CN102801162A - Two-stage linear weighted least-square power system state estimation method - Google Patents
Two-stage linear weighted least-square power system state estimation method Download PDFInfo
- Publication number
- CN102801162A CN102801162A CN201210304251XA CN201210304251A CN102801162A CN 102801162 A CN102801162 A CN 102801162A CN 201210304251X A CN201210304251X A CN 201210304251XA CN 201210304251 A CN201210304251 A CN 201210304251A CN 102801162 A CN102801162 A CN 102801162A
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- math
- partiald
- msubsup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims abstract description 73
- 238000005259 measurement Methods 0.000 claims abstract description 71
- 239000013598 vector Substances 0.000 claims abstract description 55
- 230000009466 transformation Effects 0.000 claims abstract description 10
- 230000001131 transforming effect Effects 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电力系统调度自动化领域,特别涉及一种两阶段线性加权最小二乘电力系统状态估计方法。The invention relates to the field of power system scheduling automation, in particular to a two-stage linear weighted least squares power system state estimation method.
背景技术 Background technique
电力系统状态估计是能量管理系统的基础和核心,其作用是对数据采集与监控系统(SCADA)提供的实时信息进行滤波,从而得到全网状态变量(电压幅值和相角)的估计值,进而可以得到支路功率、节点注入功率等的估计值。Power system state estimation is the basis and core of the energy management system. Its function is to filter the real-time information provided by the data acquisition and monitoring system (SCADA), so as to obtain the estimated value of the state variables (voltage amplitude and phase angle) of the whole network. Furthermore, estimated values such as branch power and node injection power can be obtained.
自从国外学者在1970年提出状态估计的第一个模型以来,国内外学者和工程人员对状态估计进行了大量、深入的研究和实践,现在全世界每一个调度中心几乎都部署了状态估计器,状态估计在电网安全运行中的基础性地位得到了广泛的认可。Since foreign scholars proposed the first model of state estimation in 1970, scholars and engineers at home and abroad have conducted a large number of in-depth research and practice on state estimation. Now almost every dispatch center in the world has deployed state estimators. The basic position of state estimation in the safe operation of power grid has been widely recognized.
到目前为止,应用最为广泛的状态估计方法是非线性加权最小二乘法(WLS),该法模型简单、计算方便,在没有不良数据时可以得到状态变量的无偏估计值。为了提高非线性WLS的计算效率,人们又提出了快速解耦法状态估计方法。因为非线性WLS不具有鲁棒性,人们又提出了基于非线性WLS的最大标准化残差(LNR)检验方法以及不良数据的估计辨识方法(EI)等来辨识不良数据。So far, the most widely used state estimation method is nonlinear weighted least squares (WLS), which has a simple model and is easy to calculate, and can obtain unbiased estimates of state variables when there is no bad data. In order to improve the computational efficiency of nonlinear WLS, people proposed a fast decoupling method for state estimation. Because non-linear WLS is not robust, people have proposed the largest normalized residual (LNR) test method based on non-linear WLS and the estimation identification method (EI) of bad data to identify bad data.
与此同时,各种各样的鲁棒性状态估计方法也不断被提出。鲁棒性状态估计能够在估计的过程中自动抑制不良数据的影响,从而得到正确的状态变量估计值。在各种鲁棒性状态估计方法中,M-估计的应用最为普遍。M-估计一般包括加权最小绝对值估计(WLAV)、非二次准则状态估计(如QL估计和QC估计等)等,最近几年刚被提出的以合格率最大为目标的状态估计以及含指数型目标函数的状态估计也属于M-估计的范畴。鲁棒性状态估计面临的问题:1)全局寻优困难;2)计算效率低于非线性WLS。以上原因影响了鲁棒性状态估计在实际中的应用。At the same time, various robust state estimation methods have been continuously proposed. Robust state estimation can automatically suppress the influence of bad data during the estimation process, so as to obtain correct state variable estimates. Among various robust state estimation methods, M-estimation is the most widely used. M-estimation generally includes weighted least absolute value estimation (WLAV), non-quadratic criterion state estimation (such as QL estimation and QC estimation, etc.), and the state estimation with the goal of maximizing the pass rate that has just been proposed in recent years. The state estimation of the type objective function also belongs to the category of M-estimation. Problems faced by robust state estimation: 1) Difficulty in global optimization; 2) Computational efficiency is lower than that of nonlinear WLS. The above reasons affect the practical application of robust state estimation.
综合起来看,已有的各种状态估计方法毫无例外都是一个非线性最优化问题,一般利用牛顿法或者内点法进行求解。从数学角度来看,这种非线性优化模型及其对应的求解方法具有几个不可避免的缺点:1)容易陷入局部最优点,即很难获得全局最优解,特别是一些鲁棒性状态估计;2)为了获得一个可以接受的解须要进行多次迭代,这种非线性最优化问题有时收敛困难,甚至不收敛,并且求解比较费时;3)雅可比矩阵以及残差灵敏度矩阵不是常数矩阵,因此在利用LNR进行不良数据辨识时需要进行多次删去不良数据和重新运行状态估计的循环操作,而如果利用EI方法辨识不良数据,估计出多个量测误差时,同样需要重新运行非线性状态估计。学术界对以上三个问题进行了一些研究,例如国外学者曾提出利用信赖域法来增强状态估计的收敛性,但是到目前为止,以上三个问题并没有得到很好的解决,其根本原因在于传统状态估计模型的非线性特性所造成的。如果能够建立精确线性化的状态估计模型,则可以彻底解决以上三个问题,从而在理论上保证得到更为科学的状态估计结果,促进状态估计的进一步实用化。Taken together, the existing state estimation methods are all nonlinear optimization problems without exception, which are generally solved by Newton's method or interior point method. From a mathematical point of view, this nonlinear optimization model and its corresponding solution method have several unavoidable disadvantages: 1) It is easy to fall into the local optimum, that is, it is difficult to obtain the global optimal solution, especially some robust states Estimate; 2) In order to obtain an acceptable solution, multiple iterations are required. This nonlinear optimization problem sometimes has difficulty in converging, or even does not converge, and the solution is time-consuming; 3) The Jacobian matrix and the residual sensitivity matrix are not constant matrices , so when using LNR to identify bad data, it is necessary to delete bad data and re-run the cyclic operation of state estimation multiple times, and if the EI method is used to identify bad data and estimate multiple measurement errors, it is also necessary to re-run the Linear state estimation. The academic community has conducted some research on the above three issues. For example, foreign scholars have proposed to use the trust region method to enhance the convergence of state estimation, but so far, the above three issues have not been well resolved. The fundamental reason is that It is caused by the nonlinear characteristics of traditional state estimation models. If an accurate linearized state estimation model can be established, the above three problems can be completely solved, thereby theoretically ensuring more scientific state estimation results and promoting the further practical application of state estimation.
发明内容 Contents of the invention
本发明旨在彻底解决上述技术问题或至少提供一种有用的商业选择。为此,本发明的一个目的在于提出一种结果更为科学且计算效率更高的两阶段线性加权最小二乘电力系统状态估计方法(two-stage linear WLS,TLWLS)。The present invention aims to completely solve the above technical problems or at least provide a useful commercial option. Therefore, an object of the present invention is to propose a two-stage linear weighted least squares power system state estimation method (two-stage linear WLS, TLWLS) with more scientific results and higher computational efficiency.
根据本发明实施例的两阶段线性加权最小二乘电力系统状态估计方法,包括以下步骤:A.形成网络模型,计算节点导纳矩阵及支路-节点关联矩阵;B.对量测矢量和状态矢量进行变换;C.形成精确线性化的量测方程;D.进行第一阶段的线性加权最小二乘估计,得到变换后的状态矢量的估计值;E进行逆变换,并进行第二阶段的线性加权最小二乘估计,得到所有节点的电压幅值和相角的估计值;以及F.进行不良数据辨识。The two-stage linear weighted least squares power system state estimation method according to an embodiment of the present invention includes the following steps: A. forming a network model, calculating a node admittance matrix and a branch-node correlation matrix; B. measuring vectors and states Transform the vector; C. Form an accurate linearized measurement equation; D. Perform the linear weighted least squares estimation of the first stage to obtain the estimated value of the transformed state vector; E perform inverse transformation and perform the second stage Linear weighted least squares estimation to obtain estimates of voltage magnitudes and phase angles for all nodes; and F. Perform bad data identification.
在本发明的一个实施例中,所述步骤A包括:将网络中所有的线路和变压器等效为π型支路ij,记ys=1/(rij+jxij)=gs+jbs为π型支路ij的串联电纳,rij+jxij为π型支路ij的串联阻抗值,bc为π型支路ij的接地电纳,其中,若π型支路ij为变压器支路,则bc=0且k为理想变压器的变比,若π型支路ij为普通线路,则k=1,并联的多条支路等效为一条支路;在等效后的电路中,记gij=gs/k,bij=bs/k,gsi=(1-k)gs/k2,bsi=(1-k)bs/k2+bc/2,gsj=(k-1)gs/k,bsj=(k-1)bs/k+bc/2;计算节点导纳矩阵Y=G+jB,G和B分别为节点导纳矩阵的实部和虚部;以及计算支路-节点关联矩阵为A={aij}(1≤i≤b,1≤j≤N-1),其中各个元素定义为: In one embodiment of the present invention, the step A includes: equating all lines and transformers in the network to π-type branches ij, denoting y s =1/(r ij +jx ij )=g s +jb s is the series susceptance of the π-type branch ij, r ij + jx ij is the series impedance value of the π-type branch ij, b c is the grounding susceptance of the π-type branch ij, where, if the π-type branch ij is Transformer branch, then b c =0 and k is the transformation ratio of the ideal transformer, if the π-type branch ij is an ordinary line, then k=1, multiple parallel branches are equivalent to one branch; after equivalent In the circuit, record g ij = g s /k, b ij = b s /k, g si = (1-k)g s /k 2 , b si = (1-k)b s /k 2 +b c /2, g sj = (k-1)g s /k, b sj = (k-1)b s /k+b c /2; calculate node admittance matrix Y=G+jB, G and B respectively is the real part and imaginary part of the node admittance matrix; and the calculation branch-node incidence matrix is A={a ij }(1≤i≤b,1≤j≤N-1), where each element is defined as:
在本发明的一个实施例中,所述步骤B包括:将状态矢量变换为
在本发明的一个实施例中,所述步骤C包括:设J∈Rm×(N+2b)为雅可比矩阵,其中,节点电压幅值量测的平方对应的雅可比矩阵元素为
在本发明的一个实施例中,所述步骤D包括:构造
在本发明的一个实施例中,所述步骤E包括:利用所述步骤D得到的状态矢量X,根据公式
在本发明的一个实施例中,所述步骤F包括:计算第i个量测的正则化残差值其中,r=[I-J[JTWJ]-1JTW]τ=Sτ,S=I-J(JTWJ)-1JTW为残差灵敏度矩阵,是常数矩阵,r~N(0,Ω),其中Ω=SR;以及若某个量测的正则化残差值大于预定值,则去掉该量测,重新运行所述D步骤,直至所有量测的正则化残差都小于所述预定值。In one embodiment of the present invention, the step F includes: calculating the regularized residual value of the i-th measurement Among them, r=[IJ[J T WJ] -1 J T W]τ=Sτ, S=IJ(J T WJ) -1 J T W is the residual sensitivity matrix, which is a constant matrix, r~N(0, Ω), wherein Ω=SR; and if the regularized residual value of a certain measurement is greater than a predetermined value, then remove the measurement and re-run the D step until the regularized residuals of all measurements are less than the predetermined value.
本发明的两阶段线性加权最小二乘电力系统状态估计方法(TLWLS)的优点至少包括:TLWLS模型本质是一个二次规划问题,从数学上保证可求得唯一的全局最优解;TLWLS仅须求解线性方程组,无需迭代,不存在收敛性问题,估计效率远高于常规的非线性加权最小二乘状态估计方法(WLS);TLWLS的雅可比矩阵和残差灵敏度矩阵是常数矩阵,这给不良数据的辨识提供了便利,可提高不良数据的辨识效率。综上,本发明提出的两阶段线性加权最小二乘状态估计方法可以得到更为科学的状态估计结果,而且计算效率更高,具有很好的工程应用前景。The advantages of the two-stage linear weighted least squares power system state estimation method (TLWLS) of the present invention at least include: the TLWLS model is a quadratic programming problem in essence, and the unique global optimal solution can be guaranteed mathematically; TLWLS only needs Solving linear equations does not require iteration, there is no convergence problem, and the estimation efficiency is much higher than that of the conventional nonlinear weighted least squares state estimation method (WLS); the Jacobian matrix and residual sensitivity matrix of TLWLS are constant matrices, which gives The identification of bad data provides convenience and can improve the identification efficiency of bad data. In summary, the two-stage linear weighted least squares state estimation method proposed by the present invention can obtain more scientific state estimation results, and has higher calculation efficiency, and has a good engineering application prospect.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明 Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1为本发明的两阶段线性加权最小二乘电力系统状态估计方法的流程图;Fig. 1 is the flow chart of two-stage linear weighted least squares power system state estimation method of the present invention;
图2为π型支路的示意图;Fig. 2 is the schematic diagram of π-type branch;
图3为π型支路等值电路的示意图;以及Fig. 3 is the schematic diagram of π-type branch equivalent circuit; And
图4为某个三节点系统单线图及量测配置图。Figure 4 is a single-line diagram and measurement configuration diagram of a three-node system.
具体实施方式 Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
如图1所示,本发明的电力系统状态估计量测方程的精确线性化方法包括如下步骤:As shown in Figure 1, the accurate linearization method of the power system state estimation measurement equation of the present invention comprises the following steps:
步骤S101,形成网络模型,计算节点导纳矩阵及支路-节点关联矩阵。In step S101, a network model is formed, and a node admittance matrix and a branch-node correlation matrix are calculated.
具体地,将网络中的三绕组变压器等效为三个两绕组变压器,则网络中所有的线路和变压器可以用统一的π型支路表示,如图2所示。图2中,ys=1/(rij+jxij)=gs+jbs为支路ij的串联电纳;rij+jxij为串联阻抗值;bc为支路的接地电纳。其中,若π型支路ij为变压器支路,则bc=0且k为理想变压器的变比;若π型支路ij为普通线路,则k=1,并联的多条支路等效为一条支路。需要说明的是,并联的多条支路等效为一条支路。Specifically, if the three-winding transformer in the network is equivalent to three two-winding transformers, then all the lines and transformers in the network can be represented by a unified π-shaped branch, as shown in Figure 2. In Fig. 2, y s =1/(r ij +jx ij )=g s +jb s is the series susceptance of the branch ij; r ij +jx ij is the series impedance value; b c is the ground susceptance of the branch . Among them, if the π-type branch ij is a transformer branch, then b c =0 and k is the transformation ratio of the ideal transformer; if the π-type branch ij is an ordinary line, then k=1, and multiple branches connected in parallel are equivalent for a branch. It should be noted that multiple branches connected in parallel are equivalent to one branch.
图2的π型支路的等值电路如图3所示。图3中,gij=gs/k;bij=bs/k;gsi=(1-k)gs/k2;bsi=(1-k)bs/k2+bc/2;gsj=(k-1)gs/k;bsj=(k-1)bs/k+bc/2。然后形成节点导纳矩阵Y=G+jB,G和B分别为节点导纳矩阵的实部和虚部,以及形成支路-节点关联矩阵为A={aij}(1≤i≤b,1≤j≤N-1),其各元素定义为: The equivalent circuit of the π-type branch in Figure 2 is shown in Figure 3. In Fig. 3, g ij =g s /k; b ij =b s /k; g si =(1-k)g s /k 2 ; b si =(1-k)b s /k 2 +b c /2; g sj = (k-1)g s /k; b sj = (k-1)b s /k+b c /2. Then form the node admittance matrix Y=G+jB, G and B are the real part and imaginary part of the node admittance matrix respectively, and form the branch-node correlation matrix as A={a ij }(1≤i≤b, 1≤j≤N-1), each element is defined as:
步骤S102,对量测矢量和状态矢量进行变换。Step S102, transforming the measurement vector and the state vector.
首先,将状态矢量变换为
其中,N为网络中所有节点的总数目;b为网络中所有支路的数目(并联的多条支路等效为一条支路);l为支路编号,li和lj为支路l的两端节点号,和分别是节点li和lj的电压幅值,和分别是节点li和lj的相角,为相角差;代表所有的b条支路对状态矢量X的贡献,也代表所有的b条支路对状态矢量X的贡献;X∈RN+2b为状态矢量。Among them, N is the total number of all nodes in the network; b is the number of all branches in the network (multiple branches connected in parallel are equivalent to one branch); l is the branch number, l i and l j are the branches The node numbers at both ends of l, and are the voltage amplitudes of nodes l i and l j respectively, and are the phase angles of nodes l i and l j respectively, is the phase angle difference; Represents the contribution of all b branches to the state vector X, It also represents the contribution of all b branches to the state vector X; X∈R N+2b is the state vector.
其次,将量测矢量变换为y∈Rm,包括的量测类型有:节点电压幅值的平方、支路有功、支路无功、注入有功、注入无功,支路电流幅值的平方;m为量测量的总个数。则量测量可以用状态矢量X进行表达。Secondly, transform the measurement vector into y∈R m , including the measurement types: square of node voltage amplitude, branch active power, branch reactive power, injected active power, injected reactive power, square of branch current amplitude ; m is the total number of measurements. Then the quantity measurement can be expressed by the state vector X.
1)电压幅值量测的平方1) The square of the voltage amplitude measurement
其中,vi为节点i的电压。Among them, v i is the voltage of node i.
2)从节点i到节点j的支路有功和无功量测2) Branch active and reactive power measurement from node i to node j
其中,Pij和Qij分别为节点i流向节点j的支路有功和无功。Among them, P ij and Q ij are the branch active power and reactive power flowing from node i to node j respectively.
3)节点i的注入有功和注入无功量测3) Measurement of injected active power and injected reactive power of node i
其中,Pi和Qi分别为节点i的注入有功和注入无功,Gij+jBij为节点导纳矩阵中的对应元素Among them, P i and Q i are the injected active power and injected reactive power of node i respectively, and G ij + jB ij are the corresponding elements in the node admittance matrix
4)支路电流幅值量测的平方4) The square of the branch current amplitude measurement
其中,Iij为支路ij的电流幅值;A=(gsi+gij)2+(bsi+bij)2; D=-gsibij+bsigij。Wherein, I ij is the current amplitude of branch ij; A=(g si +g ij ) 2 +(b si +b ij ) 2 ; D=-g si b ij +b si g ij .
步骤S103,形成精确线性化的量测方程。Step S103, forming an accurate linearized measurement equation.
根据以上的变换后的量测矢量和新的状态矢量,即可得到新的精确线性化的量测方程为:According to the above transformed measurement vector and new state vector, the new accurate linearized measurement equation can be obtained as:
y=JX+τ (7)y=JX+τ (7)
其中,y∈Rm为变换后的量测矢量,包括节点电压幅值的平方、支路有功、支路无功、注入有功、注入无功,支路电流幅值的平方;X∈RN+2b为变换后的状态矢量;τ~N(0,R)为量测误差矢量,其中其中为τi的方差;J∈Rm×(N+2b)为常数雅可比矩阵,其各个部分的元素的表达式如下所示。Among them, y∈R m is the transformed measurement vector, including the square of node voltage amplitude, branch active power, branch reactive power, injected active power, injected reactive power, and the square of branch current amplitude; X∈R N +2b is the transformed state vector; τ~N(0,R) is the measurement error vector, where in is the variance of τ i ; J∈R m×(N+2b) is a constant Jacobian matrix, and the expressions of the elements of each part are as follows.
1)电压幅值量测的平方对应的雅可比矩阵元素1) Jacobian matrix elements corresponding to the square of the voltage amplitude measurement
对于电压幅值量测的平方,其对应的雅可比矩阵元素为For the square of the voltage amplitude measurement, the corresponding Jacobian matrix element is
2)支路功率量测对应的雅可比矩阵元素2) Jacobian matrix elements corresponding to branch power measurement
对于支路功率量测,其对应的雅可比矩阵元素为For branch power measurement, the corresponding Jacobian matrix elements are
3)注入功率量测对应的雅可比矩阵元素3) Jacobian matrix elements corresponding to injection power measurement
对于注入功率量测,其对应的雅可比矩阵元素为For the injection power measurement, the corresponding Jacobian matrix elements are
4)支路电流幅值量测的平方对应的雅可比矩阵元素4) Jacobian matrix elements corresponding to the square of branch current amplitude measurement
对于支路电流幅值量测的平方,其对应的雅可比矩阵元素为For the square of branch current amplitude measurement, the corresponding Jacobian matrix element is
需要说明的是,上述式(7)即为精确线性化的量测方程。基于该量测方程,可以采用已有的任何一种状态估计方法求解得到变换后的状态矢量X,得到X后,即可进一步得到所有的支路功率、节点注入功率以及支路电流幅值等的估计值,这样也就获得了对全网状态的精确感知。It should be noted that the above formula (7) is an accurate linearized measurement equation. Based on this measurement equation, any existing state estimation method can be used to solve the transformed state vector X. After obtaining X, all branch powers, node injection powers, and branch current amplitudes can be further obtained. In this way, an accurate perception of the state of the entire network can be obtained.
步骤S104,进行第一阶段的线性加权最小二乘估计,得到变换后状态矢量X的估计值。Step S104, performing the first-stage linear weighted least squares estimation to obtain the estimated value of the transformed state vector X.
具体地,求解下面的线性加权最小二乘问题,获得状态矢量X的估计值。Specifically, the following linear weighted least squares problem is solved to obtain the estimated value of the state vector X.
其中W=R-1为权重矩阵。为了获得最优值,必须满足最优条件:即Where W=R -1 is the weight matrix. In order to obtain the optimal value, the optimal condition must be satisfied: Right now
GX=JTWy (9)GX=J T Wy (9)
其中,G=JTWJ为信息矩阵。对信息矩阵G进行正交分解,即可求解得到状态矢量X的估计值,即X=G-1JTWy。Among them, G=J T WJ is the information matrix. The estimated value of the state vector X can be obtained by performing orthogonal decomposition on the information matrix G, that is, X=G -1 J T Wy.
步骤S105,进行逆变换,并进行第二阶段的线性加权最小二乘估计,得到所有节点的电压幅值和相角的估计值。Step S105, perform inverse transformation, and perform linear weighted least squares estimation in the second stage to obtain estimated values of voltage amplitudes and phase angles of all nodes.
根据变换后的状态矢量X的定义,利用反变换可以得到所有节点电压幅值以及所有支路两端相角差的估计值,即According to the definition of the transformed state vector X, the inverse transformation can be used to obtain the estimated values of the voltage amplitudes of all nodes and the phase angle differences at both ends of all branches, namely
在式(10)中,arccos的符号应该与arcsin的符号保持一致。In formula (10), the sign of arccos should be consistent with that of arcsin.
至此,已经得到所有节点电压幅值的估计值,但是所有节点的相角还是未知的,显然可以利用所有支路两端的相角差进行估计。So far, the estimated values of the voltage amplitudes of all nodes have been obtained, but the phase angles of all nodes are still unknown. Obviously, the phase angle differences at both ends of all branches can be used to estimate.
令
令θ=[θ2,…,θN]T代表所有节点的相角(参考节点除外),则θ2b与θ的关系是Let θ=[θ 2 ,…,θ N ] T represent the phase angles of all nodes (except the reference node), then the relationship between θ 2b and θ is
θ2b=A2θ (11)θ 2b = A 2 θ (11)
其中,A2=[AT AT]T,A2为2b×(N-1)的矩阵。Wherein, A 2 =[ AT A T ] T , and A 2 is a 2b×(N-1) matrix.
因为θ2b是由第一阶段的状态估计结果推导得到的,所以可将θ2b视为含有噪声的量测量。而θ为待估计值,则式(11)可以改写为下面的关于θ的量测方程Since θ 2b is derived from the state estimation result of the first stage, θ 2b can be regarded as a noisy quantity measurement. And θ is the value to be estimated, then formula (11) can be rewritten as the following measurement equation about θ
θ2b=A2θ+τ (12)θ 2b =A 2 θ+τ (12)
则可构造如下的线性加权最小二乘问题,对θ进行估计Then the following linear weighted least squares problem can be constructed to estimate θ
Min J(θ)=(θ2b-A2θ)TWθ(θ2b-A2θ) (13)Min J(θ)=(θ 2b -A 2 θ) T W θ (θ 2b -A 2 θ) (13)
其中,Wθ为权重矩阵,不失一般性,可取Wθ为单位矩阵。当式(13)获得最优值,须满足Among them, W θ is the weight matrix, without loss of generality, W θ can be taken as the identity matrix. When formula (13) obtains the optimal value, it must satisfy
将A代入A2,可得Substituting A into A 2 , we get
ATAθ=ATθb (15)A T Aθ = A T θ b (15)
其中,
由式(15)可得θ的估计值为θ=(AT A)-1ATθb。The estimated value of θ can be obtained from formula (15) θ=(A T A) -1 A T θ b .
至此,已经得到所有节点的电压幅值和相角的估计值。So far, the estimated values of the voltage amplitudes and phase angles of all nodes have been obtained.
步骤S106,进行不良数据辨识。Step S106, identifying bad data.
在本发明中,仅仅需要在两阶段线性加权最小二乘状态估计的第一阶段进行不良数据的辨识即可。In the present invention, it is only necessary to identify bad data in the first stage of the two-stage linear weighted least squares state estimation.
第一阶段线性加权最小二乘状态估计的残差为The residuals of the first-stage linear weighted least squares state estimation are
r=y-JX (16)r=y-JX (16)
其中,X为第一阶段状态估计的结果,由式(9)求解得到。Among them, X is the result of state estimation in the first stage, which is obtained by solving equation (9).
由式(9)、(16)可以推导得到残差与量测误差的关系为From equations (9) and (16), it can be deduced that the relationship between residual error and measurement error is
r=[I-J[JTWJ]-1JTW]τ=Sτ (17)r=[IJ[J T WJ] -1 J T W]τ=Sτ (17)
其中,S=I-J(JTWJ)-1JTW为残差灵敏度矩阵。由于雅可比矩阵J是常数矩阵,因此残差灵敏度矩阵S亦是常数矩阵。这意味着残差灵敏度矩阵不受不良数据的影响。Wherein, S=IJ(J T WJ) -1 J T W is the residual sensitivity matrix. Since the Jacobian matrix J is a constant matrix, the residual sensitivity matrix S is also a constant matrix. This means that the residual sensitivity matrix is not affected by bad data.
容易证明,r~N(0,Ω),其中Ω=SR,则可得到正则化残差(normalized residual)rN为It is easy to prove that r~N(0,Ω), where Ω=SR, then the normalized residual (normalized residual) r N can be obtained as
其中,|ri|是残差ri的绝对值。where | ri | is the absolute value of the residual ri .
如果则第k个量测即被认为是不良数据,可将其从量测集中去掉,重新运行第一阶段的线性加权最小二乘状态估计。重复以上步骤,直到所有的正则化残差都小于3,即可完成对所有不良数据的辨识。由于雅可比矩阵是常数矩阵,显然基于线性加权最小二乘状态估计的不良数据辨识效率是非常高的。if Then the kth measurement is considered bad data, it can be removed from the measurement set, and the linear weighted least squares state estimation of the first stage is re-run. Repeat the above steps until all the regularized residuals are less than 3, then the identification of all bad data can be completed. Since the Jacobian matrix is a constant matrix, it is obvious that the identification efficiency of bad data based on linear weighted least squares state estimation is very high.
为使本领域技术人员更好地理解,申请人以一个三节点系统为例,来说明本发明的方法。该三节点系统的单线图及量测配置图如图4所示,其网络参数如表1所示。选取节点1为参考节点。In order to make those skilled in the art understand better, the applicant takes a three-node system as an example to illustrate the method of the present invention. The single-line diagram and measurement configuration diagram of the three-node system are shown in Figure 4, and its network parameters are shown in Table 1.
表1三节点系统网络参数Table 1 Three-node system network parameters
Table 1 The network data of the 3-bus systemTable 1 The network data of the 3-bus system
(1)常规负荷时非线性WLS及本发明提出的TLWLS的估计结果常规负荷时的量测量如表2所示。(1) Estimation results of non-linear WLS and TLWLS proposed by the present invention under normal load. The quantity measurement under normal load is shown in Table 2.
表2三节点系统量测量Table 2 Three-node system quantity measurement
Table 2 Measurements of the 3-bus systemTable 2 Measurements of the 3-bus system
若采用传统的非线性WLS,当收敛精度为10-6时,经过4次迭代非线性WLS收敛,所得到的所有节点的电压幅值和相角的估计值如表3所示。If the traditional nonlinear WLS is used, when the convergence accuracy is 10 -6 , after 4 iterations of nonlinear WLS convergence, the estimated values of the voltage amplitudes and phase angles of all nodes are shown in Table 3.
表3非线性WLS的估计结果Table 3 Estimation results of nonlinear WLS
Table 3 The Estimated State Vector by Nonlinear WLSTable 3 The Estimated State Vector by Nonlinear WLS
以下采用本发明提出的TLWLS进行估计。In the following, the TLWLS proposed by the present invention is used for estimation.
将状态矢量变换为
表4两阶段线性加权最小二乘状态估计第一阶段的估计结果Table 4 Estimation results of the first stage of two-stage linear weighted least squares state estimation
Table 4 The estimation value by the first stage linear WLS of the TLWLSTable 4 The estimation value by the first stage linear WLS of the TLWLS
根据该网路的接线图,可得该网络的支路-节点关联矩阵(节点1是参考节点)是According to the wiring diagram of the network, the branch-node association matrix of the network (
通过求解式(15),可得所有节点相角的估计值为θ=[θ2,θ3]T=[-0.0213,-0.0479]T。从而由本发明提出的两阶段线性加权最小二乘状态估计得到的所有节点的电压幅值和相角的估计值如表5所示。By solving formula (15), the estimated value of the phase angle of all nodes can be obtained as θ=[θ 2 ,θ 3 ] T =[-0.0213,-0.0479] T . Therefore, the estimated values of the voltage amplitudes and phase angles of all nodes obtained by the two-stage linear weighted least squares state estimation proposed by the present invention are shown in Table 5.
表5两阶段线性加权最小二乘状态估计的估计结果Table 5 Estimation results of two-stage linear weighted least squares state estimation
Table 5 The Estimated State Vector by TLWLSTable 5 The Estimated State Vector by TLWLS
对比表3和表5,可以发现,在常规负荷时由本发明提出的两阶段线性加权最小二乘状态估计(TLWLS)得到的状态变量的估计值与由传统非线性WLS得到的状态变量的估计值吻合的很好。但是TLWLS无需迭代,而传统的非线性WLS需要4次迭代才能收敛,在本算例中,TLWLS的计算效率是非线性WLS的3倍多。Comparing Table 3 and Table 5, it can be found that the estimated value of the state variable obtained by the two-stage linear weighted least squares state estimation (TLWLS) proposed by the present invention and the estimated value of the state variable obtained by the traditional nonlinear WLS It fit very well. However, TLWLS does not need iterations, while traditional nonlinear WLS needs 4 iterations to converge. In this example, the calculation efficiency of TLWLS is more than three times that of nonlinear WLS.
(2)非线性WLS陷入局部最优解的算例(2) Calculation example of nonlinear WLS trapped in local optimal solution
以下仍以该3节点系统为例,给出非线性WLS陷入局部最优解的例子。当系统负荷持续增大时,可以得到另一组量测量,如表6所示。显然,此时发生了电压崩溃。Still taking the 3-node system as an example, an example of a nonlinear WLS trapped in a local optimal solution is given below. When the system load continues to increase, another set of quantity measurements can be obtained, as shown in Table 6. Apparently, a voltage collapse occurred at this point.
表6重负荷下三节点系统量测量Table 6 Measurement of three-node system volume under heavy load
Table 6 Measurements of the 3-bus system at hevy loadTable 6 Measurements of the 3-bus system at heavy load
用非线性WLS对该算例进行估计时,经过35次收敛,收敛时非线性WLS的目标函数数值为0.1088。对于此算例,状态变量的真值、非线性WLS的估计值以及两阶段线性加权最小二乘状态估计(TLWLS)的估计值如表7所示。When using nonlinear WLS to estimate this example, after 35 times of convergence, the value of the objective function of nonlinear WLS is 0.1088. For this example, the true values of the state variables, the estimated values of the nonlinear WLS, and the estimated values of the two-stage linear weighted least squares state estimation (TLWLS) are shown in Table 7.
表7重负荷时状态变量的真值、非线性WLS及TLWLS的估计结果Table 7 The true value of the state variable, the estimation results of nonlinear WLS and TLWLS under heavy load
Table 7 The True value,Estimate Value by WLS and TLWLS at hevy loadTable 7 The True value, Estimate Value by WLS and TLWLS at heavy load
由表7可见,在重负荷特别是在电压崩溃时,传统的非线性WLS陷入局部最优解,其估计值出现了负的电压幅值和很大的相角值。由此可见,在重负荷特别是在电压崩溃时,传统非线性WLS的估计结果不可靠,而此时电力系统却要求状态估计具有尽可能好的性能。在重负荷特别是电压崩溃时,之所以会产生这种尖锐的矛盾是由传统非线性WLS的固有特性所造成。It can be seen from Table 7 that under heavy load, especially when the voltage collapses, the traditional nonlinear WLS falls into a local optimal solution, and its estimated value has a negative voltage amplitude and a large phase angle value. It can be seen that the estimation results of traditional nonlinear WLS are unreliable under heavy load, especially during voltage collapse, but at this time the power system requires state estimation to have as good a performance as possible. Under heavy load, especially voltage collapse, the sharp contradiction is caused by the inherent characteristics of traditional nonlinear WLS.
由表7同样可见,即使在电压崩溃时,本发明提出的两阶段线性加权最小二乘状态估计方法(TLWLS)的估计结果也是非常精确的,即在任何时候本发明提出的TLWLS均可得到全局最优解,且不需迭代。因而本发明提出的TLWLS可以得到更为科学的状态估计结果,且计算效率更高。It can also be seen from Table 7 that even when the voltage collapses, the estimation result of the two-stage linear weighted least squares state estimation method (TLWLS) proposed by the present invention is very accurate, that is, the TLWLS proposed by the present invention can obtain the global optimal solution without iteration. Therefore, the TLWLS proposed by the present invention can obtain more scientific state estimation results, and the calculation efficiency is higher.
(3)辨识不良数据(3) Identify bad data
在表2所示的常规负荷时的量测量P12上迭代20%的噪声,从而P12变为不良数据。由式(18)可得P12的正则化残差,发现其大于3,将其从量测集中去掉,重新运行第一阶段的线性加权最小二乘状态估计,发现所有的正则化残差都小于3,不良数据辨识结束。可见,正则化残差检验法可以有效进行第一阶段的TLWLS的不良数据辨识,而且发现其辨识效率是传统基于非线性WLS的正则化残差检验法辨识效率的3倍多。The 20% noise is iterated on the quantity measurement P 12 at regular load shown in Table 2, so that P 12 becomes bad data. The regularized residual of P12 can be obtained from formula (18), and it is found that it is greater than 3, so it is removed from the measurement set, and the linear weighted least squares state estimation of the first stage is re-run, and all the regularized residuals are found to be If it is less than 3, bad data identification ends. It can be seen that the regularized residual test method can effectively identify bad data in the first stage of TLWLS, and it is found that its identification efficiency is more than three times that of the traditional regularized residual test method based on nonlinear WLS.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and cannot be construed as limitations to the present invention. Variations, modifications, substitutions, and modifications to the above-described embodiments are possible within the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210304251.XA CN102801162B (en) | 2012-08-23 | 2012-08-23 | Two-stage linear weighted least-square power system state estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210304251.XA CN102801162B (en) | 2012-08-23 | 2012-08-23 | Two-stage linear weighted least-square power system state estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102801162A true CN102801162A (en) | 2012-11-28 |
CN102801162B CN102801162B (en) | 2014-07-16 |
Family
ID=47200179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210304251.XA Active CN102801162B (en) | 2012-08-23 | 2012-08-23 | Two-stage linear weighted least-square power system state estimation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102801162B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279676A (en) * | 2013-06-07 | 2013-09-04 | 河海大学 | Power system WLAV robust estimation method based on variable substitution |
CN103390251A (en) * | 2013-07-24 | 2013-11-13 | 大连海事大学 | Method for setting measurement weight for power system state estimation |
CN103593566A (en) * | 2013-11-14 | 2014-02-19 | 华北电力大学 | Mixing-quadratic-programming-form electrical power system synthesis state estimation method |
CN103593565A (en) * | 2013-11-14 | 2014-02-19 | 华北电力大学 | Structural risk minimization based weighted least squares power system state estimation method |
CN103701115A (en) * | 2013-11-22 | 2014-04-02 | 清华大学 | Electric power system robust state estimation method formed by quadratic programming |
CN103840454A (en) * | 2014-03-07 | 2014-06-04 | 国家电网公司 | Method for identifying parameters of active linear network with given network structure |
CN104022501A (en) * | 2014-05-27 | 2014-09-03 | 桂林电子科技大学 | Power distribution network state estimating method based on fuzzy theory |
CN105303471A (en) * | 2015-11-27 | 2016-02-03 | 华北电力大学 | Method for hyperbolic cosine maximum exponential square robust estimation of power system state |
CN105322533A (en) * | 2014-05-29 | 2016-02-10 | 河海大学 | Adaptive t-type robust state estimation method based on Gauss-Markov model |
CN105514977A (en) * | 2015-11-27 | 2016-04-20 | 华北电力大学 | Hyperbolic cosine type robust state estimation method for power system state |
CN105958470A (en) * | 2014-10-20 | 2016-09-21 | 国家电网公司 | Electric power system bilinear anti-error estimation method based on bilinear protruding optimization theory |
CN105977963A (en) * | 2016-04-28 | 2016-09-28 | 中国电力科学研究院 | Two-stage method-based main network and distribution network integrated distributed state estimation method |
CN107370150A (en) * | 2017-09-06 | 2017-11-21 | 清华大学 | The Power system state estimation Bad data processing method measured based on synchronized phasor |
CN107947160A (en) * | 2017-11-28 | 2018-04-20 | 国家电网公司 | A kind of bilinearity WLAV method for estimating state based on matrixing |
CN109344870A (en) * | 2018-08-28 | 2019-02-15 | 华南理工大学 | An online identification method of power system state sensitivity based on target regularization |
CN109787220A (en) * | 2018-12-24 | 2019-05-21 | 中国电力科学研究院有限公司 | A kind of method for estimating state and system suitable for power distribution network |
CN110232199A (en) * | 2018-11-30 | 2019-09-13 | 南京南瑞继保电气有限公司 | A kind of bilinearity WLAV robust state estimation method considering that matrix size is flexible |
CN110380409A (en) * | 2019-07-16 | 2019-10-25 | 山东大学 | Consider the active distribution network distributed robust state estimation method and system of communication failure |
CN110380379A (en) * | 2019-07-19 | 2019-10-25 | 福建睿思特科技股份有限公司 | A kind of monitoring of electric power system fault and alarm system |
CN110970887A (en) * | 2018-09-28 | 2020-04-07 | 国网甘肃省电力公司电力科学研究院 | A two-stage linear three-phase state estimation method and device for active distribution network |
CN112803402A (en) * | 2021-02-23 | 2021-05-14 | 重庆大学 | Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing |
CN113884909A (en) * | 2021-09-30 | 2022-01-04 | 国网江苏省电力有限公司电力科学研究院 | A lithium battery circuit parameter and drift current identification method and device |
CN114421474A (en) * | 2022-03-30 | 2022-04-29 | 南京易司拓电力科技股份有限公司 | Power-voltage sensitivity estimation method between distribution network nodes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101635457A (en) * | 2009-05-14 | 2010-01-27 | 国家电网公司 | Electric network parameter estimation method based on parameter sensitivity of state estimation residual error |
-
2012
- 2012-08-23 CN CN201210304251.XA patent/CN102801162B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101635457A (en) * | 2009-05-14 | 2010-01-27 | 国家电网公司 | Electric network parameter estimation method based on parameter sensitivity of state estimation residual error |
Non-Patent Citations (2)
Title |
---|
孙黎等: "计及等效电流量测变换及坏数据辨识的状态估计方法", 《电网与清洁能源》 * |
王韶等: "基于奇异值分解和等效电流量测变换的电力系统状态估计", 《电力系统保护与控制》 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279676A (en) * | 2013-06-07 | 2013-09-04 | 河海大学 | Power system WLAV robust estimation method based on variable substitution |
CN103279676B (en) * | 2013-06-07 | 2016-08-31 | 河海大学 | A kind of power system WLAV Robust filter method based on substitution of variable |
CN103390251B (en) * | 2013-07-24 | 2016-06-01 | 大连海事大学 | The measurement weight method to set up of a kind of Power system state estimation |
CN103390251A (en) * | 2013-07-24 | 2013-11-13 | 大连海事大学 | Method for setting measurement weight for power system state estimation |
CN103593566A (en) * | 2013-11-14 | 2014-02-19 | 华北电力大学 | Mixing-quadratic-programming-form electrical power system synthesis state estimation method |
CN103593565A (en) * | 2013-11-14 | 2014-02-19 | 华北电力大学 | Structural risk minimization based weighted least squares power system state estimation method |
CN103593566B (en) * | 2013-11-14 | 2017-03-15 | 华北电力大学 | The power system comprehensive state method of estimation of mixing quadratic programming form |
CN103593565B (en) * | 2013-11-14 | 2017-02-22 | 华北电力大学 | Structural risk minimization based weighted least squares power system state estimation method |
CN103701115A (en) * | 2013-11-22 | 2014-04-02 | 清华大学 | Electric power system robust state estimation method formed by quadratic programming |
CN103701115B (en) * | 2013-11-22 | 2015-10-28 | 清华大学 | A kind of electric power system robust state estimation method of quadratic programming form |
CN103840454A (en) * | 2014-03-07 | 2014-06-04 | 国家电网公司 | Method for identifying parameters of active linear network with given network structure |
CN103840454B (en) * | 2014-03-07 | 2019-01-01 | 国家电网公司 | The parameter identification method of active linear network known to network structure |
CN104022501A (en) * | 2014-05-27 | 2014-09-03 | 桂林电子科技大学 | Power distribution network state estimating method based on fuzzy theory |
CN104022501B (en) * | 2014-05-27 | 2016-03-02 | 桂林电子科技大学 | Based on the State Estimation for Distribution Network of fuzzy theory |
CN105322533B (en) * | 2014-05-29 | 2017-11-03 | 河海大学 | Adaptive t types robust state estimation method based on Gauss Markov model |
CN105322533A (en) * | 2014-05-29 | 2016-02-10 | 河海大学 | Adaptive t-type robust state estimation method based on Gauss-Markov model |
CN105958470B (en) * | 2014-10-20 | 2019-08-06 | 国家电网公司 | A Bilinear Robust Estimation Method for Power Systems Based on Bilinear Convex Optimization Theory |
CN105958470A (en) * | 2014-10-20 | 2016-09-21 | 国家电网公司 | Electric power system bilinear anti-error estimation method based on bilinear protruding optimization theory |
CN105303471A (en) * | 2015-11-27 | 2016-02-03 | 华北电力大学 | Method for hyperbolic cosine maximum exponential square robust estimation of power system state |
CN105514977B (en) * | 2015-11-27 | 2018-11-09 | 华北电力大学 | A kind of hyperbolic cosine type robust state estimation method of POWER SYSTEM STATE |
CN105514977A (en) * | 2015-11-27 | 2016-04-20 | 华北电力大学 | Hyperbolic cosine type robust state estimation method for power system state |
CN105303471B (en) * | 2015-11-27 | 2019-05-03 | 华北电力大学 | A Hyperbolic Cosine Maximum Exponential Square Robust Estimation Method for Power System State |
CN105977963A (en) * | 2016-04-28 | 2016-09-28 | 中国电力科学研究院 | Two-stage method-based main network and distribution network integrated distributed state estimation method |
CN105977963B (en) * | 2016-04-28 | 2022-04-05 | 中国电力科学研究院 | Main and distribution network integrated distributed state estimation method based on two-stage method |
CN107370150A (en) * | 2017-09-06 | 2017-11-21 | 清华大学 | The Power system state estimation Bad data processing method measured based on synchronized phasor |
CN107370150B (en) * | 2017-09-06 | 2019-08-16 | 清华大学 | The Power system state estimation Bad data processing method measured based on synchronized phasor |
CN107947160A (en) * | 2017-11-28 | 2018-04-20 | 国家电网公司 | A kind of bilinearity WLAV method for estimating state based on matrixing |
CN109344870B (en) * | 2018-08-28 | 2022-03-25 | 华南理工大学 | Target regularization-based online identification method for state sensitivity of power system |
CN109344870A (en) * | 2018-08-28 | 2019-02-15 | 华南理工大学 | An online identification method of power system state sensitivity based on target regularization |
CN110970887A (en) * | 2018-09-28 | 2020-04-07 | 国网甘肃省电力公司电力科学研究院 | A two-stage linear three-phase state estimation method and device for active distribution network |
CN110970887B (en) * | 2018-09-28 | 2021-04-20 | 国网甘肃省电力公司电力科学研究院 | Two-stage linear three-phase state estimation method and device for active power distribution network |
CN110232199A (en) * | 2018-11-30 | 2019-09-13 | 南京南瑞继保电气有限公司 | A kind of bilinearity WLAV robust state estimation method considering that matrix size is flexible |
CN110232199B (en) * | 2018-11-30 | 2023-12-19 | 南京南瑞继保电气有限公司 | Bilinear WLAV robust state estimation method considering matrix scale expansion |
CN109787220A (en) * | 2018-12-24 | 2019-05-21 | 中国电力科学研究院有限公司 | A kind of method for estimating state and system suitable for power distribution network |
CN109787220B (en) * | 2018-12-24 | 2023-11-03 | 中国电力科学研究院有限公司 | A state estimation method and system suitable for distribution network |
CN110380409A (en) * | 2019-07-16 | 2019-10-25 | 山东大学 | Consider the active distribution network distributed robust state estimation method and system of communication failure |
CN110380409B (en) * | 2019-07-16 | 2020-11-13 | 山东大学 | Distributed robust state estimation method and system for active distribution network considering communication failure |
CN110380379A (en) * | 2019-07-19 | 2019-10-25 | 福建睿思特科技股份有限公司 | A kind of monitoring of electric power system fault and alarm system |
CN112803402B (en) * | 2021-02-23 | 2023-03-31 | 重庆大学 | Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing |
CN112803402A (en) * | 2021-02-23 | 2021-05-14 | 重庆大学 | Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing |
CN113884909A (en) * | 2021-09-30 | 2022-01-04 | 国网江苏省电力有限公司电力科学研究院 | A lithium battery circuit parameter and drift current identification method and device |
CN113884909B (en) * | 2021-09-30 | 2024-06-21 | 国网江苏省电力有限公司电力科学研究院 | Lithium battery circuit parameter and drift current identification method and device |
CN114421474A (en) * | 2022-03-30 | 2022-04-29 | 南京易司拓电力科技股份有限公司 | Power-voltage sensitivity estimation method between distribution network nodes |
Also Published As
Publication number | Publication date |
---|---|
CN102801162B (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102801162B (en) | Two-stage linear weighted least-square power system state estimation method | |
CN101599643B (en) | A Power System Robust State Estimation Method Based on Exponential Objective Function | |
CN102831315B (en) | A kind of exact linearization method of Power system state estimation measurement equation | |
CN105512502B (en) | One kind is based on the normalized weight function the least square estimation method of residual error | |
CN102868157B (en) | Robust estimation state estimating method based on maximum index absolute value target function | |
CN103593566B (en) | The power system comprehensive state method of estimation of mixing quadratic programming form | |
CN102185308B (en) | Power system state estimating method for taking zero injection measurement equality constraint into consideration | |
CN103208797B (en) | Estimation method for new-energy-containing power distribution network state based on intelligent optimization technology | |
CN106329523A (en) | Active power distribution network intelligent soft switch robust optimization modeling method considering uncertainty | |
CN102427229B (en) | Zero-injection-constraint electric power system state estimation method based on modified Newton method | |
CN103020726A (en) | Robust state estimation method for full PMU measurement | |
CN104794531A (en) | MDCOPF (modified direct current optimal power flow) method based on grid loss equivalent load model | |
CN105375484A (en) | PMU-based electric power system distributed dynamic-state estimation method | |
CN108462180A (en) | A method of probability optimal load flow is determined based on vine copula functions | |
CN106130011A (en) | A given method of initial value for power flow calculation based on network loss equivalent load model | |
CN103001220B (en) | Optimal matching loop power based method for identifying topological structures of power distribution network | |
CN105514977B (en) | A kind of hyperbolic cosine type robust state estimation method of POWER SYSTEM STATE | |
CN105305440B (en) | The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE | |
CN103825270B (en) | A kind of power distribution network three-phase state estimates the processing method of Jacobian matrix constant | |
CN109255541B (en) | Power distribution network robust state estimation method based on least square sum-by-one sum | |
CN105514978A (en) | Robust state estimation method in mixed integer quadratic programming mode | |
CN103513160A (en) | Same-tower double-circuit direct-current transmission line fault line selection method | |
CN106410788A (en) | Key line identification method for power grid based on transmission betweenness | |
CN103593565B (en) | Structural risk minimization based weighted least squares power system state estimation method | |
CN103701115B (en) | A kind of electric power system robust state estimation method of quadratic programming form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |