CN102803996B - 放射性核素成像中散射事件的最佳能量开窗 - Google Patents

放射性核素成像中散射事件的最佳能量开窗 Download PDF

Info

Publication number
CN102803996B
CN102803996B CN201080026912.6A CN201080026912A CN102803996B CN 102803996 B CN102803996 B CN 102803996B CN 201080026912 A CN201080026912 A CN 201080026912A CN 102803996 B CN102803996 B CN 102803996B
Authority
CN
China
Prior art keywords
radionuclide imaging
imaging data
image
under inspection
person under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080026912.6A
Other languages
English (en)
Other versions
CN102803996A (zh
Inventor
J·A·科尔特姆尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102803996A publication Critical patent/CN102803996A/zh
Application granted granted Critical
Publication of CN102803996B publication Critical patent/CN102803996B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

一种成像系统,包括:存储器(12),其用于存储包括量化辐射探测事件能量值的放射性核素成像数据,所述放射性核素成像数据是由放射性核素成像设备(10)从受检者采集的;选择能量窗口的能量窗口选择模块(20)和数据过滤模块(14),所述数据过滤模块被配置成使用所选择的能量窗口关于所存储的量化辐射探测事件能量值过滤所存储的放射性核素成像数据以生成经过滤的放射性核素成像数据集;以及重建模块(30),其被配置成重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像。

Description

放射性核素成像中散射事件的最佳能量开窗
下文涉及医学成像领域、放射性核素成像领域和相关领域。
在诸如正电子发射断层摄影(PET)、单光子发射计算机断层摄影(SPECT)等放射性核素成像中,由邻近的辐射探测器监测注入或以其他方式包括含放射性核素的药剂的受检者,以探测受检者体内放射性核素分布所发射的辐射。基于辐射探测事件的空间分布来估计受检者体内的放射性核素分布。
在PET中,放射性核素发射正电子,正电子在正电子-电子湮灭事件中迅速湮灭,每次湮灭事件都发射两束反向的511keV的伽马(gamma)射线——因此,在PET中,探测两个基本同时的511keV的粒子限定了连接511keV粒子探测事件的“响应线”。在飞行时间PET中,使用两个基本同时的511keV探测事件之间的小时间间隔(或没有间隔)来沿着响应线进一步定位正电子。
在SPECT中,放射性核素发射单个辐射粒子,并由设置于辐射探测器面上的辐射准直器限定“响应线”或窄角“响应锥”或“响应平面”。
在生物受检者或其他辐射敏感受检者的放射性核素成像中,优选或必须使所施予或注入的放射性核素量保持低值。结果,辐射探测事件的频率低,并且使用盖革(Geiger)探测模式,其中,对个体辐射探测事件进行计数。另一结果是,由于背景辐射、散射或假探测事件的其他源造成的噪声应当予以高度关注。可以通过使用能量开窗,而对于PET而言,通过时间开窗,来过滤这些虚假探测事件。例如,在PET中,感兴趣粒子是511keV的伽马粒子,因此可以滤除与能量距511keV很远的粒子对应的探测事件。对于PET而言,对两个基本同时的511keV探测事件的期望提供了第二基于时间的过滤器。能量开窗对于滤除散射辐射而言效果相对较差,因为由散射事件导致的能量变化可能很小。
用于滤除散射事件的最佳能量窗口取决于散射诱发的能量变化的分布,这可能是受检者特异性的。已知基于所探测的辐射事件选择受检者特异性固定能量窗口。例如,参见Wells等人,“OptimalEnergyWindowSelectionforScintigraphy&EmissionComputedTomography”,IEEENuclearScienceSymposiumConferenceRecord(2005)。Wells方法的精确度和可靠性受到针对注射了低剂量放射性核素的受检者的低辐射事件计数的约束。如果所选择的能量窗口对于成像应用或受检者而言不是最佳的,那么图像重建所接受和使用的辐射探测事件也不是最佳的,导致重建图像也不是最佳的。
下文提供了新的经改进的设备和方法,其克服了上述问题和其他问题。
根据一个公开的方面,一种成像系统包括:用于存储包括量化辐射探测事件能量值的放射性核素成像数据的装置(means),所述放射性核素成像数据是由放射性核素成像设备从受检者采集的;用于关于所存储的量化(quantitative)辐射探测事件能量值对所存储的放射性核素成像数据进行过滤以生成经过滤的放射性核素成像数据集的装置;以及用于重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像的装置。
根据另一公开的方面,一种方法包括:存储包括量化辐射探测事件能量值的放射性核素成像数据,所述放射性核素成像数据是通过对受检者进行放射性核素成像来采集的;关于所存储的量化辐射探测事件能量值对所存储的放射性核素成像数据进行过滤以生成经过滤的放射性核素成像数据集;以及重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像。
根据另一公开的方面,一种方法包括:使用第一和不同的第二能量窗口,关于量化辐射探测事件能量值,对通过对受检者进行放射性核素成像而采集的放射性核素成像数据进行过滤,以生成相应的第一和第二经过滤的放射性核素成像数据集;以及重建所述第一和第二经过滤的放射性核素成像数据集以生成所述受检者的相应的第一和第二重建图像。
根据另一公开的方面,一种方法包括:基于不包括放射性核素成像数据或受检者的放射性核素图像的信息生成用于对放射性核素成像数据进行过滤的受检者特异性能量窗口;使用所生成的受检者特异性过滤器,关于量化辐射探测事件能量值,对通过对受检者进行放射性核素成像而采集的放射性核素成像数据进行过滤,以生成经过滤的放射性核素成像数据集;以及重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像。
根据另一公开的方面,一种系统包括被配置成执行前三段任一段中所述的方法的存储介质和数字处理器。根据另一公开的方面,一种存储介质存储指令,可以由数字处理器执行所述指令以执行前三段任一段中所述的方法。
一个优点在于其中回顾地(retrospectively)执行散射校正的放射性核素成像。
另一优点在于其中使用针对特定应用优化的能量窗口执行散射校正的放射性核素成像。
另一优点在于其中使用针对不同应用优化的不同能量窗口回顾地执行散射校正的放射性核素成像。
在阅读并理解以下详细说明之后,对于本领域普通技术人员而言,更多优点将是显而易见的。
图1图解示出了具有散射校正的放射性核素成像系统。
图2图解示出了两个例示性能量窗口。
图3-4图解示出了由图1的系统适当执行的成像数据处理流程图。
参考图1,放射性核素成像系统包括放射性核素成像设备10,在图1的例示性实施例中,放射性核素成像设备10是用于采集PET成像数据的例示性正电子发射断层摄影(PET)扫描器10。或者,可以提供另一种放射性核素成像设备,诸如用于采集单光子发射计算机断层摄影(SPECT)成像数据的伽马摄像机。例如,可以由计算机断层摄影(CT)/PET成像扫描器(例如,可从KoninklijkePhilipsElectronicsN.V.(Eindhoven,荷兰)获得的GeminiTMCT/PET系统)的PET成像部件,或由独立的PET扫描器适当地实现图示的PET扫描器10。例如,可以由从KoninklijkePhilipsElectronicsN.V.(荷兰Eindhoven)可获得的BrightViewTM、PrecedenceTM或SKYLightTMSPECT系统实现用于SPECT成像的伽马摄像机,其任选地还可以包括集成的CT能力。这些仅仅是例示性范例,也可以想到放射性核素成像设备10的其他实施例。
向放射性核素成像设备10的成像区域11内装载成像受检者,诸如人类成像受检者、动物成像受检者或无生命的成像受检者。为成像受检者注入放射性核素,放射性核素以特征能量或高于特征能量谱来发射辐射。为了对诸如人或动物的生物受检者成像,典型方式是通过例如静脉注射、口服或通过另一进入路径对受检者施予包含放射性核素的放射性药剂。在放射性核素以特征能量或高于特征能量谱发射辐射时,放射性核素成像设备10探测辐射事件,以便采集放射性核素成像数据。所采集的放射性核素成像数据提供了关于受检者体内放射性核素的分布的信息。例如,如果放射性核素由设计成在感兴趣器官中积聚的放射性药剂承载,那么所采集的放射性核素成像数据提供关于感兴趣器官的信息。放射性核素成像还可以用于其他目的,例如表征代谢过程(例如,功能性成像),以识别组织坏死区域等。
放射性核素成像设备10采集包括量化辐射探测事件能量值的放射性核素成像数据,并将这些数据存储在放射性核素成像数据存储器12中。在一些实施例中,以列表模式在存储器12中存储所采集的放射性核素成像数据,所述列表模式包括每次辐射探测事件的时间、能量和位置信息。对于PET成像数据,列表模式存储例如能够采取如下形式:<时间1,能量1,位置1,时间2,能量2,位置2>,其中,时间1、能量1和位置1表示第一伽马射线探测事件的时间、能量和位置,而时间2、能量2和位置2表示基本同时发生的一对伽马射线探测事件的第二伽马射线探测事件的时间、能量和位置。对于PET数据,使用511keV附近的符合时间开窗和任选的初始能量开窗来识别候选的基本同时发生的成对的伽马射线探测事件。存储时间1和时间2两者使得能够在图像重建期间进行飞行时间(TOF)处理,从而沿着连接基本同时发生的一对伽马射线探测事件的响应线(LOR)来进一步定位电子-正电子湮灭事件。如果不使用TOF处理,那么,任选地可以针对基本同时发生的一对伽马射线探测事件的两个事件存储单一时间。
对于SPECT成像数据,列表模式存储例如能够采取如下形式:<时间,能量,位置>,其中,时间、能量和位置表示单个辐射探测事件的时间、能量和位置。任选地,可以使用初始宽度的能量窗口来识别能量接近在放射性核素成像中所使用的放射性核素发射能量的候选射线探测事件。对于SPECT,基于与辐射探测器一起安装的辐射准直器所提供的准直来限定LOR。
尽管包括时间、能量和位置信息的列表模式数据是有利的,但也想到了省去对时间信息的存储。任选的初始能量开窗,如果使用的话,优选采用相对宽的能量窗口,其被设计成接受与在放射性核素成像中所使用的放射性核素的发射能量对应的大部分或全部辐射探测事件以及一些无关的或噪声辐射探测事件。
由数据过滤模块14关于所存储的量化辐射探测事件能量值对所存储的放射性核素成像数据进行过滤以便生成经过滤的放射性核素成像数据集,所述经过滤的放射性核素成像数据集被存储在存储器16中。能量过滤的一个目的是去除与受检者诱发的辐射散射对应的辐射探测事件。即使散射辐射可能由放射性核素生成,但散射导致辐射粒子的轨迹改变,这继而影响用于成像目的的散射辐射粒子探测事件的值。经历过非弹性或部分弹性散射的放射性核素发射改变了其能量,从而能够被探测到并通过适当的能量过滤来滤除。然而,如本文所公开的,为能量过滤选取最佳能量窗口取决于各种因素,包括受检者的几何结构、重建的放射性核素图像的目的等。因此,优选不为此目的使用采集期间执行的任选预期式能量开窗,而相反,使用由数据过滤模块14执行的回顾式能量过滤来解决受检者诱发的辐射散射。
继续参考图1并简要参考图2,能量窗口选择模块20选择用于由数据过滤模块14执行的回顾式能量过滤的能量窗口。如本文所使用的,术语“能量窗口”意在宽泛地涵盖各变体,诸如使用多能量窗口(未示出,但适用于例如多放射性核素成像),以及使用在能量周边处对放射性核素成像数据加权的非陡峭或“羽化”窗口边缘。图2图示了这一后者的变化。图2的顶部图图示了具有陡峭边缘的能量窗口,其中,接受或保留能量位于窗口内的事件,并拒绝或滤除能量在窗口外的事件。图2的底部图图示了具有非陡峭或羽化窗口边缘的能量窗口。这种能量窗口限定了由底部图的坐标指示的事件权重。为能量良好地位于窗口内的事件分配单位或“1”的权重值,因此完全保留下来。能量良好地位于窗口外的事件被分配零或“0”的权重值,因此被完全拒绝或滤除。能量位于非陡峭或羽化窗口边缘的过渡区域中的事件被分配0和1之间的权重,因此被保留但被加权,对重建图像贡献较少。尽管图2的底部图图示出了线性的非陡峭窗口边缘,但也想到了其他过渡,例如抛物线、指数或其他形状的窗口边缘。
继续参考图1,能量窗口选择模块20选择用于由数据过滤模块14执行的回顾式能量过滤的能量窗口。可以为能量窗口的选择使用各种标准。例如,可以基于受检者的几何尺度(例如,高度、腰围、体重)的大小选择能量窗口。可以由放射科医师或其他用户经由诸如图示的计算机的用户接口22输入关于受检者的这种信息,或者可以基于非放射性核素图像,诸如由例示性磁共振(MR)扫描器24生成并存储在MR图像存储器26中的受检者的图像,来确定这种信息。还可以使用其他成像模态(modality)来生成图像,从该图像获得受检者的几何结构信息。例如,可以使用计算机断层摄影(CT)图像。在一些实施例中,放射性核素成像设备10是混合式系统,包括诸如PET或SPECT的放射性核素成像模态连同CT成像模态,其使得获得受检者的CT图像供能量窗口选择模块20使用有利地方便起来。在另一种方式中,一开始在不应用数据过滤模块14的情况下重建在存储器12中存储的放射性核素成像数据,以生成受检者的粗略图像,从其导出受检者的几何结构信息。
能量窗口选择模块20在选择用于回顾式能量过滤的能量窗口时适于使用的其他标准包括重建图像的目的。例如,相对较大的能量窗口保留更多的放射性核素成像数据,其通常导致审美上更令人舒适的图像,即在视觉认知时图像质量更高的图像。另一方面,相对较小的能量窗口拒绝更多放射性核素成像数据,但在过滤之后保留更好地匹配放射性核素发射的特征能量或能量谱的放射性核素成像数据,并且包含更少的噪声,从而具有增强的量化精确度,并且可能更适于量化图像分析。有利地,由于数据过滤模块14基于所选择的能量窗口执行回顾式能量过滤,也可能并想到了利用不同能量窗口重建图像,例如,以产生图像质量增强的图像供人观看,而另一幅图像具有增强的量化精确度,供量化分析。
数据过滤模块14至少关于所存储的量化辐射探测事件能量值执行数据过滤以生成经过滤的放射性核素成像数据集,所述放射性核素成像数据集被存储在存储器16中。任选地,数据过滤模块14关于一个或多个其他参数执行数据过滤。例如,可以基于位置信息执行回顾式数据过滤,例如,以去除由有噪声的辐射探测器采集的有问题的成像数据。作为另一范例,可以基于采集时间执行回顾式数据过滤,例如以去除受到外部噪声源导致的所识别噪声尖峰影响的时段期间的成像数据。
重建模块30重建由数据过滤模块14过滤并存储在存储器16中的放射性核素成像数据以生成重建图像,所述重建图像被存储在存储器32中。重建模块30可以使用与放射性核素成像数据适合的任何适当的图像重建算法。一些适当的图像重建算法包括滤波反向投影、迭代反向投影等。任选地,图像重建算法包括基于例如由CT图像或另一来源提供的衰减图对辐射衰减进行图像校正。图像融合和格式化模块34对图像进行格式化,以在用户接口22上观看或可视化。任选地,图像融合和格式化模块34通过融合两幅或更多幅图像来生成合成图像。例如,可以将PET图像与由MR扫描器24生成的MR图像融合,或者可以融合使用不同能量窗口重建的两幅PET图像。图像融合能够使用各种图像组合范式,诸如以灰度级显示一幅图像,以及使用另一幅图像对灰度级图像进行色彩编码。
数据过滤模块14使用能量窗口选择模块20所选择的能量窗口而提供的回顾式能量过滤提供了显著灵活性。原始数据(任选地,由粗略预期式能量过滤进行处理)作为列表模式数据或以另一种数据格式存储在存储器12中,所述另一种数据格式包括量化辐射探测事件能量值。结果,可以选择以及应用不同能量窗口来评估在所得到的重建图像上能量开窗的效果。在附加或备选方式中,可以通过使用一开始重建的放射性核素图像作为能量窗口选择模块20的输入,任选迭代地细化能量窗口(图1中用将重建图像存储器32连接到能量窗口选择模块20的虚线图解指示)。下文给出一些例示性应用的范例。
继续参考图1并进一步参考图3,描述了基于受检者的几何尺度(高度、腰围、体重等)的大小选择能量窗口的例示性范例。在这一例示性范例中,能量窗口选择模块20从MR图像存储器26检索受检者的MR图像。在操作40中,从MR图像确定受检者特性。受检者特性应当能够证明受检者诱发的辐射散射。例如,人类受检者的腰围影响到放射性核素所发射的辐射粒子为到达放射性核素成像设备10的辐射探测器而穿过的生物组织的距离。于是,更大的腰围预计会与统计学上增多的受检者诱发的辐射散射相关,而更小的腰围预计与统计学上减少的受检者诱发的辐射散射相关。在操作42中,基于受检者的特性估计受检者诱发的辐射散射的量。操作42可以基于凭经验生成的查找表或使受检者诱发的辐射散射与受检者特性相关的数学关系。
如果受检者诱发的辐射散射的量小,那么在受检者体内注入的放射性核素所发射的大部分辐射将无散射地到达辐射探测器。在这种情况下,可以选择相对较小的能量窗口,这将保留大部分放射性核素成像数据。另一方面,如果受检者诱发的辐射散射的量大,那么可以预计,在到达辐射探测器之前,在受检者体内注入的放射性核素所发射的辐射粒子的相当部分会经历散射事件。在这种情况下,适当选择相对较大的能量窗口以保留更多的放射性核素成像数据,要权衡的是一些保留的放射性核素成像数据可能是因为散射辐射生成的,其在重建图像中引入一些误差。
于是,通常有利的是响应于评估相对较高的受检者诱发的辐射散射选择相对较大的能量窗口,以及响应于评估相对较低的受检者诱发的辐射散射选择相对较小的能量窗口。在一些实施例中,选择能量窗口以使噪声-等价计数率或密度最大化,这有效地维持保留所采集的放射性核素成像数据的显著部分和由于受检者诱发的散射而拒绝噪声的显著大部分之间的平衡。在操作44中,基于受检者诱发的辐射散射的估计量计算能量窗口。数据过滤模块14使用这一能量窗口对存储器12中存储的放射性核素成像数据进行过滤以生成存储在存储器16中的经过滤的放射性核素成像数据,并对其进行重建以形成参考图1所描述的重建图像。
继续参考图1并进一步参考图4,图示了使用回顾式能量开窗以生成针对不同目的优化的不同图像的例示性范例。在第一图像重建序列中,能量窗口选择模块20执行选择操作50以选择提供增强图像质量的相对较大的能量窗口。数据过滤模块14使用操作50中所选择的相对较大的能量窗口执行过滤操作52,以生成第一经过滤的放射性核素成像数据集54,重建模块30在图像重建操作56中重建所述第一经过滤的放射性核素成像数据集54以生成具有增强图像质量的重建图像58。
以类似的方式,在第二图像重建序列中,能量窗口选择模块20执行选择操作60以选择提供增强量化精确度的相对较小的能量窗口。数据过滤模块14使用在操作60中所选择的相对较小的能量窗口执行过滤操作62,以生成第二经过滤的放射性核素成像数据集64,重建模块30在图像重建操作66中重建所述第二经过滤的放射性核素成像数据集64以生成具有增强量化精确度的重建图像68。
在由图像融合和格式化模块34执行的操作70中任选地融合两幅图像58、68,以生成融合图像,在显示操作72中在用户接口22上显示所述融合图像。图像融合能够采用任何适当的图像融合范式。在一种方式中,将图像质量增强的重建图像58显示为灰度级图像,基于量化精确度增强的重建图像68的强度值对灰度级图像进行色彩编码。在另一种方式中,利用量化图像处理算法处理量化精确度增强的重建图像68以生成经处理的图像,为量化精确度增强的重建图像68的灰度级显示提供色彩编码。例如,可以使用量化精确度增强的重建图像68计算标准化摄取值(SUV)图,并且色彩编码可能需要在灰度级图像上叠加iso-SUV曲线。除了采用图像融合之外,可以并排或沿另一种取向显示两个重建图像58、68。
可以通过其他方式使用量化精确度增强的重建图像68。例如,在一些实施例中,使用量化精确度增强的重建图像68计算量化分析值。因此能够与图像质量增强的重建图像58一起显示从与图像58并排(或下方或上方)显示的量化精确度增强的重建图像68计算的量化分析值。还想到了在不同的数据库中存储不同的重建图像58、68。例如,可以在医院信息系统(HIS)数据库中存储图像质量增强的重建图像58,而在放射医学信息系统(RIS)数据库中存储量化精确度增强的图像68。
或者,图片存档及通信系统(PACS)能够存储图像58、68两者,根据查询来源由PACS查询来检索图像。于是,例如,来自HIS数据库的查询适当地检索图像质量增强的重建图像58;而来自RIS数据库的查询适当地检索量化精确度增强的重建图像68。
可以通过其他方式使用所公开的回顾式能量开窗。例如,在另一种方式中,可以使用不同位置和/或宽度的一组不同能量窗口生成独立重建并在用户接口22上一起显示的对应的经过滤的放射性核素成像数据集。因此用户能够选择和保留用户认为具有最佳图像质量的一幅或多幅重建图像。因为存储器12中有列表模式的数据,所以可以无需采集额外的成像数据来完成这一操作。
另一范例涉及多放射性核素成像,其中,两种放射性核素的特征能量或特征能量谱在能量上接近或具有交叠的能量谱。在这种情况下,可以通过使用若干候选能量窗口对,针对每个候选者重建图像,以及人工地或基于适当的量化标准,诸如使图像互相关最小化,选择最好的图像,来调节两种放射性核素的能量窗口。
更一般地,可以基于要使用的图像的规程来选择能量窗口。于是,可以使用不同的能量窗口重建用于显示的图像与用于量化分析的图像(例如,图4);但额外地可使用不同的能量窗口来重建用于不同类型的量化分析,或用于不同的显示或呈现等的图像。
在图1中,图解示出了各种处理部件14、20、30、34。可以将这些各种处理部件14、20、30、34多样地实现为一种或多种数字处理器,所述一种或多种数字处理器被适当地编程控制以执行处理部件14、20、30、34的功能。还想到了一种或多种处理部件,包括一个或多个专用集成电路(ASIC)部件。例如,重建模块30可以包括执行图像重建算法的一部分或全部的专用ASIC图像重建处理流水线。在图1中,图解示出了各种存储器部件12、16、26、32。可以由一种或多种存储设备多样化地实现这些存储部件12、16、26、32,例如,诸如硬盘驱动器的一种或多种磁存储介质、诸如光盘驱动器的一种或多种光存储介质、诸如闪速存储器、随机存取存储器(RAM)等一种或多种电子存储介质,或其各种组合。更进一步地,可以由存储指令的存储介质实现所公开的技术,可以由数字处理器执行所述指令以执行所公开方法的实施例。存储指令的存储介质例如可以包括诸如硬盘驱动器的一种或多种磁存储介质、诸如光盘驱动器的一种或多种光存储介质、诸如闪速存储器、RAM等一种或多种电子存储介质,或其各种组合。
本申请已经描述了一个或多个优选实施例。在阅读并理解前述详细说明的情况下,他人可以想到修改和变化。意图是将本申请解释为包括所有这样的修改和变化,只要它们在权利要求或其等价物的范围内。

Claims (12)

1.一种成像系统,包括:
用于存储包括量化辐射探测事件能量值的放射性核素成像数据的装置(12),所述放射性核素成像数据是由放射性核素成像设备(10)从受检者采集的;
用于基于如下之一来生成在过滤所述放射性核素成像数据中使用的能量窗口的装置:(i)所述受检者的非放射性核素图像和(ii)通过重建所存储的放射性核素成像数据而生成的所述受检者的初始重建放射性核素图像;
用于使用所生成的能量窗口关于所存储的量化辐射探测事件能量值过滤所存储的放射性核素成像数据以生成经过滤的放射性核素成像数据集的装置(14、20);以及
用于重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像的装置(30)。
2.一种成像方法,包括:
存储包括量化辐射探测事件能量值的放射性核素成像数据,所述放射性核素成像数据是通过对受检者进行放射性核素成像而采集的;
基于如下之一来生成在过滤所述放射性核素成像数据中使用的能量窗口:(i)所述受检者的非放射性核素图像和(ii)通过重建所存储的放射性核素成像数据而生成的所述受检者的初始重建放射性核素图像;
使用所生成的能量窗口关于所存储的量化辐射探测事件能量值过滤所存储的放射性核素成像数据以生成经过滤的放射性核素成像数据集;以及
重建所述经过滤的放射性核素成像数据集以生成所述受检者的重建图像。
3.根据权利要求2所述的方法,其中,所述过滤和重建包括:
使用第一能量窗口关于所存储的量化能量值过滤所存储的放射性核素成像数据以生成第一经过滤的放射性核素成像数据集;以及
重建所述第一经过滤的放射性核素成像数据集以生成第一重建图像;
使用与所述第一能量窗口不同的第二能量窗口关于所存储的量化能量值过滤所存储的放射性核素成像数据以生成第二经过滤的放射性核素成像数据集;
重建所述第二经过滤的放射性核素成像数据集以生成第二重建图像;以及
显示融合图像,所述融合图像包括所述第一重建图像和所述第二重建图像的融合。
4.根据权利要求2-3中的任一项所述的方法,还包括:
采集所述受检者的非放射性核素图像。
5.根据权利要求2-3中的任一项所述的方法,其中,所述过滤使用为使噪声-等价计数率或噪声-密度最大化而选择的能量窗口。
6.根据权利要求2-3中的任一项所述的方法,其中,所述过滤使用基于所述受检者的几何尺度的大小而选择的能量窗口。
7.根据权利要求2-3中的任一项所述的方法,还包括:
重复所述过滤和重建。
8.根据权利要求2-3中的任一项所述的方法,还包括:
评估受检者诱发的辐射散射;以及
选择用于在所述过滤中使用的能量窗口,其中,响应于评估相对较高的受检者诱发的辐射散射选择相对较大的能量窗口,以及响应于评估相对较低的受检者诱发的辐射散射选择相对较小的能量窗口。
9.一种成像方法,包括:
使用第一能量窗口和不同的第二能量窗口关于量化辐射探测事件能量值过滤通过对受检者进行放射性核素成像而采集的放射性核素成像数据,以生成相应的第一经过滤的放射性核素成像数据集和第二经过滤的放射性核素成像数据集,其中,所述第一能量窗口和不同的第二能量窗口是基于如下之一生成的:(i)所述受检者的非放射性核素图像和(ii)通过重建所述放射性核素成像数据而生成的所述受检者的初始重建放射性核素图像;以及
重建所述第一经过滤的放射性核素成像数据集和所述第二经过滤的放射性核素成像数据集以生成所述受检者的相应的第一重建图像和第二重建图像。
10.根据权利要求9所述的方法,还包括:
显示融合图像,所述融合图像包括所述受检者的所述第一重建图像和所述第二重建图像的融合。
11.根据权利要求9所述的方法,其中,所述第一能量窗口相对较大,以提供图像质量增强的第一重建图像,而所述第二能量窗口相对较小,以提供量化精确度增强的第二重建图像,并且所述方法还包括:
同时显示(i)图像质量增强的所述第一重建图像和(ii)从量化精确度增强的所述重建图像计算的一个或多个量化分析值。
12.根据权利要求9-10中的任一项所述的方法,其中,选择所述第一能量窗口以提供针对第一规程优化的第一重建图像,以及选择所述第二能量窗口以提供针对不同于所述第一规程的第二规程优化的第二重建图像。
CN201080026912.6A 2009-06-18 2010-05-12 放射性核素成像中散射事件的最佳能量开窗 Expired - Fee Related CN102803996B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21808709P 2009-06-18 2009-06-18
US61/218,087 2009-06-18
PCT/IB2010/052122 WO2010146480A2 (en) 2009-06-18 2010-05-12 Optimal energy windowing of scattered events in radionuclide imaging

Publications (2)

Publication Number Publication Date
CN102803996A CN102803996A (zh) 2012-11-28
CN102803996B true CN102803996B (zh) 2015-11-25

Family

ID=43356824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080026912.6A Expired - Fee Related CN102803996B (zh) 2009-06-18 2010-05-12 放射性核素成像中散射事件的最佳能量开窗

Country Status (5)

Country Link
US (1) US8666136B2 (zh)
EP (1) EP2443478B1 (zh)
CN (1) CN102803996B (zh)
RU (1) RU2544388C2 (zh)
WO (1) WO2010146480A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945803B2 (ja) * 2012-03-07 2016-07-05 東芝メディカルシステムズ株式会社 医用画像読影システム
WO2014020471A2 (en) * 2012-07-30 2014-02-06 Koninklijke Philips N.V. High spatial resolution mode solid state positron emission tomography (pet) scanner
CN105556340B (zh) * 2013-09-17 2019-06-18 皇家飞利浦有限公司 经由能量校准的散射拒绝方法
US10036817B2 (en) * 2015-05-04 2018-07-31 Koninklijke Philips N.V. Solving outside-field of view scatter correction problem in positron emission tomography via digital experimentation
US10395353B2 (en) * 2016-08-31 2019-08-27 Siemens Medical Solutions Usa, Inc. Model-based scatter in multi-modality multi-energy SPECT reconstruction
JP6932250B2 (ja) * 2017-09-14 2021-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 陽電子放出断層撮影における狭いエネルギー窓カウントから再構成された放出画像推定を使用した散乱補正
CN109633729B (zh) * 2018-12-29 2022-09-20 哈尔滨工业大学 一种移动机器人核环境下的放射源定位及强度估计方法
CN111080558B (zh) * 2019-12-26 2023-10-03 南京航空航天大学 基于活体小动物伽马相机成像的图像显示及优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091823A1 (en) * 1982-04-12 1983-10-19 Siemens Aktiengesellschaft Energy window selection for a radiation signal processing system
US4873632A (en) * 1984-04-27 1989-10-10 The Curators Of The University Of Missouri Apparatus and methods for scatter reduction in radiation imaging
EP0887661B1 (en) * 1997-05-30 2002-03-27 Marconi Medical Systems, Inc. Diagnostic imaging

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130692A (ja) * 1989-10-16 1991-06-04 Toshiba Corp 核医学診断装置
US5466939A (en) * 1992-09-24 1995-11-14 Shimadzu Corporation Nuclear medicine imaging apparatus
GB0525593D0 (en) * 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
WO2006006100A1 (en) * 2004-07-07 2006-01-19 Philips Intellectual Property & Standards Gmbh System and method for the correction of temporal artifacts in tomographic images
US7149278B2 (en) 2004-09-10 2006-12-12 General Electric Company Method and system of dynamically controlling shaping time of a photon counting energy-sensitive radiation detector to accommodate variations in incident radiation flux levels
PT103200B (pt) * 2004-09-30 2006-08-24 Taguspark-Soc. Prom.Desenv.Parq.Ci.Tec.Area Lisboa Sistema de tomografia por emissão de positrões (pet)
EP1927081B1 (en) * 2005-09-06 2017-04-26 Koninklijke Philips N.V. Data handling and analysis in computed tomography with multiple energy windows
US7388534B2 (en) 2006-07-20 2008-06-17 General Electric Company Adaptive data acquisition for an imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091823A1 (en) * 1982-04-12 1983-10-19 Siemens Aktiengesellschaft Energy window selection for a radiation signal processing system
US4873632A (en) * 1984-04-27 1989-10-10 The Curators Of The University Of Missouri Apparatus and methods for scatter reduction in radiation imaging
EP0887661B1 (en) * 1997-05-30 2002-03-27 Marconi Medical Systems, Inc. Diagnostic imaging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. P. McElroy et al..Singles list mode data processing for MADPET-II.《2004 IEEE Unclear Science Symposium Conference Record》.2004,第5卷 *
K. Wells et al..Optimal Energy Window Selection for Scintigraphy & Emission Computed Tomography.《2005 IEEE Unclear Science Symposium Conference Record》.2005,第4卷 *

Also Published As

Publication number Publication date
CN102803996A (zh) 2012-11-28
WO2010146480A2 (en) 2010-12-23
RU2012101643A (ru) 2013-07-27
US20120076385A1 (en) 2012-03-29
EP2443478A2 (en) 2012-04-25
US8666136B2 (en) 2014-03-04
WO2010146480A3 (en) 2011-12-15
EP2443478B1 (en) 2015-08-26
RU2544388C2 (ru) 2015-03-20

Similar Documents

Publication Publication Date Title
CN102803996B (zh) 放射性核素成像中散射事件的最佳能量开窗
Kesner et al. Validation of software gating: a practical technology for respiratory motion correction in PET
EP2441050B1 (en) Time-of-flight positron emission tomography reconstruction using image content generated event-by-event based on time-of-flight information
EP2844148B1 (en) Attenuation map with scattered coincidences in positron emission tomography
JP5864658B2 (ja) 生理学的リストモード核医学イメージングにおけるカウントの最適時間サンプリングのための逆データ再構成
CN101365963A (zh) 构建飞行时间pet图像的方法
CN101300601B (zh) 使用部分事件数据进行pet图像重建的方法和系统
US10754048B2 (en) Correcting count loss in pet system
CN105431746A (zh) 用于为独立像素或体素分配组织特异pet衰减值的mri方法
US10925554B2 (en) Outside-FOV activity estimation using surview and prior patient data in positron emission tomography
CN110023999A (zh) 发射和透射断层摄影中的交互式目标超快重建
US10772580B2 (en) Multiple emission energies in single photon emission computed tomography
Gregoire et al. Four-minute bone SPECT using large-field cadmium-zinc-telluride camera
Theruvath et al. Validation of deep learning–based augmentation for reduced 18F-FDG dose for PET/MRI in children and young adults with lymphoma
Kalaitzidis et al. Validation of a computational chain from PET Monte Carlo simulations to reconstructed images
Grimes Patient-specific internal dose calculation techniques for clinical use in targeted radionuclide therapy
US20240193828A1 (en) Systems and methods of list-mode image reconstruction in positron emission tomography (pet) systems
Von Schulthess Molecular Anatomic Imaging: PET/CT, PET/MR and SPECT CT
EP2601886A1 (en) Compartmental analysis system, compartmental analysis method, compartment analyzer, program, and recording medium
Champley et al. DOI‐based reconstruction algorithms for a compact breast PET scanner
Mojabi A THESIS
Dadgar et al. Evaluation of lesion contrast in the walk-through long axial FOV PET scanner simulated with XCAT anthropomorphic phantoms
Moalosi The value of different reconstruction algorithms for quantification of FDG PET brain imaging
Binzel Biophysical Considerations in the Precision of Quantitative 18F-FDG PET/CT
Schoenahl Performance characterization and development of quantitative procedures for PET-CT scanners.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20200512

CF01 Termination of patent right due to non-payment of annual fee