CN102809867A - 一种立体显示装置 - Google Patents

一种立体显示装置 Download PDF

Info

Publication number
CN102809867A
CN102809867A CN2012102884065A CN201210288406A CN102809867A CN 102809867 A CN102809867 A CN 102809867A CN 2012102884065 A CN2012102884065 A CN 2012102884065A CN 201210288406 A CN201210288406 A CN 201210288406A CN 102809867 A CN102809867 A CN 102809867A
Authority
CN
China
Prior art keywords
liquid crystal
circular
crystal lens
pixel
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102884065A
Other languages
English (en)
Other versions
CN102809867B (zh
Inventor
宫晓达
宋磊
刘宁
戈张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Super Technology Co Ltd
Original Assignee
深圳超多维光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超多维光电子有限公司 filed Critical 深圳超多维光电子有限公司
Priority to CN201210288406.5A priority Critical patent/CN102809867B/zh
Publication of CN102809867A publication Critical patent/CN102809867A/zh
Application granted granted Critical
Publication of CN102809867B publication Critical patent/CN102809867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种立体显示装置,该立体显示装置包括分光单元和显示单元,分光单元由多个圆形液晶透镜构成,且每个圆形液晶透镜分别与显示单元的一个基本像素单元相匹配。相较于矩形像素的形状,本发明中,由圆形像素发出的光线经过圆形液晶透镜后各方向上的像差较为一致,从而可以减少由于各次像素色彩不同而引起的色偏现象;另外,由于本发明的圆形透镜所具备的轴对称性,可以使其在各个方向上的投影效果保持相同的像差效果,同时也能提高像素的显示面积,增加透光性,在不同的观看角度均能够具有较好的立体显示效果。

Description

一种立体显示装置
技术领域
本发明涉及显示设备技术领域,尤其涉及一种立体显示装置。
背景技术
液晶是分子排列取向有序的液体,其电学和光学性质都呈现与排列有关的类似于晶体的各向异性。利用液晶电控双折射以及液晶分子受电场强迫取向而改变光学及电学特性这两种光电特性,可以制作出液晶透镜。
图1示出了立体显示装置的总体结构。如图1所示,背光模块11为整个系统提供光源,为平板显示的背光源;显示面板12为现有液晶面板、OLED面板等显示面板,用于显示立体视差图,图中的像素用R(红)、G(绿)、B(蓝)表示;液晶透镜光栅13是分光装置,用于将立体视差图分别投影到人的左右眼,根据现有立体显示技术的立体形成原理,分别将立体视差图投射到人眼的左右眼才可形成立体;人眼14位于立体视区15中,可以接收到立体视差图并在人脑中形成立体。
现有立体显示装置具有如下缺陷:目前的分光装置大多是采用光栅,当用户从不同的角度观看显示面板时,例如当显示设备发生倾斜或者观看者的位置移动时,矩形光栅在透镜中的分光效果也会有所不同,因而将导致在某些方向上的立体显示效果较差。
发明内容
本发明解决的技术问题是提供一种立体显示装置,在不同的观看角度均能够具有较好的立体显示效果。
为解决上述技术问题,本发明提供了一种立体显示装置,所述立体显示装置包括分光单元和显示单元,
所述分光单元由多个圆形液晶透镜构成,且每个所述圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配。
此外,所述的立体显示装置,还可具有如下特征:
所述每个圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配,是指:所述基本像素单元中包含的每个圆形像素点均位于所述圆形液晶透镜的中轴线上。
此外,所述的立体显示装置,还可具有如下特征:
所述每个圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配,是指:所述基本像素单元中包含的中心圆形像素点以外的其他各个圆形像素点围绕所述显示单元的中心呈轴对称。
此外,所述的立体显示装置,还可具有如下特征:
所述多个圆形液晶透镜的排列与所述显示单元中的圆形像素点的排列周期一致,所述显示单元中的每个圆形像素点均被所述圆形液晶透镜覆盖。
此外,所述的立体显示装置,还可具有如下特征:
所述多个圆形液晶透镜的排列与所述显示单元中的圆形像素点采用一致的周期性横向错层排列、或者周期性纵向错层排列。
此外,所述的立体显示装置,还可具有如下特征:
所述基本像素单元包括4个对称排列的圆形像素点,所述每个圆形液晶透镜覆盖所述4个对称排列的圆形像素点;
且所述4个圆形像素点中竖向排列的2个圆形像素点的连线,以及其余2个横向排列的圆形像素点的连线,均位于所述圆形液晶透镜的中轴线上且互相垂直。
此外,所述的立体显示装置,还可具有如下特征:
所述基本像素单元包括9个对称排列的圆形像素点,所述每个圆形液晶透镜覆盖所述9个对称排列的圆形像素点;
且所述9个对称排列的圆形像素点呈3行3列分布,且中间行和中间列的圆形像素点的连线均位于所述圆形液晶透镜的中轴线上且互相垂直。
此外,所述的立体显示装置,还可具有如下特征:
所述立体显示装置还包括显示面板模块,摄像头模块,重力感应装置模块,和液晶透镜及显示排图驱动模块,其中:
所述摄像头模块用于,捕获人脸轮廓并跟踪人脸运动,判断人脸相对于所述显示面板模块的位置与观看方向;
所述重力感应装置模块用于,侦测所述显示面板模块相对于地面的方位;
所述液晶透镜及显示排图驱动模块用于,在检测到所述显示面板模块倾斜、或者观看者的位置发生移动时,通过调整圆形液晶透镜,并控制所述显示面板模块的像素点配合圆形液晶透镜的调整进行排图,产生立体显示。
此外,所述的立体显示装置,还可具有如下特征:
所述液晶透镜及显示排图驱动模块用于,采用如下方式对所述圆形液晶透镜进行调整:
切换所述圆形液晶透镜的大小、调整所述圆形液晶透镜的位置、和/或调整所述圆形液晶透镜的排列周期。
此外,所述的立体显示装置,还可具有如下特征:
所述圆形像素点包括主像素点或者次像素点。
与现有技术相比较,本发明至少具有如下有益效果:
1)相较于矩形像素的形状,本发明中,由圆形像素发出的光线经过圆形液晶透镜后各方向上的像差较为一致,从而可以减少由于各次像素色彩不同而引起的色偏现象;
2)由于本发明的圆形透镜所具备的轴对称性,可以使其在各个方向上的投影效果保持相同的像差效果,同时也能提高像素的显示面积,增加透光性;
3)通过本发明的基本像素点对应圆形液晶透镜的设计,可以减少倾斜放置柱镜光栅时所产生的串扰情况的发生。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为立体显示装置的总体结构示意图;
图2为本发明实施例的匹配透镜的基本像素单元;
图3a和图3b分别为本发明实施例的圆形液晶透镜的理论模拟形状的俯视图和左视图;
图4为本发明实施例的液晶透镜与屏幕组合后覆盖像素的示意图;
图5a和图5b分别为圆形像素与矩形像素的示意图;
图6为本发明实施例的显示器的像素分布设计示意图;
图7为本发明实施例的覆盖像素的液晶透镜设计示意图;
图8为本发明实施例的液晶透镜阵列与显示器件像素结合的示意图;
图9为本发明实施例的倾斜45°时液晶透镜与其覆盖的像素的示意图;
图10为液晶透镜基本结构的截面示意图;
图11为整片型电极54搭配区域分散型电极57使用时的液晶透镜工作示意图;
图12为整片型电极53搭配区域分散型电极58使用时的液晶透镜工作示意图;
图13a、13b和13c分别为本发明实施例的液晶透镜的电极形状的示意图;
图14为依据本发明方案的全分辨率的设计示意图;
图15为在时序电路驱动下实现全分辨率的显示原理图;
图16、17和18为本发明应用示例一的不同观看方向时的示意图;
图19、20和21为本发明应用示例二的不同观看方向时的示意图。
具体实施方式
本实施方式提供了一种立体显示装置,具体采用如下技术方案:
所述立体显示装置包括分光单元和显示单元,其中所述分光单元由多个圆形液晶透镜构成(如分光单元可以是由多个所述圆形液晶透镜组成的透镜阵列),且所述每个圆形液晶透镜分别与所述显示单元的基本像素单元相匹配。
其中,所述基本像素单元包含至少4个像素点。
其中,所述每个圆形液晶透镜分别与所述显示单元的基本像素单元相匹配,是指:所述基本像素单元中包含的每个圆形像素点均位于所述圆形液晶透镜的中轴线上。
优选地,所述每个圆形液晶透镜覆盖4个对称排列的圆形像素点。
具体地,所述4个对称排列的圆形像素点中的2个竖向排列的像素点的连线与另外2个横向排列的像素点的连线均位于所述圆形液晶透镜的中轴线上且互相垂直。
或者,所述每个圆形液晶透镜覆盖9个对称排列的圆形像素点。
其中,所述9个对称排列的圆形像素点的排列方式可以是:3行3列,且中间行和中间列的圆形像素点的连线均位于所述圆形液晶透镜的中轴线上且互相垂直。
所述像素点可以是主像素点,也可以是次像素点。
此外,显示单元中的像素点排列也需要与所述圆形液晶透镜阵列的排列相匹配,即像素点的排列周期要与透镜的排列周期相一致(如采用同样的周期性横向错层排列、或者纵向错层排列),透镜阵列可以覆盖所有的像素点。
所述立体显示装置还包括检测模块,所述检测模块用于,在检测到所述立体显示装置倾斜或者观看者的位置发生移动时,调整所述圆形液晶透镜的大小、位置或排列周期,改变所述圆形液晶透镜覆盖像素点的数目等。
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的立体显示装置的设计主要包括显示器件像素排列与液晶透镜模块的设计。
具体地,本发明采用液晶透镜技术,从液晶的双折射性质出发,采用电压控制液晶分子的分布,对入射光产生透镜的效果,其最大优点是折射率和透镜的焦距等可调。
本实施例中,采用圆形液晶透镜作为实现分光的基本单元。基于光学性质需要对屏幕的像素进行设计使其与液晶透镜可以相互匹配。
如图2所示,本实施例中匹配圆形液晶透镜的基本像素单元包括4个像素点,其中这4个像素点既可以是主像素点,也可以是次像素点。
通过电极驱动的位置可实现圆形液晶透镜的效果,图3示出了圆形液晶透镜的理论模拟形状。
本实施例中,采用圆形微透镜(透镜直径为几十到几百微米级别)阵列,同时对像素结构进行了重新设计,将次像素单元设计为圆形,每个透镜对应4个对称排列的圆形次像素,如图4所示,使每个圆形透镜下覆盖四个对称排列的圆形次像素。
由图5可见,矩形次像素在透镜中的位置存在特殊性,所以从不同的观察角度观看时,其分光效果会有所不同,这样会导致在某些方向上较差的显示效果。相较于矩形像素的形状,由圆形像素发出的光线经过透镜后各方向上的像差较为一致,从而可以减少由于各次像素色彩不同而引起的色偏现象。
由于本发明的圆形透镜所具备的轴对称性,可以使其在各个方向上的投影效果保持相同的像差效果,同时也能提高像素的显示面积,增加透光性。因此,通过本发明的这种使次像素对应液晶透镜的设计,可以减少倾斜放置柱镜光栅时所产生的串扰情况的发生。
图6示出了本发明实施例的显示器的像素排布示意图。参见图6,以一个基本的像素单元为例,该像素单元由像素1、2、3、4组成,其中每个像素与其两边的像素成等距关系,且两点连线互成直角的关系。在整个显示区域中,行与行之间的像素排布为周期性错层结构,例如,像素1所在的行像素与像素2和像素3所在的行像素是上下交错排布的。同样地,列与列之间的像素排布也为周期性错层结构。当然,本发明的像素排布并不仅局限于图6所示的设计。
图7为本发明实施例的覆盖像素的液晶透镜设计示意图。如图7所示,一个液晶透镜L覆盖了4个像素P。液晶透镜L的两条中轴线R互相垂直。液晶透镜覆盖的4个像素均位于两条中轴线上(横向或是纵向)。该设计有助于透镜分光后降低串扰,呈现良好3D的效果。
图8示出了本发明实施例的液晶透镜阵列与显示器件的像素结合的示意图,如图8所示,为了与显示器件的像素排列相匹配,液晶透镜阵列也需要在横向或是纵向呈一致的周期性交错排列。
当用户将显示设备倾斜放置或者观看者的位置发生移动的时候,检测设备将自动调整液晶透镜的形状或大小,或者改变其覆盖像素的数目,并通过对像素进行调整,使观看者能够继续看到立体图像。
以下将对液晶透镜的基本原理以及液晶透镜的电极设计及工作原理进行详细的介绍和说明。
如图10所示,玻璃基板51和玻璃基板52位于最外层;整块电极53与分散电极组58组成电极对,整块电极54与分散电极组57组成电极对;在分散电极组57和分散电极组58中,571和581分别代表单个电极;55和56是绝缘层;59和510为取向层,两个取向层的方向可以是一致的,也可以是垂直的,本发明以平行取向为例说明;511是液晶层,其中分布着液晶分子512。
在图10至图12中,相同元件均用上述符号表示。
上下两层玻璃基板51和52的区域分散型电极,即电极57和电极58,其电极间的间距为p,上下电极为错开对应的方式,其错开距离为p/2,该错开距离可根据设计或者应用的需要进行相应的调整,调整范围为0~p/2之间。
图11和图12示出了本发明中时序液晶透镜的工作原理。
液晶透镜的基本原理如下:在没加电压时,由于取向层的作用,液晶分子有统一的旋向,假设入射光偏振方向与液晶分子光轴朝向一致,这时液晶层对入射光有统一的折射率ne。当施加电压后,液晶分子发生旋转,使液晶层对入射光的折射率发生变化,若入射光矢量与光轴的夹角为θ,夹角θ与所加电压有关,施加电压越大,夹角越小,不加电压时夹角为90°。则该液晶微滴的有效折射率ng为:
ng=none/(no sin2θ+ne cos2θ)1/2=none/[(no-ne)sin2θ+ne]1/2
在图11和图12中,下基板的整片电极53与下基板的区域分散电极组58搭配使用,下基板的整片电极54与上基板的区域分散电极组57搭配使用。但是,53和58加电时,54和57不加电;反之53和58不加电。
图11为整片型电极54搭配区域分散型电极57使用时的液晶透镜工作示意图。电极54上加电压UO,在分散电极组57的各个电极上施加不同电压,其中单个电极571施加电压最小,使电极54与571之间的压差最大,然后以电极571为中心,在其两侧的电极±1、±2、±3...±N上对称施加非线性电压U1、U2、U3...Un,并且电压值变化规律为递增,使这2N+1个电极所覆盖的液晶各个部位产生不同的旋向,从而导致折射率的变化。合理分布所加电压值,即可形成液晶透镜的效果。在电极组57中,每隔2N个电极分布一个571电极,这些电极施加电压与571相同。N的数目取决于液晶透镜光栅的栅距,具体关系为透镜栅距略小于2N个电极的宽度。
图12为整片型电极53搭配区域分散型电极58使用时的液晶透镜工作示意图。电极53上加电压UO,在分散电极组58的各个电极上施加不同电压,其中单个电极581施加电压最小,使电极53与581之间的压差最大,然后以电极581为中心,在其两侧的电极±1、±2、±3...±N上对称施加非线性电压U1、U2、U3...Un,并且电压值变化规律为递增,使这2N+1个电极所覆盖的液晶各个部位产生不同的旋向,从而导致折射率的变化。合理分布所加电压值,即可形成液晶透镜的效果。在电极组58中,每隔2N个电极分布一个581电极,这些电极施加电压与581相同。N的数目取决于液晶透镜光栅的栅距,具体关系为透镜栅距略小于2N个电极的宽度。
如图13a、13b和13c所示,本发明中,液晶透镜的电极可以为任意形状的环状电极,也可以为非连续连接的近似环状电极的组合;且组合电极阵列宽度与间距的比例可以根据实现的效果设定不同的大小。外围驱动电极引线可以通过多层电极布线,刻蚀接触孔的方式进行连接不同位置的驱动电极。优选地,为了实现不同角度观看立体图像,需要设计多层液晶透镜的驱动电极,从而就能够在不同的角度时,对液晶透镜进行变换让用户观看立体图像。
以下将对本发明的检测模块的实现进行更加详细的说明。
本发明的检测模块的设计可以包括如下两类:
1.重力传感器
利用重力传感器水平测量仪可使测量精度达到0.002弧度,还可通过预先编程、多个传感器测量平台不同方向,一次性得出平台与基准面之间的面夹角及面夹角的方向。重力感应器是说的简单点就是,本来把手机拿在手里是竖着的,你将它转90度,横过来,它的页面就跟随你的重心自动反应过来,也就是说页面也转了90度。
进一步地,使液晶透镜与显示器件实现联动,当用户改变显示器件的方位时,液晶透镜通过改变透镜的形状大小和位置,然后与显示器件的排图相结合依然让用户观看到立体图像。
2.人脸捕获与跟踪模块
人脸捕获是指通过摄像采集设备将摄像头采集的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
进一步地,使液晶透镜与显示器件实现联动,当用户在摄像头范围内进行移动时候,通过对人脸的采集识别可以判断人在显示器件的相对位置,从而改变透镜的形状大小和位置,然后与显示器件的排图相结合依然让用户观看到立体图像。
图14示出了依据本发明方案的全分辨率显示设计示意图。如图14所示,T1时刻液晶透镜阵列覆盖的像素位置为位置1,在T2时刻的时候液晶透镜覆盖的位置为位置2。从图中可以看出,透镜效果相差半个周期,在驱动电压持续交替作用时可以产生流动透镜的效果。
图15示出了是在时序电路驱动下,液晶透镜实现全分辨率的显示原理示意图。图15中,透镜模组70是由上述N个圆形液晶透镜组成的,显示设备73中的1、2、3、4代表像素点,其中像素点1,2与像素点3,4各显示一幅图像。假设单个透镜覆盖4个像素点区域。实线弧形71表示的是上述图11中T2时刻时,电极571与电极54之间的液晶通过电场控制产生了一个弧形的透镜效果。实线光路74经过透镜71发生折射,于是光路发生改变。这时观看者的左眼看到的是1和2的像素点,而右眼看到的是3和4的像素点,左眼与右眼看到的是不同的图像。虚线弧形72表示的是图12中T3时刻时,电极53与电极581之间的液晶通过电场控制也产生了一个弧形的透镜效果。同理虚线光路75通过透镜72发生折射,光路发生改变。这时观看者的左眼看到的是3和4的像素点,而右眼看到的是1和2的像素点。T3与T2时刻看到的图像刚好相反。这两种状态交替出现达到一定频率的时候,利用人的视觉残留使得观看者左眼和右眼均看到两幅完整的图像,这样就可以实现了全清晰度的3D图像显示了。
以下将给出本发明的若干应用示例对本发明方案的具体实施作进一步地详细介绍。
应用示例一
如图16所示为一个电子显示器件150,其包含摄像头模块151,显示面板模块153,重力感应装置模块152,液晶透镜以及显示排图驱动模块154(下文中也简称为驱动模块)。
摄像头模块151除了实现常用的功能以外,还负责人脸轮廓的捕获与跟踪人脸运动功能,可以用来判断人脸的位置与方向。重力感应装置模块152负责侦测电子显示器件相对于地面的方位。显示面板模块153包括了图1,6,8,9所描述的显示器件结构(平板显示器与透镜相结合)。驱动模块154负责切换透镜的大小以及切换透镜的位置与周期性,以及控制显示面板像素配合透镜切换进行排图,即显示面板根据已形成的透镜对显示图像进行排图以适应透镜的状态。
定义的三个方向A方向为平行于图16器件下方横边的方向,B方向为平行于图16器件左边竖向的方向,A与B两个方向在平面上互相垂直,C方向与AB两个方向各呈45°倾斜方向。
由图16看到器件150目前的观看方向是平行于A方向,此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸动作,驱动模块154控制显示面板像素配合透镜切换进行排图使观看者左右眼看到不同的影像从而产生3D效果。具体而言,透镜3D的原理是让一束光线入射透镜时产生汇聚然后分光,这时就会有两束光线出射,通过设计使得两束光线刚好入射人的左右眼,即可达到人眼产生3D影像的效果。
由图17可以看到,器件150目前的观看方向是平行于B方向,重力感应器152侦测电子显示器件相对于地面的方位。此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸动作,驱动模块154控制显示面板像素配合透镜切换进行,按照B方向排图使观看者左右眼看到不同的影像从而产生3D效果。
由图18可以看到,器件150目前的观看方向是平行于C方向,重力感应器152侦测电子显示器件相对于地面的方位。此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸动作,驱动模块154控制显示面板像素配合透镜切换进行,按照C方向排图使观看者左右眼看到不同的影像从而产生3D效果。
应用示例二
如图19所示为一个电子显示器件150,其包含摄像头模块151,显示面板模块153,重力感应装置模块152,液晶透镜以及显示排图驱动模块154。图19中155是观看者的观看位置。
摄像头模块151除了实现常用的功能以外,还负责人脸轮廓的捕获与跟踪人脸运动功能,可以用来判断人脸的位置与方向。重力感应装置模块152负责侦测电子显示器件相对于地面的方位。显示面板模块153包括了图1,6,8,9所描述的显示器件结构(平板显示器与透镜相结合)。驱动模块154负责切换透镜以及控制显示面板像素配合透镜切换进行排图。
定义的三个方向A方向为平行于图15器件下方横边的方向,B方向为平行于图16器件左边竖向的方向,A与B两个方向在平面上互相垂直,C方向与AB两个方向各呈45°倾斜方向。
此时显示器件固定在一个位置,重力感应装置模块152电子显示器件相对于地面的方位然后固定在一个方向排图。
如图19观看者的眼睛155此时观看方向是平行于A方向,此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸位置,驱动模块154控制显示面板像素配合透镜切换进行排图使观看者左右眼看到不同的影像从而产生3D效果。
如图20观看者的眼睛155此时观看方向是平行于B方向,此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸位置,驱动模块154控制显示面板像素配合透镜切换进行排图使观看者左右眼看到不同的影像从而产生3D效果。
如图21观看者的眼睛155此时观看方向是平行于C方向,此时如需观看3D影像,显示面板模块153上的透镜器件启动,摄像头模块151开始捕捉人脸位置,驱动模块154控制显示面板像素配合透镜切换进行排图使观看者左右眼看到不同的影像从而产生3D效果。
以上仅为本发明的优选实施案例而已,并不用于限制本发明,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。

Claims (10)

1.一种立体显示装置,所述立体显示装置包括分光单元和显示单元,其特征在于,
所述分光单元由多个圆形液晶透镜构成,且每个所述圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配。
2.如权利要求1所述的立体显示装置,其特征在于,
所述每个圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配,是指:所述基本像素单元中包含的每个圆形像素点均位于所述圆形液晶透镜的中轴线上。
3.如权利要求1所述的立体显示装置,其特征在于,
所述每个圆形液晶透镜分别与所述显示单元的一个基本像素单元相匹配,是指:所述基本像素单元中包含的中心圆形像素点以外的其他各个圆形像素点围绕所述显示单元的中心呈轴对称。
4.如权利要求1所述的立体显示装置,其特征在于,
所述多个圆形液晶透镜的排列与所述显示单元中的圆形像素点的排列周期一致,所述显示单元中的每个圆形像素点均被所述圆形液晶透镜覆盖。
5.如权利要求4所述的立体显示装置,其特征在于,
所述多个圆形液晶透镜的排列与所述显示单元中的圆形像素点采用一致的周期性横向错层排列、或者周期性纵向错层排列。
6.如权利要求2所述的立体显示装置,其特征在于,
所述基本像素单元包括4个对称排列的圆形像素点,所述每个圆形液晶透镜覆盖所述4个对称排列的圆形像素点;
且所述4个圆形像素点中竖向排列的2个圆形像素点的连线,以及其余2个横向排列的圆形像素点的连线,均位于所述圆形液晶透镜的中轴线上且互相垂直。
7.如权利要求2所述的立体显示装置,其特征在于,
所述基本像素单元包括9个对称排列的圆形像素点,所述每个圆形液晶透镜覆盖所述9个对称排列的圆形像素点;
且所述9个对称排列的圆形像素点呈3行3列分布,且中间行和中间列的圆形像素点的连线均位于所述圆形液晶透镜的中轴线上且互相垂直。
8.如权利要求1至7之任一项所述的立体显示装置,其特征在于,所述立体显示装置还包括显示面板模块,摄像头模块,重力感应装置模块,和液晶透镜及显示排图驱动模块,其中:
所述摄像头模块用于,捕获人脸轮廓并跟踪人脸运动,判断人脸相对于所述显示面板模块的位置与观看方向;
所述重力感应装置模块用于,侦测所述显示面板模块相对于地面的方位;
所述液晶透镜及显示排图驱动模块用于,在检测到所述显示面板模块倾斜、或者观看者的位置发生移动时,通过调整圆形液晶透镜,并控制所述显示面板模块的像素点配合圆形液晶透镜的调整进行排图,产生立体显示。
9.如权利要求8所述的立体显示装置,其特征在于,
所述液晶透镜及显示排图驱动模块用于,采用如下方式对所述圆形液晶透镜进行调整:
切换所述圆形液晶透镜的大小、调整所述圆形液晶透镜的位置、和/或调整所述圆形液晶透镜的排列周期。
10.如权利要求2所述的立体显示装置,其特征在于,
所述圆形像素点包括主像素点或者次像素点。
CN201210288406.5A 2012-08-14 2012-08-14 一种立体显示装置 Active CN102809867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210288406.5A CN102809867B (zh) 2012-08-14 2012-08-14 一种立体显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210288406.5A CN102809867B (zh) 2012-08-14 2012-08-14 一种立体显示装置

Publications (2)

Publication Number Publication Date
CN102809867A true CN102809867A (zh) 2012-12-05
CN102809867B CN102809867B (zh) 2016-07-06

Family

ID=47233598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210288406.5A Active CN102809867B (zh) 2012-08-14 2012-08-14 一种立体显示装置

Country Status (1)

Country Link
CN (1) CN102809867B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572885A (zh) * 2016-01-12 2016-05-11 洪煦 一种液晶透镜阵列及立体显示装置
CN106254859A (zh) * 2016-01-18 2016-12-21 北京智谷睿拓技术服务有限公司 光场显示控制方法和装置、光场显示设备
CN106647060A (zh) * 2017-01-04 2017-05-10 京东方科技集团股份有限公司 一种液晶透镜、显示装置及控制方法
CN107678167A (zh) * 2017-10-17 2018-02-09 京东方科技集团股份有限公司 三维显示面板和显示装置
CN110058464A (zh) * 2019-05-29 2019-07-26 京东方科技集团股份有限公司 液晶光子筛结构、近眼显示装置
US10545352B2 (en) 2016-01-26 2020-01-28 Boe Technology Group Co., Ltd. Three-dimensional display device
CN111460997A (zh) * 2020-03-31 2020-07-28 倪娅丹 一种基于全方位动态捕捉的人脸识别系统及识别方法
WO2021097747A1 (zh) * 2019-11-21 2021-05-27 南昌欧菲生物识别技术有限公司 微透镜阵列元件以及扩散片和电子设备
CN116840948A (zh) * 2022-11-26 2023-10-03 荣耀终端有限公司 一种光学透镜、光体积描记器和电子设备
CN116840948B (zh) * 2022-11-26 2024-05-17 荣耀终端有限公司 一种光学透镜、光体积描记器和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003754A (ja) * 2004-06-18 2006-01-05 Asahi Glass Co Ltd 表示装置
CN101061419A (zh) * 2004-11-22 2007-10-24 西铁城控股株式会社 液晶光学元件及其制造方法
JP2009520230A (ja) * 2005-12-20 2009-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 自動立体表示装置
CN101561570A (zh) * 2008-04-18 2009-10-21 鸿富锦精密工业(深圳)有限公司 液晶透镜及镜头模组
CN102207632A (zh) * 2011-07-06 2011-10-05 上海理工大学 一种立体显示器
TW201212645A (en) * 2010-08-24 2012-03-16 Fujifilm Corp Solid-state imaging device
CN102466888A (zh) * 2010-10-31 2012-05-23 点晶科技股份有限公司 用来显示立体影像的光学系统及其相关方法
CN102520558A (zh) * 2012-01-08 2012-06-27 四川大学 一种基于蓝相液晶微透镜阵列的集成成像显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003754A (ja) * 2004-06-18 2006-01-05 Asahi Glass Co Ltd 表示装置
CN101061419A (zh) * 2004-11-22 2007-10-24 西铁城控股株式会社 液晶光学元件及其制造方法
JP2009520230A (ja) * 2005-12-20 2009-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 自動立体表示装置
CN101561570A (zh) * 2008-04-18 2009-10-21 鸿富锦精密工业(深圳)有限公司 液晶透镜及镜头模组
TW201212645A (en) * 2010-08-24 2012-03-16 Fujifilm Corp Solid-state imaging device
CN102466888A (zh) * 2010-10-31 2012-05-23 点晶科技股份有限公司 用来显示立体影像的光学系统及其相关方法
CN102207632A (zh) * 2011-07-06 2011-10-05 上海理工大学 一种立体显示器
CN102520558A (zh) * 2012-01-08 2012-06-27 四川大学 一种基于蓝相液晶微透镜阵列的集成成像显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴双红等: "圆形电极液晶垂直取向模式TFT-LCD视角特性的模拟计算", 《液晶与显示》, vol. 23, no. 3, 30 June 2008 (2008-06-30) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572885A (zh) * 2016-01-12 2016-05-11 洪煦 一种液晶透镜阵列及立体显示装置
CN106254859A (zh) * 2016-01-18 2016-12-21 北京智谷睿拓技术服务有限公司 光场显示控制方法和装置、光场显示设备
US10197808B2 (en) 2016-01-18 2019-02-05 Beijing Zhigu Rui Tuo Tech Co., Ltd. Light field display control method and apparatus, and light field display device
US10545352B2 (en) 2016-01-26 2020-01-28 Boe Technology Group Co., Ltd. Three-dimensional display device
CN106647060A (zh) * 2017-01-04 2017-05-10 京东方科技集团股份有限公司 一种液晶透镜、显示装置及控制方法
CN107678167A (zh) * 2017-10-17 2018-02-09 京东方科技集团股份有限公司 三维显示面板和显示装置
WO2019076314A1 (en) * 2017-10-17 2019-04-25 Boe Technology Group Co., Ltd. THREE DIMENSIONAL DISPLAY PANEL AND DISPLAY DEVICE
US20190258071A1 (en) * 2017-10-17 2019-08-22 Boe Technology Group Co., Ltd. Three-dimensional display panel and display device
CN110058464A (zh) * 2019-05-29 2019-07-26 京东方科技集团股份有限公司 液晶光子筛结构、近眼显示装置
CN110058464B (zh) * 2019-05-29 2022-01-07 京东方科技集团股份有限公司 液晶光子筛结构、近眼显示装置
WO2021097747A1 (zh) * 2019-11-21 2021-05-27 南昌欧菲生物识别技术有限公司 微透镜阵列元件以及扩散片和电子设备
CN111460997A (zh) * 2020-03-31 2020-07-28 倪娅丹 一种基于全方位动态捕捉的人脸识别系统及识别方法
CN116840948A (zh) * 2022-11-26 2023-10-03 荣耀终端有限公司 一种光学透镜、光体积描记器和电子设备
CN116840948B (zh) * 2022-11-26 2024-05-17 荣耀终端有限公司 一种光学透镜、光体积描记器和电子设备

Also Published As

Publication number Publication date
CN102809867B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN102809867A (zh) 一种立体显示装置
US8638402B2 (en) Stereoscopic display
RU2546553C2 (ru) Мультивидовое автостереоскопическое устройство отображения
CN102109715B (zh) 自动立体显示装置
US9813695B2 (en) Display device with free focus capability
US7954967B2 (en) Directional backlight, display apparatus, and stereoscopic display apparatus
US7301587B2 (en) Image display device and portable terminal device using the same
CN106249423B (zh) 显示装置及其操作方法
US9258551B2 (en) Auto-stereoscopic display device and driving method
US9104032B1 (en) Naked-eye 3D display device and liquid crystal lens thereof
US20130250195A1 (en) Display device and electronic device
US10061134B2 (en) Multi-view display device
US20210088808A1 (en) Multi-view display device
KR102527314B1 (ko) 무안경 입체영상 디스플레이 디바이스
US20230333403A1 (en) Liquid crystal system display for stereovision
CN107065211A (zh) 裸眼3d影像显示装置
CN206876973U (zh) 一种裸眼3d影像显示装置
Chen et al. P‐109: Scanning liquid crystal prism array for glasses‐free 3D display
EP3299883A1 (en) Display device including lens panel
KR20160070290A (ko) 다기능 표시장치 및 이의 구동방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180724

Address after: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.)

Patentee after: Shenzhen super Technology Co., Ltd.

Address before: 518053 H-1 Tung 101, overseas Chinese town, Nanshan District, Shenzhen, Guangdong.

Patentee before: Shenzhen SuperD Photoelectronic Co., Ltd.

TR01 Transfer of patent right