CN102801518B - 一种基于ghz态密集编码和纠缠交换的量子隐写方法 - Google Patents

一种基于ghz态密集编码和纠缠交换的量子隐写方法 Download PDF

Info

Publication number
CN102801518B
CN102801518B CN201210327020.0A CN201210327020A CN102801518B CN 102801518 B CN102801518 B CN 102801518B CN 201210327020 A CN201210327020 A CN 201210327020A CN 102801518 B CN102801518 B CN 102801518B
Authority
CN
China
Prior art keywords
psi
phi
bob
alice
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210327020.0A
Other languages
English (en)
Other versions
CN102801518A (zh
Inventor
叶天语
蒋丽珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Ansheng Paper Products Manufacturing Co ltd
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201210327020.0A priority Critical patent/CN102801518B/zh
Publication of CN102801518A publication Critical patent/CN102801518A/zh
Application granted granted Critical
Publication of CN102801518B publication Critical patent/CN102801518B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)

Abstract

量子隐写将经典隐写和量子安全通信结合在一起,是经典隐写在量子领域的推广。量子隐写的目标在于利用量子隐藏信道实现秘密消息的隐秘传送。本发明提出一种基于GHZ态密集编码和纠缠交换的量子隐写方法。该方法的超量子信道是通过将隐藏信道建立在原始量子安全直接通信(Quantum?Secure?Direct?Communication,QSDC)方法上形成的。基于原始的QSDC,秘密消息的传送通过结合GHZ态密集编码和GHZ态纠缠交换来实现。该方法超量子信道的容量达到6比特每轮隐秘通信。另外,该方法不仅具有良好的不可感知性,而且还具有良好的安全性。

Description

一种基于GHZ态密集编码和纠缠交换的量子隐写方法
技术领域
本发明涉及量子安全通信领域。本发明设计一种基于GHZ态密集编码和纠缠交换的量子隐写方法,通过结合GHZ态密集编码和GHZ态纠缠交换建立隐藏信道来隐秘传送秘密消息。
背景技术
量子隐写将经典隐写和量子安全通信结合在一起,是经典隐写在量子领域的推广。量子隐写的目标在于利用量子隐藏信道实现秘密消息的隐秘传送。量子隐写在高安全性隐秘通信、量子身份认证、为量子安全通信提供可代替的经典信道等方面具有重要的应用。量子隐写已经成为量子安全通信领域一个新的研究分支,并且在最近几年已经吸引许多学者的注意力。在2007年,基于BB84量子密钥分配(QuantumKeyDistribution,QKD)方法[1],Martin[2]提出一种新颖的量子隐写方法,通常被视为第一个量子隐写方法。在2010年,基于Guo等的量子秘密共享(QuantumSecretSharing,QSS)方法[3],Liao等[4]提出一种新颖的多方量子隐写方法。在2010年,基于改进ping-pong方法(IBF)[5],Qu等[6]提出一种新颖的大容量量子隐写方法。然而,文献[2]和文献[4]的量子信道的容量都只有1比特每轮隐秘通信,对于高效的隐秘通信来说显然是过于小的。尽管文献[6]的量子信道的容量已经增加到4比特,但仍然显得不够大。
基于以上分析,为了改进量子信道容量,本发明提出一种新颖的基于GHZ态密集编码和纠缠交换的大容量量子隐写方法。该方法的超量子信道是通过将隐藏信道建立在原始量子安全直接通信(QuantumSecureDirectCommunication,QSDC)方法上形成的。基于原始的QSDC,秘密消息的传送是通过结合GHZ态密集编码和GHZ态纠缠交换来实现。该方法能够传送6比特每轮隐秘通信,是文献[2]和文献[4]的6倍,文献[6]的1.5倍。另外,该方法不仅具有良好的不可感知性,而且还具有良好的安全性。
参考文献
[1]C.H.Bennett,G.Brassard,Proc.Int.Conf.onComputers,Systems&SignalProcessing,Bangalore,India,IEEE,NewYork,1984,pp:175-179.
[2]K.Martin,IH2007,LNCS,4567(2007)32.
[3]G.P.Guo,G.C.Guo,Phys.Lett.A,310(2003)247.
[4]X.Liao,Q.Y.Wen,Y.Sun,J.Zhang,J.Syst.Software,83(2010)1801.
[5]Q.Y.Cai,B.W.Li,Phys.Rev.A,69(2004)054301.
[6]Z.G.Qu,X.B.Chen,X.J.Zhou,X.X.Niu,Y.X.Yang,Opt.Commun.,283(2010)4782.
[7]H.J.Lee,D.Ahn.S.W.Hwang,Phys.Rev.A,66(2004)024304.
[8]C.H.Bennett,S.J.Wiesner,Phys.Rev.Lett.,69(1992)2881.
[9]F.G.Deng,G.L.Long,X.S.Liu,Phys.Rev.A,68(2003)042317.
[10]C.Wang,F.G.Deng,G.L.Long,Opt.Com.,253(2005)15.
发明内容
本发明的目的是设计一种基于GHZ态密集编码和纠缠交换的量子隐写方法,通过结合GHZ态密集编码和GHZ态纠缠交换建立隐藏信道来隐秘传送秘密消息。
一种基于GHZ态密集编码和纠缠交换的量子隐写方法,包括以下五个过程:
S1)Bob准备大量(n)的|Ψ1>ABC。令GA、GB和GC分别表示A、B和C的粒子集合。相应地,GA=[A1,A2,…,An],GB=[B1,B2,…,Bn],GC=[C1,C2,…,Cn],其中下标代表GHZ态的个数。
S2)Bob通过量子信道分两步将GA和GB传送给Alice:(a)Bob将GA传送给Alice,GB和GC由他自己保留。为了进行窃听检测,Alice从GA选择一个足够大的子集,从Z基(|0>,|1>)或X基(|+>,|->)中随机选择一个测量基测量GA子集中的粒子A。Alice将她的测量基和测量结果告诉Bob。在得到Alice的结果后,Bob用相同的测量基测量GB相应子集中的粒子B和GC相应子集中的粒子C。通过对比Alice的测量结果,Bob能够知道是否存在窃听。如果信道是安全的,他们的测量结果会高度相关。当Alice和Bob用Z基测量时,如果Alice的测量结果是|0>(|1>),那么Bob的测量结果应该是|0>|0>(|1>|1>)。另外,当Alice和Bob用X基测量时,如果Alice的测量结果是|+>(|->),那么Bob的测量结果应该是|+>|+>或|->|->(|+>|->或|->|+>)。然后,如果Bob证实存在窃听,他们停止通信,否则,他们进入步骤(b);(b)Bob将GB传送给Alice,GC由他自己保留。为了窃听检测,Alice从GA选择一个足够大的子集和从GB选择一个足够大的相应子集,并从Z基或X基中随机选择一个测量基测量粒子A和粒子B。Alice将她的测量基和测量结果告诉Bob。在得到Alice的结果后,Bob用相同的测量基测量GC相应子集中的粒子C。通过对比Alice的测量结果,Bob能够知道是否存在窃听。如果信道是安全的,他们的测量结果会高度相关。然后,如果Bob证实存在窃听,他们停止通信,否则,他们进入信息传送模块。
S3)信息传送模块:(a)根据信息比特序列,Alice对GA和GB中的每对粒子施加Uk操作。在施加Uk操作后,GA和GB分别变为G′A和G′B。尽管GC中的粒子没有被施加酉操作,为了一致起见,G′C仍然用来代替原始的GC。相应地,G′C和GC完全一样;(b)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,并进入秘密消息隐藏模块;(c)Alice通过量子信道将G′A和G′B传送回Bob。
S4)秘密消息隐藏模块:(a)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,其中下标m代表粒子A′m在G′A中的位置和粒子B′m在G′B中的位置。m的值必须满足一致性条件,即A′m-1B′m-1C′m-1和A′mB′mC′m这两个GHZ态必须与秘密消息保持编码对应的一致性。在通过执行QSDC、QKD或经典信道的一次一密将m传送给Bob之前,一个合适的m可以事先被Alice确定[6];(b)通过事先对Am+1和Bm+1施加相同的Uk操作,A′m+1B′m+1C′m+1能够复制A′m-1B′m-1C′m-1所携带的信息。也就是,A′m+1B′m+1C′m+1不正常传送信息,而是作为一个辅助GHZ态来协助隐藏秘密消息。
S5)秘密消息解码模块:(a)Bob得到m的值;(b)Bob对A′m-1B′m-1C′m-1进行GHZ基测量以恢复出信息;(c)Bob分别对A′mA′m+1、B′mB′m+1和C′mC′m+1进行Bell基测量;(d)根据A′mA′m+1、B′mB′m+1和C′mC′m+1的测量结果,Bob能够解码出Alice所传送的秘密消息。而且,通过解码出的秘密消息和A′m-1B′m-1C′m-1的状态,Bob能够恢复出A′mB′mC′m所携带的信息。
本发明为利用量子隐藏信道实现秘密消息的隐秘传送提供了一个新途径。本发明的量子隐写方法的超量子信道是通过将隐藏信道建立在原始QSDC方法上形成的。基于原始的QSDC,秘密消息的传送是通过结合GHZ态密集编码和GHZ态纠缠交换来实现。该方法超量子信道的容量达到6比特每轮隐秘通信,比先前的量子隐写方法高许多。该方法不仅具有良好的不可感知性,而目还具有良好的安全性。
附图说明
图1是基于GHZ态密集编码和纠缠交换的量子隐写方法的流程图。
具体实施方式
下面结合附图和实施例对本发明的技术方案做进一步描述。
1、编码方案
首先简要介绍GHZ态密集编码。GHZ态密集编码由Lee等[7]提出,是BennettandWiesner[8]的密集编码方案在GHZ态的推广。GHZ态是三粒子最大纠缠态,构成8维Hilbert空间的一组完整正交基。8个独立的GHZ态可以表示为
| Ψ 1 > = 1 2 ( | 000 > + | 111 > ) , | Ψ 2 > = 1 2 ( | 000 > - | 111 > ) , | Ψ 3 > = 1 2 ( | 100 > + | 011 > ) , | Ψ 4 > = 1 2 ( | 100 > - | 011 > ) , | Ψ 5 > = 1 2 ( | 010 > + | 101 > ) , | Ψ 6 > = 1 2 ( | 010 > - | 101 > ) , | Ψ 7 > = 1 2 ( | 110 > + | 001 > ) , | Ψ 8 > = 1 2 ( | 110 > - | 001 > ) . - - - ( 1 )
通过对三个粒子中的任意两个施加单粒子酉操作,一个GHZ态可以被转化为另一个GHZ态,其中四个单粒子酉操作为
I=|0><0|+|1><1|,σz=|0><0|-|1><1|,σx=|0><1|+|1><0|,iσy=|0><1|-|1><0|.(2)不失一般性,假设|Ψ1>为初始量子态。相应地,通过对第一个和第二个粒子施加Uk操作,|Ψ1>能够被转化为|Ψk>(k=1,2,…,8),即
Uk1>=|Ψk>(k=1,2,…,8),(3)
其中
U 1 = &sigma; z &CircleTimes; &sigma; z , U 2 = I &CircleTimes; &sigma; z , U 3 = i &sigma; y &CircleTimes; &sigma; z , U 4 = &sigma; x &CircleTimes; &sigma; z , U 5 = I &CircleTimes; &sigma; x , U 6 = &sigma; z &CircleTimes; &sigma; x , U 7 = &sigma; x &CircleTimes; &sigma; x , U 8 = i&sigma; y &CircleTimes; &sigma; x . - - - ( 4 )
令每个Uk对应3比特信息,即
U1→000,U2→001,U3→010,U4→011,U5→100,U6→101,U7→110,U8→111.(5)
基于以上描述,在完成GHZ态密集编码后,一个GHZ态能够传送3比特信息。
1>与8个GHZ态中的任意一个进行纠缠交换后的结果被列在公式(6)-(13),其中上标Ai、Bi和Ci(i=1,2)分别代表GHZ态中的三个粒子。
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 1 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 ] - - - ( 6 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 2 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 - | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 - | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 - | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 - | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 ] - - - ( 7 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 3 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 ] - - - ( 8 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 4 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 - | &Phi; + > A 2 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 - | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 - | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 - | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 ] - - - ( 9 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 5 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 ] - - - ( 10 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 6 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 - | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 - | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 - | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 - | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 ] - - - ( 11 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 7 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 + | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 + | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 ] - - - ( 12 )
| &Psi; 1 > A 1 B 1 C 1 &CircleTimes; | &Psi; 8 > A 2 B 2 C 2 = ( 1 2 ) 3 [ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 + | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2
+ | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 + | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 + | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 - | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 - | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 - | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 ] - - - ( 13 )
根据公式(6)-(13),纠缠交换后的A1A2、B1B2和C1C2的每个结果唯一对应上述八个初始态中的一个。对应于公式(6)-(13),将纠缠交换后A1A2、B1B2和C1C2的不同结果所组成的八个集合编码为:
{ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 000 - - - ( 14 )
{ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 001 - - - ( 15 )
{ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 010 - - - ( 16 )
{ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 2 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 011 - - - ( 17 )
{ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 ,
| &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 100 - - - ( 18 )
{ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 101 - - - ( 19 )
{ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 110 - - - ( 20 )
{ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 111 - - - ( 21 )
进一步将初始态从|Ψ1>扩展到另外七个GHZ态|Ψk>(k=2,…,8),纠缠交换后A1A2、B1B2和C1C2的不同结果所组成的所有结果集合列在表1中。将粒子A1、B1、C1组成的初始态和粒子A2、B2、C2组成的初始态作为例子。的上标代表可以通过对的第一个和第二个粒子施加U2操作得到,100代表纠缠交换后A1A2、B1B2和C1C2组成的结果集合对应于公式(18)。
2、量子隐写方法
本发明的量子隐写方法的目标为利用量子隐藏信道将秘密消息从Alice隐秘传送到Bob。本发明的量子隐写方法将受文献[9]和文献[10]启发而提出的采用GHZ态密集编码的原始QSDC和GHZ态纠缠交换结合起来。在文献[9]和文献[10]中,所有的粒子都最终从通信的一方传送到另一方。然而,在原始的QSDC中,每个GHZ态的第三个粒子总是保存在通信的一方手中不动,而第一个粒子和第二个粒子在通信双方之间传送。原始QSDC的基本思想为:(1)Bob将每个GHZ态的第三个粒子组成的序列保存在手中,而将第一个粒子组成的序列和第二个粒子组成的序列一一传送给Alice。为了保证安全性,在每次传送中都执行窃听检测;(2)根据信息比特序列,Alice采用GHZ密集编码对两个序列施加酉操作。然后,Alice将编码后的两个序列送回给Bob;(3)最后,Bob对每个GHZ态执行GHZ基测量以恢复出信息。由于采用了GHZ态密集编码,原始QSDC能够传送3比特信息每轮通信。现在,详细描述本发明的量子隐写方法。
表1.任意两个GHZ态纠缠交换后的结果集合
(上标代表Uk的编码,下标代表GHZ态的三个粒子)
图1是基于GHZ态密集编码和纠缠交换的量子隐写方法的流程图,包括以下五个过程:
S1)Bob准备大量(n)的|Ψ1>ABC。GA、GB和GC分别表示A、B和C的粒子集合。相应地,GA=[A1,A2,…,An],GB=[B1,B2,…,Bn],GC=[C1,C2,…,Cn],其中下标代表GHZ态的个数。
S2)Bob通过量子信道分两步将GA和GB传送给Alice:(a)Bob将GA传送给Alice,GB和GC由他自己保留。为了进行窃听检测,Alice从GA选择一个足够大的子集,从Z基(|0>,|1>)或X基(|+>,|->)中随机选择一个测量基测量GA子集中的粒子A。Alice将她的测量基和测量结果告诉Bob。在得到Alice的结果后,Bob用相同的测量基测量GB相应子集中的粒子B和GC相应子集中的粒子C。根据公式(22),通过对比Alice的测量结果,Bob能够知道是否存在窃听。如果信道是安全的,他们的测量结果会高度相关。当Alice和Bob用Z基测量时,如果Alice的测量结果是|0>(|1>),那么Bob的测量结果应该是|0>|0>(|1>|1>)。另外,当Alice和Bob用X基测量时,如果Alice的测量结果是|+>(|->),那么Bob的测量结果应该是|+>|+>或|->|->(|+>|->或|->|+>)。然后,如果Bob证实存在窃听,他们停止通信,否则,他们进入步骤(b);(b)Bob将GB传送给Alice,GC由他自己保留。为了窃听检测,Alice从GA选择一个足够大的子集和从GB选择一个足够大的相应子集,并从Z基或X基中随机选择一个测量基测量粒子A和粒子B。Alice将她的测量基和测量结果告诉Bob。在得到Alice的结果后,Bob用相同的测量基测量GC相应子集中的粒子C。根据公式(22),通过对比Alice的测量结果,Bob能够知道是否存在窃听。如果信道是安全的,他们的测量结果会高度相关。然后,如果Bob证实存在窃听,他们停止通信,否则,他们进入信息传送模块。
| &Psi; 1 > ABC = 1 2 ( | 000 > ABC + | 111 > ABC ) = 1 2 [ | + > A ( | + > B | + > C + | - > B | - > C ) + | - > A ( | + > B | - > C + | - > B | + > C ) ] = 1 2 [ ( | + > A | + > B + | - > A | - > B ) | + > C + ( | + > A | - > B + | - > A | + > B ) | - > C ] - - - ( 22 )
S3)信息传送模块:(a)根据信息比特序列,Alice对GA和GB中的每对粒子施加Uk操作。在施加Uk操作后,GA和GB分别变为G′A和G′B。尽管GC中的粒子没有被施加酉操作,为了一致起见,G′C仍然用来代替原始的GC。相应地,G′C和GC完全一样;(b)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,并进入秘密消息隐藏模块;(c)Alice通过量子信道将G′A和G′B传送回Bob。
S4)秘密消息隐藏模块:(a)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,其中下标m代表粒子A′m在G′A中的位置和粒子B′m在G′B中的位置。m的值必须满足一致性条件,即A′m-1B′m-1C′m-1和A′mB′mC′m这两个GHZ态必须与秘密消息保持表1所示编码对应的一致性。在通过执行QSDC、QKD或经典信道的一次一密将m传送给Bob之前,一个合适的m可以事先被Alice确定[6];(b)通过事先对Am+1和Bm+1施加相同的Uk操作,A′m+1B′m+1C′m+1能够复制A′m-1B′m-1C′m-1所携带的信息。也就是,A′m+1B′m+1C′m+1不正常传送信息,而是作为一个辅助GHZ态来协助隐藏秘密消息。
S5)秘密消息解码模块:(a)Bob得到m的值;(b)Bob对A′m-1B′m-1C′m-1进行GHZ基测量以恢复出信息;(c)Bob分别对A′mA′m+1、B′mB′m+1和C′mC′m+1进行Bell基测量;(d)根据公式(14)-(21),Bob能够解码出Alice所传送的秘密消息。而且,根据表1,通过解码出的秘密消息和A′m-1B′m-1C′m-1的状态,Bob能够恢复出A′mB′mC′m所携带的信息。
3、容量分析
在本发明的量子隐写方法中,3比特秘密消息通过A′m+1B′m+1C′m+1与A′mB′mC′m之间的纠缠交换进行传送。另外,A′m+1B′m+1C′m+1复制A′m-1B′m-1C′m-1所携带的信息,作为一个辅助GHZ态来协助隐藏秘密消息。相应地,A′m+1B′m+1C′m+1被消耗掉,A′mB′mC′m所携带的信息被恢复出来。而且,很明显,3比特秘密消息可以被8种不同的初始态传送。例如,根据表1,100可以被 { | &Psi; 1 > A 1 B 1 C 1 000 , | &Psi; 5 > A 2 B 2 C 2 100 } , { | &Psi; 2 > A 1 B 1 C 1 001 , | &Psi; 6 > A 2 B 2 C 2 101 } , { | &Psi; 3 > A 1 B 1 C 1 010 , | &Psi; 7 > A 2 B 2 C 2 110 } , { | &Psi; 4 > A 1 B 1 C 1 011 , | &Psi; 8 > A 2 B 2 C 2 111 } , { | &Psi; 5 > A 1 B 1 C 1 100 , | &Psi; 1 > A 2 B 2 C 2 000 } , { | &Psi; 6 > A 1 B 1 C 1 101 , | &Psi; 2 > A 2 B 2 C 2 001 } , { | &Psi; 7 > A 1 B 1 C 1 110 , | &Psi; 3 > A 2 B 2 C 2 010 } , { | &Psi; 8 > A 1 B 1 C 1 111 , | &Psi; 4 > A 2 B 2 C 2 011 } 8种不同初始态传送。在将这8种不同初始态编码为公式(23)后,本发明的量子隐写方法的量子信道容量可以增加到6比特。所以,本发明的量子隐写方法的量子信道容量为文献[2]或文献[4]的6倍,为文献[6]的1.5倍。本发明的量子隐写方法的量子信道容量比文献[6]大的原因在于两点:(a)在本发明的量子隐写方法中两个GHZ态之间的纠缠交换能传送3比特,而在文献[6]中两个Bell态之间的纠缠交换只能传送2比特;(b)在本发明的量子隐写方法中每3比特秘密消息对应于8种不同初始态,而在文献[6]中每2比特秘密消息只对应4种不同初始态。
000100→000,001101→001,010110→010,011111→011,100000→100,101001→101,110010→110,111011→111.(23)
基于以上分析,本发明的量子隐写方法能够传送6比特每轮隐秘通信。事实上,本发明的量子隐写方法通过将隐藏信道建立在原始QSDC上来传送秘密消息。然而,原始QSDC只能传送3比特每轮隐秘通信。因此,本发明的量子隐写方法的传输效率是原始QSDC的两倍。可以下结论的是,在本发明的量子隐写方法中,通过集成原始QSDC的量子信道和隐藏信道而形成的超量子信道能够增大量子信道的容量。将本发明的量子隐写方法的思想应用到基于GHZ态的QSS和QKD来增大原始量子信道的传输效率也是同样可能的。
4、不可感知性分析
在本发明的量子隐写方法中,m的选择对于Alice来说不是随意的,因为m的值必须满足A′m-1B′m-1C′m-1、A′mB′mC′m和秘密消息三者之间的一致性条件。所以,不可感知性主要取决于Eve知晓m的难度。正如文献[6]所指出的那样,既然信息和秘密消息都能够被视为随机的或伪随机的,选择m对于Eve来说仍然可以被认为是随意的行为。如果信息或秘密消息事先不是随机分布,可以采用伪随机序列加密使之成为随机分布。
例如,如果Alice想要传送给Bob的秘密消息为100,为了选择m,Alice需要找出信息序列中“000100”、“001101”、“010110”、“011111”、“100000”、“101001”、“110010”、“111011”所有的组号。相应地,A′m-1B′m-1C′m-1和A′mB′mC′m将分别为“|Ψ1>|Ψ5>”、“|Ψ2>|Ψ6>”、“|Ψ3>|Ψ7>”、“|Ψ4>|Ψ8>”、“|Ψ5>|Ψ1>”、“|Ψ6>|Ψ2>”、“|Ψ7>|Ψ3>”和“|Ψ8>|Ψ4>”。如果信息呈均匀分布,“000100”、“001101”、“010110”、“011111”、“100000”、“101001”、“110010”、“111011”的概率将分别为1/64。所以,它们的总概率为1/8。如果秘密消息是000、001、010、011、101、110或111,也将得到同样的结论。因此,正如文献[6]所指出的那样,根据香农的信息论,信息和秘密消息的概率分布将使得m的不确定性最好。相应地,选择m对于Eve来说可以被视为随机的。这意味着本发明的量子隐写方法的不可感知性很好。
5、安全性分析
本发明的量子隐写方法的安全性可以通过原始QSDC的安全性来证明。原始QSDC使用GHZ态,它的安全性与使用Bell态的方法[9]类似。原始QSDC的安全性取决于GA和GB从Bob传送到Alice的安全性。
首先分析GA从Bob传送到Alice的安全性。根据Stinespringdilation定理,Eve的窃听等价于在一个更大的Hilbert空间执行一个酉操作|x,E>≡|x>|E>。Bob、Alice和Eve三者组成的复合系统的状态为
| &psi; > = &Sigma; a , b , c &Element; { 0,1 } | &epsiv; > | a > | bc > - - - ( 24 )
其中|ε>代表Eve的辅助态,|a>和|bc>分别为Alice和Bob在同一个GHZ态中共享的量子态。Eve的辅助态满足以下条件
&Sigma; a , b , c &Element; { 0,1 } < &epsiv; | &epsiv; > = 1 - - - ( 25 )
在第一次窃听检测前Eve只能窃听GA,Eve作用于系统的效果将会是
E ^ | 0 , E > = E ^ | 0 > | E > = &alpha; 1 | 0 > | &epsiv; 00 > + &beta; 1 | 1 > | &epsiv; 01 > - - - ( 26 )
E ^ | 1 , E > = E ^ | 1 > | E > = &beta; 1 &prime; | 0 > | &epsiv; 10 > + &alpha; 1 &prime; | 1 > | &epsiv; 11 > - - - ( 27 )
然后,整个系统将演化为
| &psi; > = 1 2 [ ( &alpha; 1 | 0 > | &epsiv; 00 > + &beta; 1 | 1 > | &epsiv; 01 > ) | 00 > + ( &beta; 1 &prime; | 0 > | &epsiv; 10 > + &alpha; 1 &prime; | 1 > | &epsiv; 11 > ) | 11 > ] - - - ( 28 )
其中ε00、ε01、ε10、ε11分别为Eve的量子态。而且,Eve的酉操作可以写为
E ^ = &alpha; 1 &beta; 1 &prime; &beta; 1 &alpha; 1 &prime; - - - ( 29 )
既然是一个酉操作,复数α1、β1、α′1、β′1应该满足
所以,可以得到以下关系
1|2=|α′1|2,|β1|2=|β′1|2(31)
Eve窃听GA引入的错误率将会是
τ1=|β1|2=|β′1|2=1-|α1|2=1-|α′1|2(32)
因此,Eve窃听GA将不可避免地引入一个错误率,从而被Alice和Bob发现。
GB从Bob传送到Alice的安全性也可以用上述类似的方法去分析。在第二次窃听检测前Eve窃听了GB,整个系统将演化为
| &psi; > = 1 2 [ | 0 > ( &alpha; 2 | 0 > | &epsiv; 00 > + &beta; 2 | 1 > | &epsiv; 01 > ) | 0 > + | 1 > ( &beta; 2 &prime; | 0 > | &epsiv; 10 > + &alpha; 2 &prime; | 1 > | &epsiv; 11 > ) | 1 > ] - - - ( 33 )
最后,以上述相类似的方法推导,可以知道Eve窃听GB引入的错误率将会是
τ2=|β2|2=|β′2|2=1-|α2|2=1-|α′2|2(34)
同样可以下结论,Eve窃听GB将不可避免地引入一个错误率,从而被Alice和Bob发现。
不失一般性,以对GA的截获-重发攻击为例来进一步解释Eve窃听所引入的错误率。Eve截获GA中的粒子A,用Z基或X基测量它,并将测量结果重发给Alice。第一种情况为Eve进行Z基测量。整个系统的状态将会以1/2的概率分别坍塌为|000>或|111>。以系统的状态坍塌为|000>ABC为例。相应地,Eve将|0>A重发给Alice。如果Alice进行Z基测量以检测窃听,Eve将不会引入任何错误。如果Alice进行X基测量,系统的状态将分别以1/8的概率坍塌为|+>A|+>B|+>C、|+>A|+>B|->C、|+>A|->B|+>C、|+>A|->B|->C、|->A|+>B|+>C、|->A|+>B|->C、|->A|->B|+>C或|->A|->B|->C。根据公式(22),Eve引入的错误率将为50%。因此,这种情况下的总错误率为25%。第二种情况为Eve进行X基测量。整个系统的状态将会以1/4的概率分别坍塌为|+>A|+>B|+>C、|+>A|->B|->C、|->A|+>B|->C或|->A|->B|+>C。以系统的状态坍塌为|+>A|+>B|+>C为例。相应地,Eve将|+>A重发给Alice。如果Alice进行Z基测量以检测窃听,系统的状态将分别以1/8的概率坍塌为|0>A|0>B|0>C、|0>A|0>B|1>C、|0>A|1>B|0>C、|0>A|1>B|1>C、|1>A|0>B|0>C、|1>A|0>B|1>C、|1>A|1>B|0>C或|1>A|1>B|1>C。根据公式(22),Eve引入的错误率将为75%。如果Alice进行X基测量,Eve将不会引入任何错误。因此,这种情况下的总错误率为37.5%。因此,随机Z基或X基测量能够保证Eve的攻击可以被窃听检测发现。
进一步考虑m的泄露所造成的影响。假设Eve不仅得到m,而且还通过一些高级的窃听攻击得到A′mA′m+1和B′mB′m+1(既然粒子A和粒子B都是被传送的粒子,Eve成功窃听到A′mA′m+1和B′mB′m+1是可能的)。然而,根据公式(14)-(21),Eve仍然无法得到秘密消息,因为仅仅知道A′mA′m+1和B′mB′m+1对于解码秘密消息是不够的。
实施例:
1、量子隐写方法应用举例
举例来进一步解释本发明的量子隐写方法。假设Alice要传送给Bob的秘密消息为100,Alice产生的信息序列为…000100…001101…010110…011111…100000…101001…110010…111011…(既然两个Uk代表6比特信息,信息按每6比特进行划分)。假设000100、001101、010110、011111、100000、101001、110010、111011在信息序列中的组号分别为No.7、10、13、16、20、25、28和32。在S4中,Alice使m=7、10、13、16、20、25、28、32以满足表1所示编码对应的一致性。如果m=7,A′6B′6C′6将会是|Ψ1>,A′7B′7C′7将会是|Ψ5>。相应地,秘密消息100通过A′7B′7C′7与A′8B′8C′8之间的纠缠交换进行传送。如果m=10、13、16、20、25、28、32,秘密消息100也将通过类似的途径传送。A′8B′8C′8不能如其他正常GHZ态一样用于传送信息,而是作为一个辅助的GHZ态协助隐藏秘密消息。在S5中,Bob首先得到m的值。然后,Bob对A′6B′6C′6进行GHZ基测量。然后,Bob分别对A′7A′8、B′7B′8、C′7C′8进行Bell基测量。根据公式(14)-(21),Bob能够解码出秘密消息为100。最后,根据A′6B′6C′6的状态(|Ψ1>)和秘密消息100,利用表1,Bob能够容易地知道A′7B′7C′7所携带的信息为100。
2、讨论和总结
由以上分析可知,本发明的量子隐写方法的超量子信道容量达到6比特,是原始QSDC的两倍。其原因在于超量子信道是通过将隐藏信道建立在原始QSDC上形成的。然而,隐藏信道是以传送m为代价。传送m意味着需传送log2m比特。如果m足够大,传送m可能比秘密消息消耗更多的比特。幸运的是,正如文献[6]所指出的那样,既然m可以通过事先执行QSDC、QKD或经典信道的一次一密事先被确定和传送,过分强调传送m的代价是没有必要的。而且,既然m和秘密消息具有不同的安全性级别,消耗一定的资源以达到秘密消息的隐秘通信是合理的。
总之,基于GHZ态密集编码和纠缠交换,本发明提出一个大容量量子隐写方法。该方法的超量子信道是通过将隐藏信道建立在原始QSDC上形成的。基于原始的QSDC,秘密消息的传送是通过结合GHZ态密集编码和GHZ态纠缠交换来实现。该方法传送6比特每轮隐秘通信,比先前的量子隐写方法高许多。既然信息和秘密消息可被看成是随机的或者伪随机的,该方法具有良好的不可感知性。而且,该方法的安全性被证明是可靠的。

Claims (1)

1.一种基于GHZ态密集编码和纠缠交换的量子隐写方法,通过结合GHZ态密集编码和GHZ态纠缠交换建立隐藏信道来隐秘传送秘密消息,包括以下五个过程:
S1)Bob准备大量(n)的|Ψ1>ABC,GA、GB和GC分别表示A、B和C的粒子集合,相应地,GA=[A1,A2,…,An],GB=[B1,B2,…,Bn],GC=[C1,C2,…,Cn],其中下标代表GHZ态的个数;
S2)Bob通过量子信道分两步将GA和GB传送给Alice:(a)Bob将GA传送给Alice,GB和GC由他自己保留;为了进行窃听检测,Alice从GA选择一个足够大的子集,从Z基(|0>,|1>)或X基(|+>,|->)中随机选择一个测量基测量GA子集中的粒子A;Alice将她的测量基和测量结果告诉Bob;在得到Alice的结果后,Bob用相同的测量基测量GB相应子集中的粒子B和GC相应子集中的粒子C,通过判断是否与Alice的测量结果存在高度相关性,Bob能够知道是否存在窃听;如果Bob证实存在窃听,他们停止通信,否则,他们进入步骤(b);(b)Bob将GB传送给Alice,GC由他自己保留;为了窃听检测,Alice从GA选择一个足够大的子集和从GB选择一个足够大的相应子集,并从Z基或X基中随机选择一个测量基测量粒子A和粒子B;Alice将她的测量基和测量结果告诉Bob;在得到Alice的结果后,Bob用相同的测量基测量GC相应子集中的粒子C,通过判断是否与Alice的测量结果存在高度相关性,Bob能够知道是否存在窃听;如果Bob证实存在窃听,他们停止通信,否则,他们进入信息传送模块;
S3)信息传送模块:(a)根据信息比特序列,Alice对GA和GB中的每对粒子施加Uk操作;在施加Uk操作后,GA和GB分别变为G′A和G′B;尽管GC中的粒子没有被施加酉操作,为了一致起见,G′C仍然用来代替原始的GC,相应地,G′C和GC完全一样;(b)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,并进入秘密消息隐藏模块;(c)Alice通过量子信道将G′A和G′B传送回Bob;
S4)秘密消息隐藏模块:(a)根据秘密消息,Alice从G′A和G′B中分别选择四个粒子A′m、A′m+1、B′m、B′m+1,其中下标m代表粒子A′m在G′A中的位置和粒子B′m在G′B中的位置;m的值必须满足一致性条件,即A′m-1B′m-1C′m-1和A′mB′mC′m这两个GHZ态必须与秘密消息保持表1所示编码对应的一致性;在通过执行QSDC、QKD或经典信道的一次一密将m传送给Bob之前,一个合适的m可以事先被Alice确定;(b)通过事先对Am+1和Bm+1施加相同的Uk操作,A′m+1B′m+1C′m+1能够复制A′m-1B′m-1C′m-1所携带的信息,也就是,A′m+1B′m+1C′m+1不正常传送信息,而是作为一个辅助GHZ态来协助隐藏秘密消息;
S5)秘密消息解码模块:(a)Bob得到m的值;(b)Bob对A′m-1B′m-1C′m-1进行GHZ基测量以恢复出信息;(c)Bob分别对A′mA′m+1、B′mB′m+1和C′mC′m+1进行Bell基测量;(d)根据A′mA′m+1、B′mB′m+1和C′mC′m+1的测量结果,Bob能够解码出Alice所传送的秘密消息,而且,根据表1,通过解码出的秘密消息和A′m-1B′m-1C′m-1的状态,Bob能够恢复出A′mB′mC′m所携带的信息;
其中,m的值必须满足的一致性条件,即A′m-1B′m-1C′m-1和A′mB′mC′m这两个GHZ态必须与秘密消息保持的编码对应的一致性,见表1所示;表1中的每个GHZ态的上标代表Uk的编码,下标代表GHZ态的三个粒子;表1中的每三个比特对应秘密消息;
表1.任意两个GHZ态纠缠交换后的结果集合
表1中的每三个比特与两个GHZ态A1B1C1和A2B2C2纠缠交换后A1A2、B1B2和C1C2的不同结果所组成的集合之间的对应关系为:
{ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 000 ;
{ | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 001 ;
{ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 010 ;
{ | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Phi; + > C 1 C 2 ,
| &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 2 A 2 | &Psi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 011 ;
{ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 100 ;
{ | &Phi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 101 ;
{ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 } &RightArrow; 110 ;
{ | &Psi; + > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; - > C 1 C 2 , | &Psi; + > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; + > B 1 B 2 | &Phi; + > C 1 C 2 , | &Psi; - > A 1 A 2 | &Psi; - > B 1 B 2 | &Phi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; - > C 1 C 2 , | &Phi; + > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; + > B 1 B 2 | &Psi; + > C 1 C 2 , | &Phi; - > A 1 A 2 | &Phi; - > B 1 B 2 | &Psi; - > C 1 C 2 } &RightArrow; 111 ;
CN201210327020.0A 2012-09-05 2012-09-05 一种基于ghz态密集编码和纠缠交换的量子隐写方法 Expired - Fee Related CN102801518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210327020.0A CN102801518B (zh) 2012-09-05 2012-09-05 一种基于ghz态密集编码和纠缠交换的量子隐写方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210327020.0A CN102801518B (zh) 2012-09-05 2012-09-05 一种基于ghz态密集编码和纠缠交换的量子隐写方法

Publications (2)

Publication Number Publication Date
CN102801518A CN102801518A (zh) 2012-11-28
CN102801518B true CN102801518B (zh) 2015-11-25

Family

ID=47200492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210327020.0A Expired - Fee Related CN102801518B (zh) 2012-09-05 2012-09-05 一种基于ghz态密集编码和纠缠交换的量子隐写方法

Country Status (1)

Country Link
CN (1) CN102801518B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227800A (zh) * 2013-05-15 2013-07-31 北京邮电大学 一种基于五粒子Cluster态的量子安全通信窃听检测方法
CN103281328B (zh) * 2013-06-03 2016-03-23 浙江工商大学 基于单个量子纠缠态测量相关性的抗信息泄露量子对话方法
CN103281176B (zh) * 2013-06-03 2016-01-20 浙江工商大学 基于利用纠缠交换测量相关性和降低传输效率的无信息泄露受控量子对话方法
CN103338187B (zh) * 2013-06-03 2016-03-23 浙江工商大学 基于任意两个ghz态纠缠交换结果集合编码的无信息泄露双向量子安全直接通信方法
CN103441819A (zh) * 2013-08-28 2013-12-11 北京航空航天大学 基于epr对和单光子的确定性安全量子通信方法及装置
CN103684743B (zh) * 2013-12-06 2017-01-11 苏州大学 基于非最大纠缠信道和信号重排技术的多方控制量子隐写方法
CN103763092B (zh) * 2014-01-15 2016-09-28 浙江工商大学 基于Bell态和控制非操作的无信息泄露双向量子安全直接通信方法
CN103888476B (zh) * 2014-04-14 2017-02-15 西北大学 一种基于三粒子ghz纠缠态的量子安全直接通信方法
CN104393957B (zh) * 2014-11-27 2017-08-11 苏州大学 基于x态的量子并行多方可控稠密编码方法
CN104618119B (zh) * 2015-03-02 2017-12-01 浙江工商大学 适用于量子Email的基于两光子纠缠态的量子认证加密方法
CN105245331B (zh) * 2015-10-21 2018-04-03 西安邮电大学 基于四粒子ghz态的两方量子密钥协商协议
CN105490804B (zh) * 2015-10-21 2018-04-17 西安邮电大学 基于三粒子ghz态的两方量子密钥协商协议
CN106850197B (zh) * 2016-12-30 2019-11-15 苏州大学 一种对称并行控制双向量子安全直接通信方法
CN106533679B (zh) * 2017-01-18 2019-08-09 成都信息工程大学 一种基于ghz态的量子密钥分发方法
CN109327308B (zh) * 2018-10-30 2020-08-04 成都信息工程大学 一种具有双向身份认证功能的量子密钥分发方法及系统
CN109167663B (zh) * 2018-10-30 2020-10-27 成都信息工程大学 一种基于密集编码的多用户量子密钥分发方法及系统
CN109495245A (zh) * 2018-11-07 2019-03-19 广东水利电力职业技术学院(广东省水利电力技工学校) 一种最大真纠缠六方态共享经典秘密信息方法及系统
CN109981274B (zh) * 2019-04-23 2021-06-01 南京信息工程大学 一种基于泡利群的量子超密编码酉算子构造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
量子信息隐藏协议设计与分析的研究;瞿治国;《中国博士学位论文全文数据库》;20111215;正文第3.5节、4.3节 *

Also Published As

Publication number Publication date
CN102801518A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102801518B (zh) 一种基于ghz态密集编码和纠缠交换的量子隐写方法
Tavakoli et al. Secret sharing with a single d-level quantum system
Banerjee et al. Maximally efficient protocols for direct secure quantum communication
Gao et al. Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state
Deng et al. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block
Deng et al. Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs
Zhu et al. Secure direct communication based on secret transmitting order of particles
CN103281328B (zh) 基于单个量子纠缠态测量相关性的抗信息泄露量子对话方法
CN103338187B (zh) 基于任意两个ghz态纠缠交换结果集合编码的无信息泄露双向量子安全直接通信方法
Shukla et al. On the group-theoretic structure of a class of quantum dialogue protocols
Shi et al. Bidirectional quantum secure communication based on a shared private Bell state
Qu et al. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states
CN106789009A (zh) 基于d级cat态和d级Bell态纠缠交换的多方量子隐私比较方法
Wang et al. A blind quantum signature protocol using the GHZ states
Deng et al. Robustness of two-way quantum communication protocols against Trojan horse attack
Min et al. Novel multi-party quantum key agreement protocol with g-like states and bell states
CN105871544A (zh) 基于五量子比特纠缠态的两方量子隐私比较方法
Gao et al. Comment on:“Three-party quantum secure direct communication based on GHZ states”[Phys. Lett. A 354 (2006) 67]
Chang et al. A bidirectional quantum secure direct communication protocol based on five-particle cluster state
Tsai et al. Deterministic quantum communication using the symmetric W state
Sharma et al. Security of entanglement based version of BB84 protocol for Quantum Cryptography
Ye et al. Large payload quantum steganography based on cavity quantum electrodynamics
CN109495262A (zh) 量子通信网络中具有稠密编码特点的量子密钥分发方法
CN109039477B (zh) 一种基于无消相干子空间的可容错量子对话方法
Dong et al. A DETERMINISTIC SECURE QUANTUM COMMUNICATION PROTOCOL USING GENUINE FOUR-PARTICLE ENTANGLED STATES WITH INCOMPLETE QUANTUM TELEPORTATION.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Hangzhou City, Zhejiang Province, Xihu District staff road 310012 No. 149

Applicant after: Zhejiang Gongshang University

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park is 18 street.

Applicant before: Zhejiang Gongshang University

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200214

Address after: 510670 room 1013, 81 Kefeng Road, Lianhe street, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou Fangwei Intellectual Property Service Co.,Ltd.

Address before: 310012 No. 149 staff Road, Hangzhou, Zhejiang, Xihu District

Patentee before: ZHEJIANG GONGSHANG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201016

Address after: 063000 dongliugezhuang, Hancheng Town, Lubei District, Tangshan City, Hebei Province

Patentee after: Tangshan Ansheng paper products manufacturing Co.,Ltd.

Address before: 510670 room 1013, 81 Kefeng Road, Lianhe street, Huangpu District, Guangzhou City, Guangdong Province

Patentee before: Guangzhou Fangwei Intellectual Property Service Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20210905

CF01 Termination of patent right due to non-payment of annual fee