CN102801162A - Two-stage linear weighted least-square power system state estimation method - Google Patents

Two-stage linear weighted least-square power system state estimation method Download PDF

Info

Publication number
CN102801162A
CN102801162A CN201210304251XA CN201210304251A CN102801162A CN 102801162 A CN102801162 A CN 102801162A CN 201210304251X A CN201210304251X A CN 201210304251XA CN 201210304251 A CN201210304251 A CN 201210304251A CN 102801162 A CN102801162 A CN 102801162A
Authority
CN
China
Prior art keywords
msub
mrow
math
msubsup
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210304251XA
Other languages
Chinese (zh)
Other versions
CN102801162B (en
Inventor
刘锋
陈艳波
何光宇
梅生伟
黄良毅
付艳兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hainan Power Grid Co Ltd
Original Assignee
Tsinghua University
Hainan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hainan Power Grid Co Ltd filed Critical Tsinghua University
Priority to CN201210304251.XA priority Critical patent/CN102801162B/en
Publication of CN102801162A publication Critical patent/CN102801162A/en
Application granted granted Critical
Publication of CN102801162B publication Critical patent/CN102801162B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention provides a two-stage linear weighted least-square power system state estimation method which is characterized by comprising the following steps of: forming a network model, and calculating a node admittance matrix and a branch-node relationship matrix; transforming a measurement vector and a state vector; forming an accurate linear measurement equation; performing the first stage of linear weighted least-square estimation to obtain the estimated value of the transformed state vector; performing inverse transformation, and performing the second stage of linear weighted least-square estimation to obtain the estimated values of the voltage amplitudes and phase angles of all nodes; and identifying bad data. According to the two-stage linear weighted least-square power system state estimation method provided by the invention, more scientific state estimation result can be obtained, the calculation efficiency is higher, and the engineering application prospect is good.

Description

Two-stage linear weighted least square power system state estimation method
Technical Field
The invention relates to the field of power system dispatching automation, in particular to a two-stage linear weighted least square power system state estimation method.
Background
The state estimation of the power system is the basis and core of an energy management system, and is used for filtering real-time information provided by a data acquisition and monitoring System (SCADA), so that estimated values of state variables (voltage amplitude and phase angle) of the whole network are obtained, and further estimated values of branch power, node injection power and the like can be obtained.
Since foreign scholars put forward the first model of state estimation in 1970, foreign scholars and engineers have conducted a lot of intensive research and practice on state estimation, and state estimators are deployed almost in every scheduling center all over the world, and the basic position of state estimation in safe operation of a power grid is widely accepted.
The most widely used state estimation method so far is the nonlinear Weighted Least Squares (WLS) method, which is simple in model and convenient to calculate, and can obtain unbiased estimated values of state variables in the absence of bad data. In order to improve the calculation efficiency of the nonlinear WLS, a state estimation method of a fast decoupling method is also provided. Since the non-linear WLS is not robust, a maximum normalized residual error (LNR) verification method based on the non-linear WLS, an estimation identification method (EI) of bad data, and the like have been proposed to identify the bad data.
Meanwhile, various robustness state estimation methods are also continuously proposed. The robustness state estimation can automatically inhibit the influence of bad data in the estimation process, so that a correct state variable estimation value is obtained. Of the various robust state estimation methods, the application of M-estimation is most common. M-estimation generally includes weighted least absolute value estimation (WLAV), non-quadratic criterion state estimation (such as QL estimation and QC estimation), etc., and state estimation with a yield of maximum targets, which has just been proposed in recent years, and state estimation with exponential objective functions also belong to the category of M-estimation. The problem faced by robust state estimation: 1) global optimization difficulties; 2) computational efficiency is lower than non-linear WLS. The above reasons affect the application of robust state estimation in practice.
In summary, the existing various state estimation methods are all a nonlinear optimization problem without exception, and generally a newton method or an interior point method is used for solving. From a mathematical point of view, such a non-linear optimization model and its corresponding solution method have several inevitable drawbacks: 1) the method is easy to fall into a local optimal point, namely a global optimal solution is difficult to obtain, and particularly some robust state estimation is difficult to obtain; 2) multiple iterations are required to obtain an acceptable solution, the nonlinear optimization problem sometimes has difficulty in convergence and even does not converge, and the solution is time-consuming; 3) the jacobian matrix and the residual sensitivity matrix are not constant matrices, so that a cyclic operation of deleting bad data and re-running state estimation needs to be performed multiple times when bad data identification is performed by LNR, and the non-linear state estimation needs to be re-run when multiple measurement errors are estimated if bad data are identified by EI method. The academic community has conducted some research on the above three problems, for example, foreign scholars have proposed using a trust domain method to enhance the convergence of state estimation, but so far, the above three problems have not been solved well, and the root cause is caused by the non-linear characteristic of the conventional state estimation model. If an accurate and linear state estimation model can be established, the three problems can be thoroughly solved, so that a more scientific state estimation result is theoretically ensured, and further practicability of state estimation is promoted.
Disclosure of Invention
The present invention aims to solve the above technical problems completely or at least to provide a useful commercial choice. Therefore, an object of the present invention is to provide a two-stage linear weighted least-squares power system state estimation method (TLWLS) with more scientific results and higher computational efficiency.
The two-stage linear weighted least square power system state estimation method provided by the embodiment of the invention comprises the following steps: A. forming a network model, and calculating a node admittance matrix and a branch-node association matrix; B. transforming the measurement vector and the state vector; C. forming a precise linear measurement equation; D. performing linear weighted least square estimation of a first stage to obtain an estimated value of the transformed state vector; e, performing inverse transformation and linear weighted least square estimation of a second stage to obtain the voltage amplitude values and phase angle estimation values of all nodes; and F, identifying bad data.
In one embodiment of the present invention, the step a includes: all lines and transformers in the network are equivalent to pi-type branch ij, and y is recordeds=1/(rij+jxij)=gs+jbsSeries susceptance, r, for a pi-branch ijij+jxijSeries impedance value of pi-type branch ij, bcIs the grounding susceptance of the pi-type branch ij, wherein if the pi-type branch ij is a transformer branch, b iscK is 0 and k is the transformation ratio of an ideal transformer, if the pi-type branch ij is a common line, k is 1, and a plurality of parallel branches are equivalent to one branch; in the equivalent circuit, let gij=gs/k,bij=bs/k,gsi=(1-k)gs/k2,bsi=(1-k)bs/k2+bc/2,gsj=(k-1)gs/k,bsj=(k-1)bs/k+b c2; calculating a node admittance matrix Y = G + jB, wherein G and B are a real part and an imaginary part of the node admittance matrix respectively; and calculating a branch-node association matrix as A = { a = { (a)ij(1. ltoreq. i.ltoreq.b, 1. ltoreq. j.ltoreq.N-1), wherein the respective elements are defined as:
Figure BDA00002049112800021
Figure BDA00002049112800022
in one embodiment of the present invention, the step B includes: transforming state vectors into <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mi>N</mi> <mn>2</mn> </msubsup> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Wherein N is the total number of all nodes in the network, b is the number of all branches in the network, l is the branch numberiAnd ljThe numbers of the nodes at the two ends of the branch l,
Figure BDA00002049112800032
and
Figure BDA00002049112800033
are respectively node liAnd ljThe magnitude of the voltage of (a) is,
Figure BDA00002049112800034
andare respectively node liAnd ljThe phase angle of (a) is,
Figure BDA00002049112800036
is the phase angle difference between the two phases,representing the contribution of all b branches to the state vector X,
Figure BDA00002049112800038
also represents the contribution of all b branches to the state vector X, X ∈ RN+2bIs a state vector; and transforming the measurement vector into y ∈ RmThe method comprises the steps of squaring node voltage amplitude, enabling branch circuits, injecting active power, injecting idle power and squaring branch circuit current amplitude, wherein m is the total number of measured quantities, and when the square of the node voltage amplitude is expressed by a transformed state vector X, the square of the node voltage amplitude is
Figure BDA00002049112800039
viFor the voltage at node i, the branch from node i to node j has active powerThe branch from node i to node j is reactive <math> <mrow> <msub> <mi>Q</mi> <mi>ij</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> The injection active of node i is <math> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Injected reactive of node i is <math> <mrow> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Gij+jBijThe square of the branch current amplitude isWherein, IijThe amplitude of the current for the pi branch ij, a ═ gsi+gij)2+(bsi+bij)2
Figure BDA000020491128000315
Figure BDA000020491128000316
D=-gsibij+bsigij
In one embodiment of the present invention, the step C includes: let J ∈ Rm×(N+2b)Is a Jacobian matrix, in which the node voltage amplitude is measuredHas a square corresponding Jacobian matrix element of <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> The Jacobian matrix element corresponding to the branch power measurement is <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> The Jacobian matrix element corresponding to the injection power measurement is <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math>
Figure BDA000020491128000336
The Jacobian matrix element corresponding to the square of the branch current amplitude measurement is
Figure BDA000020491128000337
Figure BDA000020491128000338
Figure BDA000020491128000339
Figure BDA000020491128000340
And obtaining an accurate linearized measurement equation according to the converted measurement vector and state vector obtained in the step B: y = JX + τ, where τ ∈ RmFor measuring the error vector, J ∈ Rm×(N+2b)Is a constant jacobian matrix.
In one embodiment of the present invention, the step D includes: structure of the device <math> <mrow> <mi>MinJ</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>J</mi> <mi>i</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>R</mi> <mi>ii</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> </mrow> </math> Wherein W = R, is used to solve the linear weighted least squares problem of (1)-1Is a weight matrix in which the optimal solution should satisfy the condition
Figure BDA00002049112800042
G is JTWJ is an information matrix, and an estimated value X of the transformed state vector X is obtained by solving-1JTWy。
In one embodiment of the present invention, the step E comprises: using the state vector X obtained in the step D according to a formula <math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>i</mi> <mo>&le;</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math> Performing inverse transformation to obtain the amplitudes of all node voltages and the estimated values theta of the phase angle differences at the two ends of all branches2b∈R2bI.e. by <math> <mrow> <msub> <mi>&theta;</mi> <mrow> <mn>2</mn> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math> And using the estimated value theta of the phase angle difference of the two ends of all the branches2bConstruction Min J (theta) ═ theta2b-A2θ)TWθ2b-A2θ) linear weighted least squares problem, where WθIs a weight matrix, takes the value of an identity matrix, A2=[AT AT]TA is the branch-node incidence matrix obtained in the step A, and theta is belonged to RN-1For the phase angles of all nodes except the reference node, wherein the optimal solution should satisfy the condition
Figure BDA00002049112800045
Can obtain the productSubstituting A into A2And solving to obtain theta ═ AT A)-1ATθbWherein
<math> <mrow> <msub> <mi>&theta;</mi> <mi>b</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>/</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
in one embodiment of the present invention, the step F includes: computing regularization residual values for the ith measurement
Figure BDA00002049112800048
Wherein r is [ I-J [ J ]TWJ]-1JTW]τ=Sτ,S=I-J(JTWJ)-1JTW is a residual sensitivity matrix which is a constant matrix r-N (0, omega), wherein omega is SR; and if the regularization residual error value of a certain measurement is larger than a preset value, removing the measurement, and operating the step D again until all the measured regularization residual errors are smaller than the preset value.
The two-stage linear weighted least squares power system state estimation method (TLWLS) of the present invention has the advantages of at least: the TLWLS model is essentially a quadratic programming problem, and a unique global optimal solution can be obtained by mathematically ensuring; TLWLS only needs to solve a linear equation set without iteration, has no convergence problem, and has estimation efficiency far higher than that of a conventional nonlinear weighted least square state estimation method (WLS); the jacobian matrix and the residual sensitivity matrix of the TLWLS are constant matrixes, which provides convenience for identifying bad data and can improve the identification efficiency of the bad data. In conclusion, the two-stage linear weighted least square state estimation method provided by the invention can obtain a more scientific state estimation result, has higher calculation efficiency and has good engineering application prospect.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The above and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
FIG. 1 is a flow chart of a two-stage linear weighted least squares power system state estimation method of the present invention;
FIG. 2 is a schematic diagram of a π branch circuit;
FIG. 3 is a schematic diagram of an equivalent circuit for a pi branch circuit; and
FIG. 4 is a single line diagram and measurement configuration diagram for a three-node system.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the drawings are illustrative and intended to be illustrative of the invention and are not to be construed as limiting the invention.
As shown in fig. 1, the method for accurately linearizing the state estimation measurement equation of the power system of the present invention includes the following steps:
and S101, forming a network model, and calculating a node admittance matrix and a branch-node association matrix.
Specifically, by equating a three-winding transformer in the network to three two-winding transformers, all lines and transformers in the network can be represented by a unified pi-type branch, as shown in fig. 2. In FIG. 2, ys=1/(rij+jxij)=gs+jbsIs the series susceptance of branch ij; r isij+jxijIs a series impedance value; bcIs the grounding susceptance of the branch. Wherein, if the pi-type branch ij is a transformer branch,then b isc=0 and k is the transformation ratio of an ideal transformer; if the pi-type branch ij is a common line, k is 1, and a plurality of branches connected in parallel are equivalent to one branch. It should be noted that a plurality of branches connected in parallel is equivalent to one branch.
The equivalent circuit of the pi-branch of fig. 2 is shown in fig. 3. In FIG. 3, gij=gs/k;bij=bs/k;gsi=(1-k)gs/k2;bsi=(1-k)bs/k2+bc/2;gsj=(k-1)gs/k;bsj=(k-1)bs/k+bc/2. Then, a node admittance matrix Y = G + jB is formed, G and B being respectively a real part and an imaginary part of the node admittance matrix, and a branch-node association matrix a = { a =isformedij(1. ltoreq. i.ltoreq.b, 1. ltoreq. j.ltoreq.N-1), the elements of which are defined as:
Figure BDA00002049112800051
step S102, the measurement vector and the state vector are transformed.
First, the state vector is transformed into <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mi>N</mi> <mn>2</mn> </msubsup> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
Wherein N is the total number of all nodes in the network; b is the number of all branches in the network (a plurality of branches connected in parallel is equivalent to one branch); l is the branch number, liAnd ljThe numbers of the nodes at the two ends of the branch l,
Figure BDA00002049112800061
and
Figure BDA00002049112800062
are respectively node liAnd ljThe magnitude of the voltage of (a) is,
Figure BDA00002049112800063
andare respectively node liAnd ljThe phase angle of (a) is,
Figure BDA00002049112800065
is the phase angle difference;
Figure BDA00002049112800066
representing the contribution of all b branches to the state vector X,also represents the contribution of all b branches to the state vector X; x is formed by RN+2bIs a state vector.
Next, the measurement vector is transformed into y ∈ RmThe measurement types include: the square of the node voltage amplitude, the branch active, the branch reactive, the injection active and the injection reactive, and the square of the branch current amplitude; m is the total number of measurements. The measurement of the quantity can be expressed in terms of a state vector X.
1) Square of voltage amplitude measurement
v i 2 = v i 2 - - - ( 1 )
Wherein v isiIs the voltage at node i.
2) Branch active and reactive power measurement from node i to node j
<math> <mrow> <msub> <mi>P</mi> <mi>ij</mi> </msub> <mo>=</mo> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mi>ij</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, PijAnd QijThe branch flowing from the node i to the node j is active and reactive respectively.
3) Measurement of injected active and injected reactive of node i
<math> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, PiAnd QiActive and reactive injection, G, respectively, for node iij+jBijAdmittance of corresponding elements in a matrix for a node
4) Square of branch current amplitude measurement
<math> <mrow> <msubsup> <mi>I</mi> <mi>ij</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>Av</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Bv</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mi>D</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, IijIs the current amplitude of branch ij; a ═ g (g)si+gij)2+(bsi+bij)2
Figure BDA000020491128000614
D=-gsibij+bsigij
Step S103, forming a precise linear measurement equation.
According to the transformed measurement vector and the new state vector, a new accurate linearized measurement equation can be obtained as follows:
y=JX+τ (7)
wherein y ∈ RmThe converted measurement vector comprises the square of the node voltage amplitude, the branch active, the branch reactive, the active injection and the reactive injection, and the square of the branch current amplitude; x is formed by RN+2bIs a transformed state vector; τ to N (0, R) is a measurement error vector, wherein
Figure BDA00002049112800071
Wherein
Figure BDA00002049112800072
Is tauiThe variance of (a); j is an element of Rm×(N+2b)The expression of the elements of each part of the constant jacobian matrix is shown below.
1) Jacobian matrix elements corresponding to the squares of voltage amplitude measurements
For the square of the voltage amplitude measurement, the corresponding Jacobian matrix element is
<math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>.</mo> </mrow> </math>
2) Jacobian matrix element corresponding to branch power measurement
For branch power measurement, the corresponding Jacobian matrix element is
<math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math>
<math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>.</mo> </mrow> </math>
3) Jacobian matrix element corresponding to injection power measurement
For implant power measurements, the corresponding Jacobian matrix element is
<math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math>
<math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mo>.</mo> </mrow> </math>
4) Jacobian matrix element corresponding to square of branch current amplitude measurement
For the square of the branch current amplitude measurement, the corresponding Jacobian matrix element is
<math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mi>A</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mi>B</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>C</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>D</mi> <mo>.</mo> </mrow> </math>
It should be noted that the above equation (7) is an accurate linear measurement equation. Based on the measurement equation, any existing state estimation method can be adopted to solve and obtain the transformed state vector X, and after X is obtained, the estimated values of all branch power, node injection power, branch current amplitude and the like can be further obtained, so that the accurate sensing of the whole network state is obtained.
Step S104, linear weighted least square estimation of the first stage is carried out to obtain an estimated value of the state vector X after transformation.
Specifically, the following linear weighted least squares problem is solved to obtain an estimate of the state vector X.
<math> <mrow> <mi>MinJ</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>J</mi> <mi>i</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>R</mi> <mi>ii</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein W = R-1Is a weight matrix. In order to obtain the optimum value, the optimum condition must be satisfied:
Figure BDA00002049112800081
namely, it is
GX=JTWy (9)
Wherein G = JTWJ is an information matrix. The information matrix G is subjected to orthogonal decomposition, and the estimated value of the state vector X can be obtained by solving, namely X is G-1JTWy。
And step S105, performing inverse transformation, and performing linear weighted least square estimation of the second stage to obtain the voltage amplitude and phase angle estimation values of all nodes.
According to the definition of the transformed state vector X, the voltage amplitudes of all nodes and the estimated values of the phase angle differences of the two ends of all branches can be obtained by inverse transformation, namely
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>i</mi> <mo>&le;</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
In equation (10), the symbol of arccos should be consistent with the symbol of arcsin.
To this end, estimates of the voltage amplitudes of all nodes have been obtained, but the phase angles of all nodes are not known, and it is clear that the phase angle difference across all branches can be used for estimation.
Order to <math> <mrow> <msub> <mi>&theta;</mi> <mrow> <mn>2</mn> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Obviously, θ can be obtained by the formula (10)2b. Using the following equation2bThe phase angles of all nodes except the reference node are estimated.
Let theta be [ theta ]2,…,θN]TRepresenting the phase angles of all nodes (except the reference node), then θ2bThe relation with theta is
θ2b=A2θ (11)
Wherein A is2=[AT AT]T,A2Is a matrix of 2b × (N-1).
Because of theta2bIs derived from the state estimation result of the first stage, so theta can be obtained2bConsider a measurement containing noise. And theta is to be estimated, the equation (11) can be rewritten as the following measurement equation for theta
θ2b=A2θ+τ (12)
A linear weighted least squares problem can be constructed that estimates theta as follows
Min J(θ)=(θ2b-A2θ)TWθ2b-A2θ) (13)
Wherein, WθFor the weight matrix, without loss of generality, W may be takenθIs an identity matrix. When the formula (13) obtains the optimum value, it must satisfy
<math> <mrow> <msubsup> <mi>A</mi> <mn>2</mn> <mi>T</mi> </msubsup> <msub> <mi>A</mi> <mn>2</mn> </msub> <mi>&theta;</mi> <mo>=</mo> <msubsup> <mi>A</mi> <mn>2</mn> <mi>T</mi> </msubsup> <msub> <mi>&theta;</mi> <mrow> <mn>2</mn> <mi>b</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
Substituting A into A2Is obtained by
ATAθ=ATθb (15)
Wherein, <math> <mrow> <msub> <mi>&theta;</mi> <mi>b</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>/</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow> </math> is a b-dimensional vector, and can be obviously represented by theta2bTo obtain thetab
The estimated value of θ obtained from equation (15) is θ ═ aT A)-1ATθb
To this end, estimates of the voltage amplitude and phase angle for all nodes have been obtained.
Step S106, identifying bad data.
In the present invention, the identification of the bad data only needs to be performed in the first stage of the two-stage linear weighted least square state estimation.
The residual of the first stage linear weighted least squares state estimation is
r=y-JX (16)
Wherein, X is the result of the first-stage state estimation and is obtained by solving the formula (9).
The relationship between the residual error and the measurement error can be derived from the equations (9) and (16) as
r=[I-J[JTWJ]-1JTW]τ=Sτ (17)
Wherein, S ═ I-J (J)TWJ)-1JTW is the residual sensitivity matrix. Since the jacobian matrix J is a constant matrix, the residual sensitivity matrix S is also a constant matrix. This means that the residual sensitivity matrix is not affected by bad data.
It is easy to prove that r-N (0, Ω), where Ω ═ SR, we can get normalized residual (normalized residual) rNIs composed of
<math> <mrow> <msup> <msub> <mi>r</mi> <mi>i</mi> </msub> <mi>N</mi> </msup> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <msqrt> <msub> <mi>&Omega;</mi> <mi>ii</mi> </msub> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, | riIs the residual riAbsolute value of (a).
If it is not
Figure BDA00002049112800093
The kth measurement is considered bad data and can be removed from the measurement set and the first stage linear weighted least squares state estimation is re-run. And repeating the steps until all the regularization residual errors are less than 3, and finishing the identification of all the bad data. Since the jacobian matrix is a constant matrix, it is clear that the poor data identification efficiency based on the linear weighted least squares state estimation is very high.
For better understanding of those skilled in the art, the applicant takes a three-node system as an example to illustrate the method of the present invention. The single line diagram and the measurement configuration diagram of the three-node system are shown in fig. 4, and the network parameters are shown in table 1. And selecting the node 1 as a reference node.
TABLE 1 three-node System network parameters
Table 1 The network data of the 3-bus system
Figure BDA00002049112800101
(1) Estimation results of non-linear WLS at normal load and TLWLS proposed by the present invention the measurements at normal load are shown in table 2.
TABLE 2 three-node systematic volume measurement
Table 2 Measurements of the 3-bus system
Figure BDA00002049112800102
If the conventional non-linear WLS is adopted, the convergence accuracy is 10-6Then, after 4 iterations of nonlinear WLS convergence, the obtained estimated values of voltage amplitude and phase angle of all nodes are shown in table 3.
TABLE 3 estimation of non-linear WLS
Table 3 The Estimated State Vector by Nonlinear WLS
Figure BDA00002049112800103
The following estimation is performed using the TLWLS proposed by the present invention.
Transforming state vectors into <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <msub> <mi>v</mi> <mn>2</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>12</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <msub> <mi>v</mi> <mn>3</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>13</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <msub> <mi>v</mi> <mn>3</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>23</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <msub> <mi>v</mi> <mn>2</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>12</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <msub> <mi>v</mi> <mn>3</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>13</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <msub> <mi>v</mi> <mn>3</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>23</mn> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Transforming the measurement vector into y = [ v 1 2 , v 2 2 , Q 12 , Q 21 , Q 13 , Q 31 , Q 2 , P 12 , P 21 , P 13 , P 31 , P 2 ] T , The measurement equation that yields accurate linearization is y-JX + τ. Wherein the constant jacobian can be obtained from the formula given in S103. By solving the estimation value of the state vector X after transformation in equation (9), further, the estimation values of the voltage amplitudes of all nodes and the phase angle differences between both ends of all branches can be obtained from equation (10), as shown in table 4. In the context of table 4, the results are,and
Figure BDA00002049112800107
are each Xi、viAnd theta2biAn estimate of (d).
TABLE 4 estimation results of the first stage of two-stage linear weighted least squares state estimation
Table 4 The estimation value by the first stage linear WLS of the TLWLS
Figure BDA00002049112800108
Based on the wiring diagram of the network, a branch-node association matrix (node 1 is a reference node) of the network is obtained
A = - 1 0 0 - 1 1 - 1
By solving equation (15), the estimated values of the phase angles of all nodes can be obtained as θ = [ ]23]T=[-0.0213,-0.0479]T. Thus, the estimated values of the voltage amplitude and phase angle for all nodes obtained from the two-stage linear weighted least squares state estimation proposed by the present invention are shown in table 5.
TABLE 5 estimation results of two-stage linear weighted least squares state estimation
Table 5 The Estimated State Vector by TLWLS
Figure BDA00002049112800112
Comparing table 3 and table 5, it can be seen that the state variable estimates obtained by the two-stage linear weighted least squares state estimation (TLWLS) proposed by the present invention match well with the state variable estimates obtained by the conventional non-linear WLS under normal loading. However, TLWLS does not require iteration, whereas conventional non-linear WLS requires 4 iterations to converge, in this example, TLWLS is more than 3 times more computationally efficient than non-linear WLS.
(2) Examples of trapping non-linear WLS into locally optimal solution
An example of a non-linear WLS falling into a locally optimal solution is given below, still taking the 3-node system as an example. As the system load continues to increase, another set of quantity measurements may be obtained, as shown in table 6. Obviously, a voltage collapse occurs at this time.
TABLE 6 measurement of System volume of three nodes under heavy load
Table 6 Measurements of the 3-bus system at hevy load
When this example was estimated using nonlinear WLS, the objective function value of the nonlinear WLS at the time of convergence was 0.1088 after 35 convergence. For this example, the true values of the state variables, the estimated values for nonlinear WLS, and the estimated values for two-stage linear weighted least squares state estimation (TLWLS) are shown in table 7.
TABLE 7 truth values of state variables under heavy load, non-linear WLS and estimated results of TLWLS
Table 7 The True value,Estimate Value by WLS and TLWLS at hevy load
Figure BDA00002049112800114
As can be seen from table 7, under heavy loading, especially in voltage collapse, the conventional non-linear WLS falls into a locally optimal solution, whose estimate appears to have negative voltage magnitude and large phase angle value. It can be seen that under heavy load, especially in voltage collapse, the estimation result of the conventional non-linear WLS is not reliable, but the power system requires the state estimation to have the best possible performance. This sharp contradiction is caused by the inherent characteristics of conventional non-linear WLS when heavy loads, especially voltage breakdown, occur.
As can also be seen from table 7, even when the voltage collapses, the estimation result of the two-stage linear weighted least squares state estimation method (TLWLS) proposed by the present invention is very accurate, i.e., the TLWLS proposed by the present invention can obtain a globally optimal solution at any time without iteration. Therefore, the TLWLS provided by the invention can obtain a more scientific state estimation result and has higher calculation efficiency.
(3) Identifying bad data
Measurement of quantity P at regular load shown in Table 212Iterate 20% of the noise, P12Becomes bad data. Obtaining P from formula (18)12And (3) removing the regularized residual errors from the measurement set when the regularized residual errors are larger than 3, re-operating the linear weighted least square state estimation of the first stage, and finishing the identification of the bad data when all the regularized residual errors are smaller than 3. Therefore, the regularization residual error inspection method can effectively identify the bad data of the TLWLS in the first stage, and the identification efficiency is found to be more than 3 times of that of the traditional regularization residual error inspection method based on the nonlinear WLS.
In the description herein, references to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
Although embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and that variations, modifications, substitutions and alterations can be made in the above embodiments by those of ordinary skill in the art without departing from the principle and spirit of the present invention.

Claims (7)

1. A two-stage linear weighted least square power system state estimation method is characterized by comprising the following steps:
A. forming a network model, and calculating a node admittance matrix and a branch-node association matrix;
B. transforming the measurement vector and the state vector;
C. forming a precise linear measurement equation;
D. performing linear weighted least square estimation of a first stage to obtain an estimated value of the transformed state vector;
E. performing inverse transformation and linear weighted least square estimation of a second stage to obtain the voltage amplitude values and phase angle estimation values of all nodes; and
F. and identifying bad data.
2. The two-stage linear weighted least squares power system state estimation method of claim 1, said step a comprising:
all lines and transformers in the network are equivalent to pi-type branch ij, and y is recordeds=1/(rij+jxij)=gs+jbsSeries susceptance, r, for a pi-branch ijij+jxijSeries impedance value of pi-type branch ij, bcIs the grounding susceptance of the pi-type branch ij, wherein if the pi-type branch ij is a transformer branch, b iscK is 0 and k is the transformation ratio of an ideal transformer, if the pi-type branch ij is a common line, k is 1, and a plurality of parallel branches are equivalent to one branch;
in the equivalent circuit, let gij=gs/k,bij=bs/k,gsi=(1-k)gs/k2,bsi=(1-k)bs/k2+bc/2,gsj=(k-1)gs/k,bsj=(k-1)bs/k+bc/2;
Calculating a node admittance matrix Y = G + jB, wherein G and B are a real part and an imaginary part of the node admittance matrix respectively; and calculating a branch-node association matrix a = { a = { (a) }ij(1. ltoreq. i.ltoreq.b, 1. ltoreq. j.ltoreq.N-1), wherein the respective elements are defined as:
Figure FDA00002049112700011
Figure FDA00002049112700012
3. the two-stage linear weighted least squares power system state estimation method of claim 2, said step B comprising:
transforming state vectors into <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mi>N</mi> <mn>2</mn> </msubsup> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <msub> <mi>v</mi> <mi>l</mi> </msub> <mi>i</mi> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Wherein N is the total number of all nodes in the network, b is the number of all branches in the network, l is the branch numberiAnd ljThe numbers of the nodes at the two ends of the branch l,
Figure FDA00002049112700014
and
Figure FDA00002049112700015
are respectively node liAnd ljThe magnitude of the voltage of (a) is,
Figure FDA00002049112700016
and
Figure FDA00002049112700017
are respectively node liAnd ljThe phase angle of (a) is,
Figure FDA00002049112700018
is the phase angle difference between the two phases,
Figure FDA00002049112700019
representing the contribution of all b branches to the state vector X,
Figure FDA000020491127000110
also represents the contribution of all b branches to the state vector X, X ∈ RN+2bIs a state vector; and
transforming the measurement vector into y ∈ RmThe method comprises the steps of squaring node voltage amplitude, enabling branch circuits, injecting active power, injecting idle power and squaring branch circuit current amplitude, wherein m is the total number of measured quantities, and when the square of the node voltage amplitude is expressed by a transformed state vector X, the square of the node voltage amplitude isviFor the voltage at node i, the branch from node i to node j has active power <math> <mrow> <msub> <mi>P</mi> <mi>ij</mi> </msub> <mo>=</mo> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> The branch from node i to node j is reactive
Figure FDA00002049112700023
The injection active of node i is
Figure FDA00002049112700024
Injected reactive of node i is
Figure FDA00002049112700025
Gij+jBijThe square of the branch current amplitude is <math> <mrow> <msubsup> <mi>I</mi> <mi>ij</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>Av</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Bv</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mi>D</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Wherein, IijThe amplitude of the current for the pi branch ij, a ═ gsi+gij)2+(bsi+bij)2 B = g ij 2 + b ij 2 , C = g ij 2 + b ij 2 + g si g ij + b si b ij , D=-gsibij+bsigij
4. The two-stage linear weighted least squares power system state estimation method of claim 3, said step C comprising:
let J ∈ Rm×(N+2b)Is a Jacobian matrix, wherein the Jacobian matrix element corresponding to the square of the node voltage amplitude measurement is <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> The Jacobian matrix element corresponding to the branch power measurement is <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>si</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>ij</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> The Jacobian matrix element corresponding to the injection power measurement is <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Q</mi> </mrow> <mi>i</mi> </msub> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> The Jacobian matrix element corresponding to the square of the branch current amplitude measurement is <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mi>A</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>=</mo> <mi>B</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>C</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>I</mi> </mrow> <mi>ij</mi> <mn>2</mn> </msubsup> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>j</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <mi>D</mi> <mo>;</mo> </mrow> </math> And
and B, obtaining an accurate linearized measurement equation according to the converted measurement vector and the state vector obtained in the step B: y = JX + τ, where τ ∈ RmFor measuring the error vector, J ∈ Rm×(N+2b)Is a constant jacobian matrix.
5. The two-stage linear weighted least squares power system state estimation method of claim 4, said step D comprising:
structure of the device <math> <mrow> <mi>MinJ</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>J</mi> <mi>i</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>R</mi> <mi>ii</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>JX</mi> <mo>)</mo> </mrow> </mrow> </math> Wherein W ═ R-1Is a weight matrix in which the optimal solution should satisfy the condition
Figure FDA000020491127000234
G is JTWJ is an information matrix, and an estimated value X of the transformed state vector X is obtained by solving-1JTWy。
6. The two-stage linear weighted least squares power system state estimation method of claim 5, said step E comprising:
using the state vector X obtained in said step DAccording to the formula <math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <msubsup> <mi>v</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>i</mi> <mo>&le;</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math> Performing inverse transformation to obtain the amplitudes of all node voltages and the estimated values theta of the phase angle differences at the two ends of all branches2b∈R2bI.e. by <math> <mrow> <msub> <mi>&theta;</mi> <mrow> <mn>2</mn> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math> And
utilizing the estimated value theta of the phase angle difference of the two ends of all the branches2bConstruction Min J (theta) ═ theta2b-A2θ)TWθ2b-A2θ) linear weighted least squares problem, where WθIs a weight matrix, takes the value of an identity matrix, A2=[AT AT]TA is the branch-node incidence matrix obtained in the step A, and theta is belonged to RN-1For the phase angles of all nodes except the reference node, wherein the optimal solution should satisfy the condition
Figure FDA00002049112700033
Can obtain the product
Figure FDA00002049112700034
Substituting A into A2And solving to obtain theta ═ ATA)-1ATθbWherein
<math> <mrow> <msub> <mi>&theta;</mi> <mi>b</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mo>[</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>v</mi> <msub> <mi>l</mi> <mi>j</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>/</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>l</mi> <mo>&le;</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
7. the two-stage linear weighted least squares power system state estimation method of claim 6, said step F comprising:
computing regularization residual values for the ith measurement
Figure FDA00002049112700036
Wherein r is [ I-J [ J ]TWJ]-1JTW]τ=Sτ,S=I-J(JTWJ)-1JTW is a residual sensitivity matrix which is a constant matrix r-N (0, omega), wherein omega is SR; and
and if the regularization residual error value of a certain measurement is larger than a preset value, removing the measurement, and operating the step D again until all the measured regularization residual errors are smaller than the preset value.
CN201210304251.XA 2012-08-23 2012-08-23 Two-stage linear weighted least-square power system state estimation method Active CN102801162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210304251.XA CN102801162B (en) 2012-08-23 2012-08-23 Two-stage linear weighted least-square power system state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210304251.XA CN102801162B (en) 2012-08-23 2012-08-23 Two-stage linear weighted least-square power system state estimation method

Publications (2)

Publication Number Publication Date
CN102801162A true CN102801162A (en) 2012-11-28
CN102801162B CN102801162B (en) 2014-07-16

Family

ID=47200179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210304251.XA Active CN102801162B (en) 2012-08-23 2012-08-23 Two-stage linear weighted least-square power system state estimation method

Country Status (1)

Country Link
CN (1) CN102801162B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279676A (en) * 2013-06-07 2013-09-04 河海大学 Power system WLAV robust estimation method based on variable substitution
CN103390251A (en) * 2013-07-24 2013-11-13 大连海事大学 Method for setting measurement weight for power system state estimation
CN103593566A (en) * 2013-11-14 2014-02-19 华北电力大学 Mixing-quadratic-programming-form electrical power system synthesis state estimation method
CN103593565A (en) * 2013-11-14 2014-02-19 华北电力大学 Structural risk minimization based weighted least squares power system state estimation method
CN103701115A (en) * 2013-11-22 2014-04-02 清华大学 Electric power system robust state estimation method formed by quadratic programming
CN103840454A (en) * 2014-03-07 2014-06-04 国家电网公司 Method for identifying parameters of active linear network with given network structure
CN104022501A (en) * 2014-05-27 2014-09-03 桂林电子科技大学 Power distribution network state estimating method based on fuzzy theory
CN105303471A (en) * 2015-11-27 2016-02-03 华北电力大学 Method for hyperbolic cosine maximum exponential square robust estimation of power system state
CN105322533A (en) * 2014-05-29 2016-02-10 河海大学 Adaptive t-type robust state estimation method based on Gauss-Markov model
CN105514977A (en) * 2015-11-27 2016-04-20 华北电力大学 Hyperbolic cosine type robust state estimation method for power system state
CN105958470A (en) * 2014-10-20 2016-09-21 国家电网公司 Electric power system bilinear anti-error estimation method based on bilinear protruding optimization theory
CN105977963A (en) * 2016-04-28 2016-09-28 中国电力科学研究院 Two-stage method-based main network and distribution network integrated distributed state estimation method
CN107370150A (en) * 2017-09-06 2017-11-21 清华大学 The Power system state estimation Bad data processing method measured based on synchronized phasor
CN107947160A (en) * 2017-11-28 2018-04-20 国家电网公司 A kind of bilinearity WLAV method for estimating state based on matrixing
CN109344870A (en) * 2018-08-28 2019-02-15 华南理工大学 A kind of POWER SYSTEM STATE sensitivity on-line identification method based on target regularization
CN109787220A (en) * 2018-12-24 2019-05-21 中国电力科学研究院有限公司 A kind of method for estimating state and system suitable for power distribution network
CN110232199A (en) * 2018-11-30 2019-09-13 南京南瑞继保电气有限公司 A kind of bilinearity WLAV robust state estimation method considering that matrix size is flexible
CN110380409A (en) * 2019-07-16 2019-10-25 山东大学 Consider the active distribution network distributed robust state estimation method and system of communication failure
CN110380379A (en) * 2019-07-19 2019-10-25 福建睿思特科技股份有限公司 A kind of monitoring of electric power system fault and alarm system
CN110970887A (en) * 2018-09-28 2020-04-07 国网甘肃省电力公司电力科学研究院 Two-stage linear three-phase state estimation method and device for active power distribution network
CN112803402A (en) * 2021-02-23 2021-05-14 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing
CN113884909A (en) * 2021-09-30 2022-01-04 国网江苏省电力有限公司电力科学研究院 Method and device for identifying circuit parameters and drift current of lithium battery
CN114421474A (en) * 2022-03-30 2022-04-29 南京易司拓电力科技股份有限公司 Power-voltage sensitivity estimation method between distribution network nodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635457A (en) * 2009-05-14 2010-01-27 国家电网公司 Electric network parameter estimation method based on parameter sensitivity of state estimation residual error

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635457A (en) * 2009-05-14 2010-01-27 国家电网公司 Electric network parameter estimation method based on parameter sensitivity of state estimation residual error

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙黎等: "计及等效电流量测变换及坏数据辨识的状态估计方法", 《电网与清洁能源》 *
王韶等: "基于奇异值分解和等效电流量测变换的电力系统状态估计", 《电力系统保护与控制》 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279676A (en) * 2013-06-07 2013-09-04 河海大学 Power system WLAV robust estimation method based on variable substitution
CN103279676B (en) * 2013-06-07 2016-08-31 河海大学 A kind of power system WLAV Robust filter method based on substitution of variable
CN103390251B (en) * 2013-07-24 2016-06-01 大连海事大学 The measurement weight method to set up of a kind of Power system state estimation
CN103390251A (en) * 2013-07-24 2013-11-13 大连海事大学 Method for setting measurement weight for power system state estimation
CN103593566A (en) * 2013-11-14 2014-02-19 华北电力大学 Mixing-quadratic-programming-form electrical power system synthesis state estimation method
CN103593565A (en) * 2013-11-14 2014-02-19 华北电力大学 Structural risk minimization based weighted least squares power system state estimation method
CN103593566B (en) * 2013-11-14 2017-03-15 华北电力大学 The power system comprehensive state method of estimation of mixing quadratic programming form
CN103593565B (en) * 2013-11-14 2017-02-22 华北电力大学 Structural risk minimization based weighted least squares power system state estimation method
CN103701115A (en) * 2013-11-22 2014-04-02 清华大学 Electric power system robust state estimation method formed by quadratic programming
CN103701115B (en) * 2013-11-22 2015-10-28 清华大学 A kind of electric power system robust state estimation method of quadratic programming form
CN103840454A (en) * 2014-03-07 2014-06-04 国家电网公司 Method for identifying parameters of active linear network with given network structure
CN103840454B (en) * 2014-03-07 2019-01-01 国家电网公司 The parameter identification method of active linear network known to network structure
CN104022501A (en) * 2014-05-27 2014-09-03 桂林电子科技大学 Power distribution network state estimating method based on fuzzy theory
CN104022501B (en) * 2014-05-27 2016-03-02 桂林电子科技大学 Based on the State Estimation for Distribution Network of fuzzy theory
CN105322533B (en) * 2014-05-29 2017-11-03 河海大学 Adaptive t types robust state estimation method based on Gauss Markov model
CN105322533A (en) * 2014-05-29 2016-02-10 河海大学 Adaptive t-type robust state estimation method based on Gauss-Markov model
CN105958470B (en) * 2014-10-20 2019-08-06 国家电网公司 One kind being based on the convex optimum theory electric system bilinearity Robust filter method of bilinearity
CN105958470A (en) * 2014-10-20 2016-09-21 国家电网公司 Electric power system bilinear anti-error estimation method based on bilinear protruding optimization theory
CN105303471A (en) * 2015-11-27 2016-02-03 华北电力大学 Method for hyperbolic cosine maximum exponential square robust estimation of power system state
CN105514977B (en) * 2015-11-27 2018-11-09 华北电力大学 A kind of hyperbolic cosine type robust state estimation method of POWER SYSTEM STATE
CN105514977A (en) * 2015-11-27 2016-04-20 华北电力大学 Hyperbolic cosine type robust state estimation method for power system state
CN105303471B (en) * 2015-11-27 2019-05-03 华北电力大学 The hyperbolic cosine type maximal index square Robust filter method of POWER SYSTEM STATE
CN105977963A (en) * 2016-04-28 2016-09-28 中国电力科学研究院 Two-stage method-based main network and distribution network integrated distributed state estimation method
CN105977963B (en) * 2016-04-28 2022-04-05 中国电力科学研究院 Main and distribution network integrated distributed state estimation method based on two-stage method
CN107370150A (en) * 2017-09-06 2017-11-21 清华大学 The Power system state estimation Bad data processing method measured based on synchronized phasor
CN107370150B (en) * 2017-09-06 2019-08-16 清华大学 The Power system state estimation Bad data processing method measured based on synchronized phasor
CN107947160A (en) * 2017-11-28 2018-04-20 国家电网公司 A kind of bilinearity WLAV method for estimating state based on matrixing
CN109344870B (en) * 2018-08-28 2022-03-25 华南理工大学 Target regularization-based online identification method for state sensitivity of power system
CN109344870A (en) * 2018-08-28 2019-02-15 华南理工大学 A kind of POWER SYSTEM STATE sensitivity on-line identification method based on target regularization
CN110970887A (en) * 2018-09-28 2020-04-07 国网甘肃省电力公司电力科学研究院 Two-stage linear three-phase state estimation method and device for active power distribution network
CN110970887B (en) * 2018-09-28 2021-04-20 国网甘肃省电力公司电力科学研究院 Two-stage linear three-phase state estimation method and device for active power distribution network
CN110232199A (en) * 2018-11-30 2019-09-13 南京南瑞继保电气有限公司 A kind of bilinearity WLAV robust state estimation method considering that matrix size is flexible
CN110232199B (en) * 2018-11-30 2023-12-19 南京南瑞继保电气有限公司 Bilinear WLAV robust state estimation method considering matrix scale expansion
CN109787220A (en) * 2018-12-24 2019-05-21 中国电力科学研究院有限公司 A kind of method for estimating state and system suitable for power distribution network
CN109787220B (en) * 2018-12-24 2023-11-03 中国电力科学研究院有限公司 State estimation method and system suitable for power distribution network
CN110380409A (en) * 2019-07-16 2019-10-25 山东大学 Consider the active distribution network distributed robust state estimation method and system of communication failure
CN110380409B (en) * 2019-07-16 2020-11-13 山东大学 Active power distribution network distributed robust state estimation method and system considering communication failure
CN110380379A (en) * 2019-07-19 2019-10-25 福建睿思特科技股份有限公司 A kind of monitoring of electric power system fault and alarm system
CN112803402B (en) * 2021-02-23 2023-03-31 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing
CN112803402A (en) * 2021-02-23 2021-05-14 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing
CN113884909A (en) * 2021-09-30 2022-01-04 国网江苏省电力有限公司电力科学研究院 Method and device for identifying circuit parameters and drift current of lithium battery
CN113884909B (en) * 2021-09-30 2024-06-21 国网江苏省电力有限公司电力科学研究院 Lithium battery circuit parameter and drift current identification method and device
CN114421474A (en) * 2022-03-30 2022-04-29 南京易司拓电力科技股份有限公司 Power-voltage sensitivity estimation method between distribution network nodes

Also Published As

Publication number Publication date
CN102801162B (en) 2014-07-16

Similar Documents

Publication Publication Date Title
CN102801162A (en) Two-stage linear weighted least-square power system state estimation method
Yuan et al. Inverse power flow problem
Cavraro et al. Voltage analytics for power distribution network topology verification
CN101599643B (en) Robust state estimation method in electric power system based on exponential type objective function
CN107453357B (en) Power distribution network state estimation method based on layered solution
Haileselassie et al. Power flow analysis of multi-terminal HVDC networks
CN103593566B (en) The power system comprehensive state method of estimation of mixing quadratic programming form
CN107453351B (en) Power distribution network operation topology identification method based on node injection power
CN106372339A (en) Multi-rate simulation method and device for power-electronizing power system
CN101964525B (en) Method for estimating state of distribution network for supporting large-scale current measurement
CN103208797B (en) Estimation method for new-energy-containing power distribution network state based on intelligent optimization technology
CN105512502B (en) One kind is based on the normalized weight function the least square estimation method of residual error
CN102842908B (en) Three-phase decoupling power flow calculation method for power distribution network containing multiple transformer branches
CN108054757B (en) It is a kind of to embed idle and voltage N-1 Close loop security check method
CN107104430A (en) A kind of bilingual coupling method for estimating state of power distribution network
Mouco et al. A robust state estimator for power systems with HVDC components
CN102891485B (en) Three-phase decoupling load flow calculation method for weakly meshed distribution network based on sequence component method
CN103825270B (en) A kind of power distribution network three-phase state estimates the processing method of Jacobian matrix constant
CN109255541B (en) Power distribution network robust state estimation method based on least square sum-by-one sum
CN105305440B (en) The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE
Li et al. Optimal sensor placement for hybrid state estimation in smart grid
CN103701115B (en) A kind of electric power system robust state estimation method of quadratic programming form
CN105977961A (en) Temperature state estimation method based on automatic differentiation
CN102157930A (en) Method for calculating DC side harmonic current of common-tower double-circuit DC transmission line
CN105303269A (en) Optimal transformation method for eliminating leverage points

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant