角点特征和被动匹配角点特征,面点特征分为主动匹配面点特征和被动匹配面点特征。主动匹配角(面)点特征是参考图像(如红外图像)上需要匹配的角(面)点特征,被动匹配角(面)点特征是待配准图像(如高光谱图像)上可能匹配的角(面)点特征。主动匹配角(面)点特征是被动匹配角(面)点特征的子集。
步骤S3:对低分辨率红外图像和显著波段图像提取的SIFT特征进行匹配,得到匹配的SIFT特征对,并利用匹配的SIFT特征对和GDBICP方法获得变换模型,所谓变换模型是指红外图像和高光谱图像之间的一种几何变换关系。(注:变换函数不恰当,文献中术语为变换参数)
变换模型包含变换类型和变换参数-两层含义。同样,变换模型的确定也包括变换类型选择和变换参数求解。上述变换模型是后续配准变换模型的初始值即初始变换模型,在精配准阶段变换模型的类型及其参数都将不断调整。
根据本发明的一种具体实施方式,采用最近邻比值法来匹配SIFT特征,并去除外点,外点指不满足上述变换模型的SIFT特征对;
根据本发明的一种具体实施方式,利用GDBICP(Generalized DualBootstrap Iterative Closest Point)法得到初始变换模型。
步骤S4:在原始红外图像和显著波段图像上,利用所述初始变换模型据提供的几何约束,进行基于图像块对的多尺度角点特征、面点特征的提取,并根据初始变换模型、多尺度角点特征和多尺度面点特征确定更精确的变换模型。--在更精确的变换模型下,红外图像和显著波段图像的多尺度角/面点特征之间的拟合误差更小。
根据本发明的一种具体实施方式,利用迭代重加权最小二乘法选择变换模型并求取变换参数。
步骤S5:根据所述变换模型对高光谱图像进行变换,得到变换后的高光谱图像。
根据本发明的一种具体实施方式,根据变换模型对高光谱图像进行双三次样条插值,然后根据变换模型及原始红外图像和高光谱图像的尺寸计算参考图像和变换后的高光谱图像的最大重叠区域的坐标,取出、保存所述最大重叠区域的坐标内的红外图像和高光谱图像。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明作进一步的详细说明。
在该实施例中,步骤S1利用双线性插值方法对红外图像进行降采样,生成低分辨率红外图像。图2为原始红外图像和生成的低分辨率图像的例图,其中上图为原始红外图像,下图为低分辨率图像。
显著波段图像可通过波段选择、波段融合等方式生成,但计算量很大。为了减少计算量并克服噪声的影响,在该实施例中,将高光谱图像的各波段的均值图像作为显著波段图像。图3为原始高光谱图像与生成的显著波段图像的例图,其中上图为原始高光谱图像,下图为显著波段图像。
图4是本发明的方法的具体实施例中步骤S2的提取SIFT特征的流程图。在该实施例中,SIFT特征的提取是按照如下流程实现的:
步骤S21、构建图像的DOG(Difference of Gaussian,高斯差分)金字塔。
设图像为I(x,y),则DOG金字塔中第k层高斯差分图像为D(x,y,σ)=L(x,y,kσ)-L(x,y,σ),其中,L(x,y,σ)=G(x,y,σ)*I(x,y),
Figure BDA00001908302200051
*表示卷积运算。图5是构建DOG金字塔的示意图,如图5所示,图像在5个尺度上进行高斯卷积,得到的DOG金字塔中有4个图像。
步骤S22、在DOG金字塔的每层上提取极值点,所谓极值点是指在局部邻域内D(x,y,kσ)取值最大的点。
提取极值点的过程为,选择DOG金字塔上的任一点,若该点在该层及上、下相邻两层的26个邻域内不是极值点,则将该点去除,否则将该点作为极值点。图6是提取极值点的示意图,如图6所示,DOG金字塔中的第k层图像的标“×”的点与第k-1层、第k+1层的26个标“的点进行比较,若标“×”的点对应的D(x,y,kσ)是这26个邻域点中的最大值,则标“×”的点为极值点。
步骤S23、对于所提取的极值点,去除局部曲率非常不对称的极值点。在该实施例中,计算差分图像D的局部Hessian矩阵H,去除满足下面条件的极值点:tr(H)2/det(H)>10,其中det(H)表示矩阵H的行列式值,tr(H)表示矩阵H的迹;
步骤S24、计算SIFT特征的亚像素级别的空间位置、尺度,其中SIFT特征是指保留下来的极值点。
假设SIFT特征X=(x,y,σ),其中x,y,σ分别为极值点X的x、y方向坐标及尺度参数,此时三个方向的坐标都为正数。根据高斯差分图像D(x,y,σ)泰勒展开公式
Figure BDA00001908302200062
计算出以SIFT特征X为原点相对于X在行、列及层数上的偏移量,即
Figure BDA00001908302200063
其中D表示泰勒展开公式的一次项,D、
Figure BDA00001908302200064
Figure BDA00001908302200065
可由SIFT特征X及其邻域的像素根据差分法计算。然后按照如下规则对特征点进行亚像素级插值:如果三个方向上的偏移量都小于0.5像素,则该点就是特征点
Figure BDA00001908302200066
为所求的亚像素级极值点坐标;如果某一方向上的偏移量大于等于0.5像素,如假设x方向的偏移量大于0.5像素,将偏移量四舍五入到一整数值a,将a与x相加得到新的SIFT特征X2=(x+a,y,s),然后将极值点X2按上述步骤进行操作,直到三个方向上的偏移量都小于0.5。
步骤S25、确定所述SIFT特征主方向,所谓主方向是指与以SIFT特征为中心的邻域内的梯度方向直方图的峰值对应的梯度方向。
在该实施例中,在以SIFT特征X=(x,y,σ)为中心、以1.5σ为半径的邻域窗口内采样,计算高斯平滑图像L(x,y,σ)在上述邻域窗口内的每一像素的梯度方向
Figure BDA00001908302200071
并用直方图统计邻域像素的梯度方向,得到一个梯度方向直方图。梯度方向直方图是一种关于梯度方向θ的统计图,其范围是0~360度,其中每10度一个柱,总共36个柱。该梯度方向直方图的峰值代表了该特征点处邻域梯度的主方向,即作为该SIFT特征的方向。图7是本发明的该实施例的梯度直方图的一个示例图。在该图中显示了采用7个柱为特征点确定主方向的示例。在该梯度方向直方图中,当存在另一个相当于主峰值80%能量的峰值时,则将这个方向认为是该特征点的辅方向。一个特征点可能会被指定具有多个方向(一个主方向,一个以上辅方向)。
步骤S26、为SIFT特征构造描述向量,所谓描述向量是指用于刻画该SIFT特征周围图像块统计特征的、由梯度方向直方图构成的向量。
在该实施例中,首先将SIFT特征周围图像块的坐标轴旋转为所述SIFT特征的方向,以确保旋转不变性;然后将特征点周围16×16像素的窗口内分成4×4像素的小块,计算每个小块的8个方向的梯度方向直方图,将每个小块的梯度方向直方图连接起来形成128维的特征向量;最后,将其归一化到单位长度。图8是本发明的为特征点构造描述向量的一个示意图。
本发明的步骤S2还涉及到在多个尺度上提取角点特征和面点特征。对图像I,在
Figure BDA00001908302200072
多个尺度上提取角点特征和面点特征。k=0,…,N,N为控制尺度的个数,本实例N=4。在每个尺度上,角点特征和面点特征提取方法如下:
步骤S21’、对于图像的每个像素点x计算互相关矩阵M(x),互相关矩阵是用来描述该像素点与其邻域像素的关系。计算方式如下式,其中
Figure BDA00001908302200073
表示图像I在水平、竖直方向的梯度图像,w()表示高斯权重函数,其标准差为σ,像素点x邻域N(x)的尺寸为3σ。
M ( x ) = Σ y ∈ N ( x ) w ( x - y ) ( ▿ I ( y ) ) ( ▿ I ( y ) ) T .
步骤S22’、根据互相关矩阵的特征值选取角点特征和面点特征,得到角点特征集合和面点特征集合。
首先对互相关矩阵M(x)进行特征值分解,即M(x)=∑i=1,2λi(x)Γi(x)Γi(x)T,λ1(x)≤λ2(x),λ1(x)和λ2(x)表示x处M(x)的特征值,Γi(x)表示与λi(x)对应的特征向量,Γi(x)T表示Γi(x)的转置。注:λ1(x)是一个整体,λ1不具有独立的含义。
然后,根据特征值来选取角点特征和面点特征。若λ1(x)/λ2(x)>0.1且m(x)=λ1(x)+λ2(x)>tm,则x为候选角点特征;若λ1(x)/λ2(x)≤0.1且m(x)=λ1(x)+λ2(x)≤tm,x为候选面点特征。对每个像素点进行上述操作,得到角点特征集合C和面点特征集合F。tm是一阈值,表示特征的强度。tm应取一正数,tm越大得到的候选角点特征和面点特征越少,不同的tm取值对后续的特征匹配影响不大,在该实施例中,tm=1。
步骤S23’、去除角点特征集合和面点特征集合中的噪声点。对于角点特征集合C或面点特征集合F中的某特征点x,若m(x)<μm+0.5σm,将x从C或F中去除。其中,μm和σm分别为半径r=30的邻域内的m(x)的均值和方差。
步骤S24’、对于角点特征和面点特征进行非极值点抑制。对于角点特征集合C中的角点特征x,沿特征值λ1(x)和λ2(x)对应的特征向量Γ1(x)和Γ2(x)的方向进行非极大值点抑制;对于面点特征集合F中的某面点特征x,沿λ2(x)对应的特征向量的方向Γ2(x)进行非极大值点抑制。具体方法如下:对以x为中心、沿Γi(x)方向的半径r=30的邻域内,若存在x′满足m(x′)>m(x),则x不是好的特征,将其从候选特征集合中去掉。
步骤S25’、根据特征强度的大小来选择被动角点特征和被动面点特征。
在该实施例中,对角点特征集合C或面点特征集合F中的特征按特征强度m(x)从大到小排序,选择前n个角点特征和面点特征作为被动匹配角点特征和面点特征的集合。n根据图像大小确定,对于1024×1024像素的图像,n一般取1000。
步骤S26’、根据特征强度的大小来选择主动角点特征和主动面点特征。
改变特征强度阈值,令tm=2tm,r=2r,重复步骤S22’-S25’。对角点特征集合C或面点特征集合F中的特征点按特征强度m(x)从大到小排序,选择前m个角点特征和m个面点特征作为主动匹配角点特征、面点特征集合。m根据图像大小确定,对于1024×1024像素的图像,m一般取500。同一图像的主动匹配角(面)点特征是被动匹配角(面)点特征的子集,在匹配时,参考图像的主动匹配角(面)点特征与待配准图像的被动匹配角(面)点特征(而不是待配准图像的主动匹配角(面)点特征)进行匹配,这样做的好处是可以得到更稠密的角(面)点特征匹配点对,从而有利用提高配准精度。
按照上述步骤在每个尺度σk上提取被动匹配角点特征、面点特征和主动匹配角点特征、面点特征,将各尺度、各类型特征点合并在一起,组成被动匹配角点特征集合Cm、被动匹配面点特征集合Fm、主动匹配角点特征集合Cd、主动匹配面点特征集合Fd。每一个角点特征ci由三维向量组成,即ci=(xi,yi,si),si等于它所在的尺度参数σk。每一个面点特征fi由四维向量组成,即fi=(xi,yi,si,ηi),ηi表示方向,ηi对应步骤S26’中在(xi,yi)处的Γ2(x)。
图9是本发明的方法的步骤S3的流程图。该步骤为粗配准步骤。如图9所示,本发明中的步骤S3是按如下流程实现的:
选择置信度高且未尝试过的SIFT点对,由该SIFT点对及被动匹配角点特征集合Cm、被动匹配面点特征集合Fm、主动匹配角点特征集合Cd、主动匹配面点特征集合Fd通过GDBICP方法进行匹配,若该次匹配成功,粗配准终止;否则,选择下一个置信度高的SIFT点对通过GDBICP方法进行匹配。
图10是本发明的方法的步骤S3中的GDBICP方法的流程图。如图10所示,GDBICP方法包括如下步骤:
步骤S31、根据选择的SIFT特征对确定初始变换模型(相似变换),SIFT特征对所在的邻域作为初始匹配区域;
设当前选择的SIFT特征对为A=(x1,y1,s1,θ1)和B=(x2,y2,s2,θ2),其中xi和yi是坐标值,si和θ2是对应的尺度参数和主方向参数。该步骤为粗配准,变换类型为相似变换,SIFT特征对之间应满足 x 2 y 2 = s · cos θ s · sin θ t x - sin θ s · cos θ t y x 1 y 1 1 , s、θ、tx、ty为所求的变换参数。根据A和B的尺度参数和主方向参数的对应关系,可求得
Figure BDA00001908302200102
θ=θ21,xt=x2-s·cosθ·x1-s·sinθ·y1,yt=y2+s·sinθ·x1-s·cosθ·y1。以(xi,yi)为中心、以h+3·si为半径的区域分别作为A和B的初始匹配区域。
步骤S32、根据当前迭代步骤的变换模型(注:求变换模型是一个迭代的过程,S4的变换模型是最终的变换模型,当前迭代步骤的变换模型是一个中间结果)和当前匹配区域,分别从前向和后向利用ICP(IterativeClosest Point)方法匹配当前匹配区域内的角点特征和面点特征;
前向匹配以红外图像为参考图像,为高光谱图像上的每一个角(面)点特征寻找其在红外图像上对应的角(面)点特征。假设当前变换模型为
Figure BDA00001908302200103
(k表示变换类型,k=0表示相似变换、k=1表示仿射变换、k=2表示投影变换),对于高光谱图像的任一角点特征ci=(xi,yi,si),它对应红外图像的坐标记为
Figure BDA00001908302200104
在红外图像上距离
Figure BDA00001908302200105
最近的三个角点特征为
Figure BDA00001908302200106
i=1,2,3.然后计算
Figure BDA00001908302200107
中每个元素与ci的匹配度
Figure BDA00001908302200108
将与最大的
Figure BDA00001908302200109
(i=1,2,3)对应的作为ci的匹配角点特征,记为ei。类似的,为高光谱图像的每一面点特征fi=(xi,yi,si,ηi)寻找红外图像对应的匹配面点特征hi,面点特征的匹配度计算公式为 w i f = min ( s i f / s i , s i / s i f ) · | η i T · η i f | , g i f = ( x i g , y i g , s i g , η i g ) (i=1,2,3)为红外图像上距离
Figure BDA000019083022001013
最近的三个面点特征。
后向匹配以高光谱图像为参考图像,为红外图像上的每一个角(面)点特征寻找其在高光谱图像上对应的角(面)点特征,操作过程与前向匹配类似。
步骤S33、根据当前匹配的角点特征和面点特征利用迭代重加权最小二乘法重新估计前向和后向变换参数;通过ICP和参数估计的交替迭代,确定最优变换参数和最优的匹配;
当前变换模型与当前匹配的角点特征和面点特征紧密相关。为此,在给定变换类型的前提下采用迭代重加权最小二乘法不断调整变换参数及匹配的角点特征和面点特征集合。为方便叙述,在步骤S33中,当变换类型给定后将变换模型
Figure BDA00001908302200111
记为θpq。迭代重加权最小二乘法的目标函数为:
E ( θ pq , C c pq , C f pq ) = Σ ( p i , q i ) ∈ C c pq w c ; i ρ ( d c ( p i , q i ; θ pq ) / σ c ) + Σ ( p i , q i ) ∈ C f pq w f ; i ρ ( d f ( p i , q i ; θ pq ) / σ f )
上式中, ρ ( u ) = a 2 6 [ 1 - ( 1 - ( u 2 a ) 3 ] | u | ≤ a a 2 6 | u | > a , a = 4 , d c ( p , q ; θ pq ) = | | T ( p ; θ pq ) - q | | / s q df(p,q;θpq)=|(T(p;θpq)-q)Tηq|/sq,wc;i和wf;i为每一对角点特征和面点特征的权重。为简化计算,实际求解时将上述目标函数拆分为两个步骤:求解每一对角(面)点对匹配权重wd,i和更新变换参数-,这两个步骤循环交叉迭代,直到算法收敛。匹配权重wd,i根据当前变换模型θpq下匹配点对(pi,qi)的匹配误差进行计算,对于角点,
Figure BDA00001908302200114
对于面点, w d , i = w ( d f ( p i , q i ; θ pq ) / σ f ) / σ f 2 , 其中, w ( u ) = 1 - ( u a ) 2 | u | ≤ a 0 | u | > a . 在当前匹配点对权重wd,i的基础上,利用加权最小二乘法估计新通过优化 F ( θ pq ; C c pq , C f pq ) = Σ ( p i , q i ) ∈ C c pq w d ; i w c ; i d c 2 ( p i , q i ; θ pq ) + Σ ( p i , q i ) ∈ C c pq w d ; i w f ; i d f 2 ( p i , q i ; θ pq ) 求解新的变换参数。σc和σf为角点特征和面点特征的尺度因子,计算公式如下:
σ c = Σ ( p i , q i ) ∈ C c pq w d ; i w c ; i d c 2 ( p i , q i ; θ pq ) / Σ ( p i , q i ) ∈ C c pq w d ; i w c ; i
σ f = Σ ( p i , q i ) ∈ C f pq w d ; i w f ; i d f 2 ( p i , q i ; θ pq ) / Σ ( p i , q i ) ∈ C f pq w d ; i w f ; i .
步骤S34、利用当前最优匹配的角点特征和面点特征集合,根据AkaikeInformation准则进行模型选择;
令变换类型k=0,1,2,并分别进行步骤S33操作,得到对应的前向变换模型和后向变换分别为
Figure BDA00001908302200121
Figure BDA00001908302200122
当前最优匹配的前向匹配角点特征和面点特征集合为
Figure BDA00001908302200123
Figure BDA00001908302200124
后向匹配角点特征和面点特征集合为
Figure BDA00001908302200125
Figure BDA00001908302200126
Ti在Akaike Information准则下的不适度为:
I i = - 2 [ | C c pq | log ( σ c pq ) + | C f pq | log ( σ f pq ) + E ( θ pq ; C c pq , C f pq ) ]
- 2 [ | C c qp | log ( σ c qp ) + | C f qp | log ( σ f qp ) + E ( θ qp ; C c qp , C f qp ) ] + 2 nl / ( n - l - 1 ) .
上式中,l表示变换类型k的自由度,k=0时,l=4;k=1时,l=6;k=2时,l=9;|A|表示集合A中元素个数。与最小的Ii对应的
Figure BDA000019083022001211
为当前匹配区域的最优前向、后向变换模型。
步骤S35、根据当前变换模型的不确定性(用变换参数的方差矩阵刻画)进行匹配区域增长,区域增长的速度与当前匹配区域的前向匹配和后向匹配的角点特征和面点特征的匹配误差成反比。当匹配区域增长到角点特征和面点特征的最大外接矩形时,GDBICP收敛,此时的前向匹配变换模型
Figure BDA000019083022001212
作为步骤S4的初始变换模型。
本发明的该实施例的步骤S4是按如下流程实现的,该步骤S4是精配准步骤:
S41、在原始红外图像和高光谱图像显著波段图像上利用步骤S3提供的初始变换模型
Figure BDA000019083022001213
进行基于图像块对的多尺度角点特征、面点特征特征提取;
首先将高光谱图像进行均匀分块,每块大小为256×256像素。假设某子块C1的左上角、右下角坐标分别为lu=(x0,y0),rd=(x1,y1),根据变换模型
Figure BDA000019083022001214
可得到对应的红外图像子块C2,在C1和C2上按照步骤S21’至S26’的方法提取多尺度角点特征和面点特征。之所以将图像分块,是为了对大尺寸图像进行并行计算,即并行控制端将图像块对发送到多个并行终端,每个并行终端可以为CPU或计算机,在每个并行终端分块特征提取完毕后,只需将特征发送到并行控制端并对特征的坐标值进行修正后即可得到特征的全局坐标。例如,在子块C1上提取的某角点特征或面点特征k的坐标为(x,y),则修正后的k的坐标为(x0+x,y0+y)。将在原始红外图像和高光谱图像显著波段图像上按照上述方法可以得到主动匹配角点特征、主动匹配面点特征、被动匹配角点特征、被动匹配面点特征。
S42、根据初始模型
Figure BDA00001908302200131
和多尺度角点特征、面点特征集合利用迭代重加权最小二乘法选择变换模型并求取变换参数。
角点特征和面点特征的最大外接矩形作为匹配区域,利用初始变换模型和步骤S33的方法选择变换类型并求取相应的变换参数。
本发明的该实施例的步骤S5是按如下流程实现的:根据步骤S4求得的变换模型,按照高光谱图像的波段排列顺序对高光谱图像的每一波段图像分别进行双三次样条插值得到变换后的高光谱图像,变换后的高光谱图像与红外图像已经配准。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种红外图像与高光谱图像的配准方法,其特征在于,包括如下步骤:
步骤S1、对红外图像进行降采样,生成低分辨率红外图像,并根据高光谱图像生成显著波段图像;
步骤S2、在所述低分辨率红外图像和显著波段图像上提取SIFT特征、并在所述低分辨率红外图像和显著波段图像的多个尺度上提取角点特征和面点特征;
步骤S3、对低分辨率红外图像和显著波段图像提取的SIFT特征进行匹配,得到匹配的SIFT特征对,并利用匹配的SIFT特征对和GDBICP方法获得变换模型,所谓变换模型是指红外图像和高光谱图像之间的一种几何变换关系;
步骤S4、在所述原始红外图像和显著波段图像上,利用所述初始变换模型据提供的几何约束,进行基于图像块对的多尺度角点特征、面点特征的提取,并根据初始变换模型、多尺度角点特征和多尺度面点特征确定更精确的变换模型;
步骤S5、根据所述变换模型对高光谱图像进行变换,得到变换后的高光谱图像。
2.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,在步骤S1中,将高光谱图像的各波段的均值图像作为显著波段图像。
3.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,所述步骤S2中提取SIFT特征的步骤包括:
步骤S21、构建图像的DOG金字塔;
步骤S22、在DOG金字塔的每层上提取极值点,所谓极值点是指在局部邻域内D(x,y,kσ)取值最大的点;
步骤S23、对于所提取的极值点,去除局部曲率非常不对称的极值点;
步骤S24、计算SIFT特征的亚像素级别的空间位置、尺度,其中SIFT特征是指保留下来的极值点;
步骤S25、确定所述SIFT特征主方向,所谓主方向是指与以SIFT特征为中心的邻域内的梯度方向直方图的峰值对应的梯度方向;
步骤S26、为SIFT特征构造描述向量,所谓描述向量是指用于刻画该SIFT特征周围图像块统计特征的、由梯度方向直方图构成的向量;
4.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,所述步骤S2中提取角点特征和面点特征的步骤包括:
步骤S21’、对于图像的每个像素点计算互相关矩阵,互相关矩阵是用来描述该像素点与其邻域像素的关系;
步骤S22’、根据互相关矩阵的特征值选取角点特征和面点特征,得到角点特征集合和面点特征集合;
步骤S23’、去除角点特征集合和面点特征集合中的噪声点;
步骤S24’、对于角点特征和面点特征进行非极值点抑制;
步骤S25’、根据特征强度的大小来选择被动角点特征和被动面点特征;
步骤S26’、根据特征强度的大小来选择主动角点特征和主动面点特征。
5.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,在所述步骤S3中,采用最近邻比值法来匹配SIFT特征,并去除外点,外点指不满足上述变换模型的SIFT特征对。
6.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,在所述步骤S3中,利用GDBICP法得到初始变换模型。
7.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,所述步骤S3包括:
步骤S31、根据选择的SIFT特征对确定初始变换模型,SIFT特征对所在的邻域作为初始匹配区域
步骤S32、根据选择的SIFT特征对确定初始变换模型,SIFT特征对所在的邻域作为初始匹配区域和当前匹配区域,分别从前向和后向利用ICP方法匹配当前匹配区域内的角点特征和面点特征;
步骤S33、根据当前匹配的角点特征和面点特征利用迭代重加权最小二乘法重新估计前向和后向变换参数;通过ICP和参数估计的交替迭代,确定最优变换参数和最优的匹配;
步骤S34、利用当前最优匹配的角点特征和面点特征集合,根据AkaikeInformation准则进行模型选择;
步骤S35、根据当前变换模型的不确定性进行匹配区域增长,区域增长的速度与当前匹配区域的前向匹配和后向匹配的角点特征和面点特征的匹配误差成反比;
8.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,在所述步骤S4中,利用迭代重加权最小二乘法选择变换模型并求取变换参数。
9.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,所述步骤S4包括:
步骤S41、在原始红外图像和高光谱图像显著波段图像上利用步骤S3提供的初始变换模型,进行基于图像块对的多尺度角点特征、面点特征特征提取;
步骤S42、根据初始模型和多尺度角点特征、面点特征集合利用迭代重加权最小二乘法选择变换模型并求取变换参数。
10.如权利要求1所述的一种红外图像与高光谱图像的配准方法,其特征在于,所述步骤S5包括:
根据步骤S4求得的变换模型,按照高光谱图像的波段排列顺序对高光谱图像的每一波段图像分别进行双三次样条插值得到变换后的高光谱图像,变换后的高光谱图像与红外图像已经配准。
CN201210251537.6A 2012-07-19 2012-07-19 多特征多级别的红外与高光谱图像的高精度配准方法 Expired - Fee Related CN102819839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210251537.6A CN102819839B (zh) 2012-07-19 2012-07-19 多特征多级别的红外与高光谱图像的高精度配准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210251537.6A CN102819839B (zh) 2012-07-19 2012-07-19 多特征多级别的红外与高光谱图像的高精度配准方法

Publications (2)

Publication Number Publication Date
CN102819839A true CN102819839A (zh) 2012-12-12
CN102819839B CN102819839B (zh) 2015-06-03

Family

ID=47303942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210251537.6A Expired - Fee Related CN102819839B (zh) 2012-07-19 2012-07-19 多特征多级别的红外与高光谱图像的高精度配准方法

Country Status (1)

Country Link
CN (1) CN102819839B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318583A (zh) * 2014-11-14 2015-01-28 武汉大学 一种可见光宽带光谱图像配准方法
CN105139412A (zh) * 2015-09-25 2015-12-09 深圳大学 一种高光谱图像角点检测方法与系统
CN106898019A (zh) * 2017-02-21 2017-06-27 广西大学 基于尺度不变Harris特征的图像配准方法和装置
CN107271389A (zh) * 2017-06-24 2017-10-20 桂林理工大学 一种基于指标极值的光谱特征变量快速匹配方法
CN108491849A (zh) * 2018-03-23 2018-09-04 上海理工大学 基于三维稠密连接卷积神经网络的高光谱图像分类方法
CN109461176A (zh) * 2018-10-22 2019-03-12 北京化工大学 高光谱图像的光谱配准方法
CN110751680A (zh) * 2019-10-17 2020-02-04 中国科学院云南天文台 一种具有快速对齐算法的图像处理方法
CN111695396A (zh) * 2019-12-19 2020-09-22 珠海大横琴科技发展有限公司 一种遥感图像匹配方法、装置、电子设备及可读存储介质
CN113092400A (zh) * 2021-03-19 2021-07-09 西北核技术研究所 一种多特征约束加权拟合的高光谱地物识别方法
CN113959961A (zh) * 2021-12-22 2022-01-21 广东省农业科学院动物科学研究所 一种基于高光谱图像的单宁添加剂防伪检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003165A1 (en) * 2005-06-20 2007-01-04 Mitsubishi Denki Kabushiki Kaisha Robust image registration
CN102122359A (zh) * 2011-03-03 2011-07-13 北京航空航天大学 一种图像配准方法及装置
CN102592134A (zh) * 2011-11-28 2012-07-18 北京航空航天大学 一种高光谱与红外数据多级决策融合分类方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003165A1 (en) * 2005-06-20 2007-01-04 Mitsubishi Denki Kabushiki Kaisha Robust image registration
CN102122359A (zh) * 2011-03-03 2011-07-13 北京航空航天大学 一种图像配准方法及装置
CN102592134A (zh) * 2011-11-28 2012-07-18 北京航空航天大学 一种高光谱与红外数据多级决策融合分类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNLEI HUO 等: "Multilevel SIFT Matching for Large-Size VHR Image Registration", 《GEOSCIENCE AND REMOTE SENSING LETTERS,IEEE》 *
霍春雷 等: "基于SIFT特征和广义紧互对原型对距离的遥感图像配准方法", 《遥感技术与应用》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318583B (zh) * 2014-11-14 2017-02-22 武汉大学 一种可见光宽带光谱图像配准方法
CN104318583A (zh) * 2014-11-14 2015-01-28 武汉大学 一种可见光宽带光谱图像配准方法
CN105139412A (zh) * 2015-09-25 2015-12-09 深圳大学 一种高光谱图像角点检测方法与系统
CN105139412B (zh) * 2015-09-25 2018-04-24 深圳大学 一种高光谱图像角点检测方法与系统
CN106898019A (zh) * 2017-02-21 2017-06-27 广西大学 基于尺度不变Harris特征的图像配准方法和装置
CN107271389B (zh) * 2017-06-24 2019-10-11 桂林理工大学 一种基于指标极值的光谱特征变量快速匹配方法
CN107271389A (zh) * 2017-06-24 2017-10-20 桂林理工大学 一种基于指标极值的光谱特征变量快速匹配方法
CN108491849A (zh) * 2018-03-23 2018-09-04 上海理工大学 基于三维稠密连接卷积神经网络的高光谱图像分类方法
CN109461176A (zh) * 2018-10-22 2019-03-12 北京化工大学 高光谱图像的光谱配准方法
CN110751680A (zh) * 2019-10-17 2020-02-04 中国科学院云南天文台 一种具有快速对齐算法的图像处理方法
CN111695396A (zh) * 2019-12-19 2020-09-22 珠海大横琴科技发展有限公司 一种遥感图像匹配方法、装置、电子设备及可读存储介质
CN113092400A (zh) * 2021-03-19 2021-07-09 西北核技术研究所 一种多特征约束加权拟合的高光谱地物识别方法
CN113959961A (zh) * 2021-12-22 2022-01-21 广东省农业科学院动物科学研究所 一种基于高光谱图像的单宁添加剂防伪检测方法及系统

Also Published As

Publication number Publication date
CN102819839B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN102800097B (zh) 多特征多级别的可见光与红外图像高精度配准方法
CN102819839A (zh) 多特征多级别的红外与高光谱图像的高精度配准方法
CN102800099B (zh) 多特征多级别的可见光与高光谱图像高精度配准方法
CN102800098A (zh) 多特征多级别的可见光全色与多光谱高精度配准方法
CN103456022B (zh) 一种高分辨率遥感图像特征匹配方法
CN106529591A (zh) 一种基于改进的mser图像匹配算法
Zheng et al. Mutation sensitive correlation filter for real-time UAV tracking with adaptive hybrid label
CN104134208B (zh) 利用几何结构特征从粗到精的红外与可见光图像配准方法
CN103778433B (zh) 基于点到直线距离的广义点集匹配方法
CN103426186A (zh) 一种改进的surf快速匹配方法
CN105389774A (zh) 对齐图像的方法和装置
CN104102904B (zh) 一种静态手势识别方法
CN104751465A (zh) 一种基于lk光流约束的orb图像特征配准方法
CN103822616A (zh) 一种图分割与地形起伏约束相结合的遥感影像匹配方法
Mantelli et al. A novel measurement model based on abBRIEF for global localization of a UAV over satellite images
CN104574347A (zh) 基于多源遥感数据的在轨卫星图像几何定位精度评价方法
CN104200461A (zh) 基于互信息图像选块和sift特征的遥感图像配准方法
CN1987896A (zh) 高分辨率sar影像配准处理方法及系统
CN102521597B (zh) 一种基于分级策略的影像直线特征匹配方法
CN102903109B (zh) 一种光学影像和sar影像一体化分割配准方法
CN101577005A (zh) 一种目标跟踪方法及装置
CN102722697A (zh) 一种无人飞行器视觉自主导引着陆的目标跟踪方法
CN102865859A (zh) 一种基于surf特征的航空序列图像位置估计方法
CN106096497B (zh) 一种针对多元遥感数据的房屋矢量化方法
CN103136525A (zh) 一种利用广义Hough变换的异型扩展目标高精度定位方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150603

Termination date: 20210719