CN105305440B - The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE - Google Patents
The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE Download PDFInfo
- Publication number
- CN105305440B CN105305440B CN201510849367.5A CN201510849367A CN105305440B CN 105305440 B CN105305440 B CN 105305440B CN 201510849367 A CN201510849367 A CN 201510849367A CN 105305440 B CN105305440 B CN 105305440B
- Authority
- CN
- China
- Prior art keywords
- absolute value
- hyperbolic cosine
- state estimation
- cosine type
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 238000005259 measurement Methods 0.000 claims description 36
- 239000013598 vector Substances 0.000 claims description 26
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 230000009977 dual effect Effects 0.000 claims description 12
- 238000012937 correction Methods 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 5
- 238000009795 derivation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Complex Calculations (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了属于电力系统调度自动化领域的电力系统状态的双曲余弦型最大指数绝对值抗差估计方法。包括步骤:提取电力系统节点注入有功和无功、支路有功和无功功率,以及节点电压幅值参数;以此建立双曲余弦型最大指数绝对值抗差状态估计基本模型;对所述双曲余弦型最大指数绝对值抗差状态估计基本模型引进辅助变量,得到了双曲余弦型最大指数绝对值抗差状态估计等价模型;以及利用原‑对偶内点算法,对所述双曲余弦型最大指数绝对值抗差状态估计等价模型求解。算例分析表明,本发明具有很强的抗差性和很高的计算效率,具有良好的工程应用前景。The invention discloses a hyperbolic cosine type maximum exponent absolute value robustness estimation method of the power system state, which belongs to the field of power system scheduling automation. The method includes the steps of: extracting active and reactive power injected into power system nodes, branch active and reactive power, and node voltage amplitude parameters; thereby establishing a hyperbolic cosine type maximum exponential absolute value robust state estimation model; Curvature cosine type maximum exponent absolute value robust state estimation basic model introduces auxiliary variable, obtains hyperbolic cosine type maximum exponent absolute value robust state estimation equivalent model; Solve the equivalent model for state estimation with maximum exponential absolute value robustness. The example analysis shows that the invention has strong error resistance and high calculation efficiency, and has good engineering application prospects.
Description
技术领域technical field
本发明属于电力系统调度自动化领域,特别涉及一种电力系统状态的双曲余弦型最大指数绝对值抗差估计方法。The invention belongs to the field of electric power system scheduling automation, in particular to a hyperbolic cosine type maximum exponent absolute value robustness estimation method for the state of the electric power system.
背景技术Background technique
电力系统状态估计是能量管理系统的基础和核心。现在几乎每一个大型调度中心都安装了状态估计器,状态估计已成为电网安全运行的基石。自1970国外学者首次提出状态估计以来,人们对状态估计的研究和应用已经有40多年的历史了,这期间涌现出了各种各样的状态估计方法。Power system state estimation is the foundation and core of energy management systems. Now almost every large dispatch center has installed a state estimator, and state estimation has become the cornerstone of the safe operation of the power grid. Since state estimation was first proposed by foreign scholars in 1970, people have studied and applied state estimation for more than 40 years, and various state estimation methods have emerged during this period.
目前,在国内外应用最为广泛的状态估计是加权最小二乘法(Weighted leastsquares,WLS)。WLS模型简洁,求解容易,但是其抗差性很差。为了增强抗差性,一般有两种方法。第一种是在WLS估计之后加入不良数据辨识环节,例如最大正则化残差检验法(LNR)或估计辨识方法等;另一种是采用抗差状态估计方法。目前,国内外学者已经提出的抗差状态估计方法(Robust state estimation)包括加权最小绝对值估计(Weighted leastabsolute value,WLAV)、非二次准则法(QL、QC等)、以合格率最大为目标的状态估计(Maximum normal measurement rate,MNMR)以及指数型目标函数状态估计(Maximumexponential square,MES)等。但是这些抗差状态估计方法的估计性能仍有待提高。At present, the most widely used state estimation at home and abroad is the weighted least squares (WLS) method. The WLS model is simple and easy to solve, but its robustness is poor. In order to enhance the tolerance, there are generally two methods. The first is to add bad data identification after WLS estimation, such as the largest regularized residual test method (LNR) or estimation identification method, etc.; the other is to use the robust state estimation method. At present, the Robust state estimation methods (Robust state estimation) proposed by domestic and foreign scholars include weighted least absolute value estimation (Weighted least absolute value, WLAV), non-quadratic criterion methods (QL, QC, etc.), aiming at the maximum pass rate state estimation (Maximum normal measurement rate, MNMR) and exponential objective function state estimation (Maximum exponential square, MES). But the estimation performance of these robust state estimation methods still needs to be improved.
发明内容Contents of the invention
本发明的目的是提出一种电力系统状态的双曲余弦型最大指数绝对值抗差估计方法,其特征在于,该方法是基于抗差性好、计算效率高的双曲余弦型最大指数绝对值抗差状态估计;包括步骤:The object of the present invention is to propose a hyperbolic cosine type maximum exponent absolute value robust estimation method for the state of a power system, which is characterized in that the method is based on the hyperbolic cosine type maximum exponent absolute value with good robustness and high calculation efficiency Robust state estimation; includes steps:
步骤A.提取电力系统节点注入有功和无功、支路有功和无功功率,以及节点电压幅值参数;以此建立双曲余弦型最大指数绝对值抗差状态估计基本模型;Step A. Extract active power and reactive power injected into power system nodes, branch active and reactive power, and node voltage amplitude parameters; thus establish a hyperbolic cosine type maximum exponential absolute value robust state estimation model;
步骤B.对所述双曲余弦型最大指数绝对值抗差状态估计基本模型引进辅助变量,变换得到双曲余弦型最大指数绝对值抗差状态估计等价模型;Step B. introducing auxiliary variables to the hyperbolic cosine type maximum exponential absolute value robust state estimation basic model, and transforming to obtain the hyperbolic cosine type maximum exponent absolute value robust state estimation equivalent model;
步骤C.利用原-对偶内点算法,对所述双曲余弦型最大指数绝对值抗差状态估计等价模型求解。Step C. Using the primal-dual interior point algorithm to solve the hyperbolic cosine type maximum exponential absolute value robust state estimation equivalent model.
所述步骤A的双曲余弦型最大指数绝对值抗差状态估计基本模型为:s.t.g(x)=0,r=z-h(x),The hyperbolic cosine type maximum exponential absolute value robust state estimation basic model of the step A is: stg(x)=0, r=zh(x),
其中:z∈Rm为量测矢量,包括节点注入有功和无功、支路有功和无功以及节点电压幅值量测;x∈Rn为状态矢量,包括节点电压幅值和平衡节点除外的其他各个节点相角;h:Rn→Rm为由状态矢量到量测矢量的非线性映射;ri为残差矢量r的第i个元素;g(x):Rn→Rc为零注入功率等式约束;wi为第i个量测量的权重,σ0和σ1为窗宽参数。Among them: z∈R m is the measurement vector, including node injection active and reactive power, branch active and reactive power, and node voltage amplitude measurement; x∈R n is the state vector, including node voltage amplitude and balance node h:R n →R m is the nonlinear mapping from the state vector to the measurement vector; r i is the i-th element of the residual vector r; g(x):R n →R c is the zero injection power equation constraint; w i is the weight of the i-th quantity measurement, and σ 0 and σ 1 are window width parameters.
所述步骤B包括:引进非负松弛变量u,v∈Rm,变换得到的所述双曲余弦型最大指数绝对值抗差状态估计等价模型为:s.t.g(x)=0,z-h(x)-u+v=0,u,v≥0。The step B includes: introducing a non-negative slack variable u,v∈R m , and transforming the hyperbolic cosine maximum exponent absolute value robust state estimation equivalent model into: stg(x)=0, zh(x)-u+v=0, u, v≥0.
所述步骤C利用原-对偶内点算法,对所述双曲余弦型最大指数绝对值抗差状态估计等价模型求解,具体地,令x(0)∈Rn代表由所有节点电压幅值和相角组成的平启动状态变量(参考节点相角除外);The step C uses the primal-dual interior point algorithm to solve the hyperbolic cosine type maximum exponential absolute value robust state estimation equivalent model, specifically, let x (0) ∈ R n represent the voltage amplitudes of all nodes The flat start state variable composed of and phase angle (except the reference node phase angle);
步骤C包括:Step C includes:
步骤C1:引入拉格朗日函数Step C1: Introduce the Lagrangian function
式中:λ∈Rc及π,α,β∈Rm为拉格朗日乘子矢量;In the formula: λ∈R c and π,α,β∈R m are Lagrangian multiplier vectors;
令x为平启动状态变量;选择λ(0)=π(0)=0及u(0),v(0),α(0),β(0)>0,其中λ∈Rc及π,α,β∈Rm为拉格朗日乘子矢量,m为量测量的个数,而c为零注入功率约束的个数;令中心参数ρ∈(0,1)及收敛判据ε=10-3,置迭代计数器k=0;Let x be the flat start state variable; select λ (0) = π (0) = 0 and u (0) , v (0) , α (0) , β (0) >0, where λ∈R c and π ,α,β∈R m is the Lagrangian multiplier vector, m is the number of quantity measurements, and c is the number of zero injection power constraints; let the central parameter ρ∈(0,1) and the convergence criterion ε =10 -3 , set iteration counter k=0;
步骤C2:计算对偶间隙Gap=αTv+βTu,判断是否收敛,若Gap<ε,则转步骤C7,否则进入步骤C3;Step C2: Calculate the dual gap Gap=α T v+β T u, and judge whether it is converged. If Gap<ε, go to step C7, otherwise go to step C3;
步骤C3:求解修正方程,以完成对原变量和对偶变量的修正,得到[dxT dλT dπT]T,dv,du,dα和dβ;具体包括:Step C3: Solve the correction equation to complete the correction of the original variable and the dual variable, and obtain [dx T dλ T dπ T ] T , dv, du, dα and dβ; specifically include:
步骤C31:计算扰动参数μ=ρ·Gap/2m;Step C31: Calculating the disturbance parameter μ=ρ·Gap/2m;
步骤C32:形成量测方程以及零注入功率约束对应的雅克比矩阵及形成量测方程以及零注入功率约束对应的海森矩阵及其中h(x)为状态矢量到量测矢量的映射,即为量测估计值,g(x)=0为零注入功率约束;Step C32: Forming the measurement equation and the Jacobian matrix corresponding to the zero injection power constraint and Form the measurement equation and the Hessian matrix corresponding to the zero injection power constraint and Where h(x) is the mapping from the state vector to the measurement vector, that is, the measurement estimated value, and g(x)=0 is the zero injection power constraint;
步骤C33:计算Lx=GTλ-HTπ,Lλ=g(x),Lπ=z-h(x)-u+v, 及 Step C33: Calculate L x =G T λ-H T π, L λ =g(x), L π =zh(x)-u+v, and
步骤C34:计算γ=z-h(x)-u+v+AA-BB,Step C34: calculate γ=z-h(x)-u+v+AA-BB,
其中AA,BB∈Rm, where AA,BB∈R m ,
步骤C35:求解方程得到[dxT dλT dπT]T;Step C35: Solve the equation get [dx T dλ T dπ T ] T ;
步骤C36:求解dvi=k1idπi+AAi及dui=k2idπi+BBi,其中k1i=aivi-biui,k2i=civi-diui;以及步骤C37:求解求解及 Step C36: Solve for dv i =k 1i dπ i +AA i and du i =k 2i dπ i +BB i , where k 1i =a i v i -b i u i , k 2i =c i v i -d i u i ; and step C37: solving and
步骤C4:计算原问题和对偶问题的修正步长θP和θD,其中: Step C4: Calculate the modified step size θ P and θ D of the original problem and the dual problem, where:
步骤C5:分别修正原问题和对偶问题的变量为: Step C5: Correct the variables of the original problem and the dual problem as follows:
步骤C6:令迭代计数器k=k+1,进入步骤C2;Step C6: set the iteration counter k=k+1, enter step C2;
步骤C7:输出最优解,结束。Step C7: output the optimal solution, end.
本发明的有益效果是双曲余弦型最大指数绝对值抗差状态估计在估计过程中可有效抑制包括一致性不良数据在内的多个不良数据,显示了良好的抗差性,并具有很高的计算效率,非常适宜于实际工程应用。对所述双曲余弦型最大指数绝对值抗差状态估计等价模型求解。算例分析表明,本发明具有很强的抗差性和很高的计算效率,具有良好的工程应用前景。The beneficial effect of the present invention is that the hyperbolic cosine type maximum exponential absolute value robustness state estimation can effectively suppress a plurality of bad data including poor consistency data in the estimation process, shows good tolerance, and has a high The calculation efficiency is very suitable for practical engineering applications. The hyperbolic cosine type maximum exponential absolute value robust state estimation equivalent model is solved. The example analysis shows that the invention has strong error resistance and high calculation efficiency, and has good engineering application prospects.
具体实施方式Detailed ways
本发明提出一种电力系统状态的双曲余弦型最大指数绝对值抗差估计方法,下面结合实施例详细描述本发明。The present invention proposes a hyperbolic cosine type maximum exponent absolute value robust estimation method for the state of a power system. The present invention will be described in detail below in conjunction with embodiments.
电力系统状态的双曲余弦型最大指数绝对值抗差估计方法包括下列步骤:The hyperbolic cosine type maximum exponential absolute value robust estimation method of the power system state includes the following steps:
步骤A:提取电力系统节点注入有功和无功、支路有功和无功功率,以及节点电压幅值参数;以此建立双曲余弦型最大指数绝对值抗差状态估计(Hyperbolic cosinemaximum exponential absolute value state estimation,COSH-MEAV)基本模型。Step A: extract active and reactive power injected into power system nodes, branch active and reactive power, and node voltage amplitude parameters; in this way, hyperbolic cosine maximum exponential absolute value robust state estimation (Hyperbolic cosine maximum exponential absolute value state estimation) is established. estimation, COSH-MEAV) basic model.
所述COSH-MEAV的基本模型如下所示The basic model of COSH-MEAV is shown below
s.t.g(x)=0 (2)s.t.g(x)=0 (2)
r=z-h(x) (3)r=z-h(x) (3)
式中:z∈Rm为量测矢量,常包括节点注入有功和无功、支路有功和无功以及节点电压幅值量测等;x∈Rn为包括节点电压幅值和相角的状态矢量(平衡节点相角除外);h:Rn→Rm为由状态矢量到量测矢量的非线性映射;ri是残差矢量r的第i个元素;g(x):Rn→Rc为零注入功率等式约束;wi为第i个量测量的权重,σ0和σ1为窗宽参数。In the formula: z∈R m is the measurement vector, which often includes node injection active power and reactive power, branch active power and reactive power, and node voltage amplitude measurement; x∈R n is the measurement vector including node voltage amplitude and phase angle State vector (except the balance node phase angle); h: R n → R m is the nonlinear mapping from the state vector to the measurement vector; r i is the i-th element of the residual vector r; g(x): R n → R c is the zero injection power equation constraint; w i is the weight of the i-th quantity measurement, and σ 0 and σ 1 are window width parameters.
步骤B:对双曲余弦型最大指数绝对值抗差状态估计基本模型引进辅助变量,变换得到双曲余弦型最大指数绝对值抗差状态估计等价模型。Step B: Introduce auxiliary variables to the basic model of hyperbolic cosine type maximum absolute value robust state estimation model, and transform to obtain an equivalent model of hyperbolic cosine type maximum exponent absolute value robust state estimation.
具体地,COSH-MEAV基本模型的目标函数虽然处处连续,但是在0处不可导,因而直接求解比较困难。可将模型(1)~(3)转化为一个处处可导的等价模型。Specifically, although the objective function of the COSH-MEAV basic model is continuous everywhere, it is not differentiable at 0, so it is difficult to solve it directly. Models (1)-(3) can be transformed into an equivalent model that can be derived everywhere.
引进变量ξ∈Rm,使其满足Introduce variable ξ∈R m to satisfy
|ri|≤ξi i=1,…,m (4)|r i |≤ξ i i=1,...,m (4)
由式(1)和(4)可得,最大等价为最大。From formulas (1) and (4), we can get, The maximum equivalent is maximum.
引进非负松弛变量l,k∈Rm,将不等式(4)转化为两个等式约束为Introduce non-negative slack variable l,k∈R m , transform inequality (4) into two equality constraints as
ri-li=-ξi i=1,…,m (5)r i -l i =-ξ i i = 1,...,m (5)
ri+ki=ξi i=1,…,m (6)r i +k i =ξ i i=1,...,m (6)
引进非负松弛变量u,v∈Rm,使其满足Introduce non-negative slack variables u,v∈R m to satisfy
ui=li/2 i=1,…,m (7)u i = l i /2 i = 1,...,m (7)
vi=ki/2 i=1,…,m (8)v i =k i /2 i=1,...,m (8)
由式(5)~(8),可得From formulas (5) to (8), we can get
ri=ui-vi i=1,…,m (9)r i =u i -v i i=1,...,m (9)
ξi=ui+vi i=1,…,m (10)ξ i =u i +v i i=1,...,m (10)
将式(9)带入式(3),可得等价量测约束条件为Putting Equation (9) into Equation (3), the equivalent measurement constraints can be obtained as
z-h(x)-u+v=0 (11)z-h(x)-u+v=0 (11)
则式(1)~(3)给出的COSH-MEAV基本模型的等价模型为Then the equivalent model of COSH-MEAV basic model given by formulas (1)~(3) is
s.t.g(x)=0 (13)s.t.g(x)=0 (13)
z-h(x)-u+v=0 (14)z-h(x)-u+v=0 (14)
u,v≥0 (15)u,v≥0 (15)
模型(12)~(15)即为COSH-MEAV等价模型,该模型处处连续可导,可用基于梯度的方法来求解。Models (12)-(15) are COSH-MEAV equivalent models, which are continuously differentiable everywhere and can be solved by gradient-based methods.
步骤C:利用原-对偶内点算法,对所述双曲余弦型最大指数绝对值抗差状态估计等价模型求解。Step C: Using the primal-dual interior point algorithm to solve the hyperbolic cosine type maximum exponential absolute value robust state estimation equivalent model.
(1)COSH-MEAV等价模型的求解方法(1) Solution method of COSH-MEAV equivalent model
注意到COSH-MEAV的等价模型(12)~(15)是一个含有等式约束和不等式约束的最优化问题,适宜用原-对偶内点算法进行求解。为使本领域技术人员更好地理解本发明,首先给出详细的推导过程如下:Note that the COSH-MEAV equivalence model (12)~(15) is an optimization problem containing equality constraints and inequality constraints, and it is suitable to be solved by the primal-dual interior point algorithm. In order to make those skilled in the art understand the present invention better, at first provide detailed derivation process as follows:
引入拉格朗日函数Introducing the Lagrange function
式中:λ∈Rc及π,α,β∈Rm为拉格朗日乘子矢量。In the formula: λ∈R c and π,α,β∈R m are Lagrange multiplier vectors.
为取得最优值,根据KKT条件,可得In order to obtain the optimal value, according to the KKT condition, we can get
式中: In the formula:
为有效解决以上问题,现代内点法引入扰动参数μ>0对式(22)、(23)进行松弛,从而得In order to effectively solve the above problems, the modern interior point method introduces the disturbance parameter μ > 0 to relax equations (22) and (23), thus obtaining
以上方程由牛顿法求解可得The above equations can be solved by Newton's method to get
Gdx=-Lλ (27)Gdx= -Lλ (27)
-Hdx-du+dv=-Lπ (28)-Hdx-du+dv=-L π (28)
其中, in,
由式(29)和(30),可得From equations (29) and (30), we can get
将式(33)、(34)带入(31)、(32)可得Substitute (33), (34) into (31), (32) to get
令由式(35)和(36)可得make From formula (35) and (36) can get
dvi=k1idπi+AAi (37)dv i =k 1i dπ i +AA i (37)
dui=k2idπi+BBi (38)du i =k 2i dπ i +BB i (38)
式中:k1i=aivi-biui,k2i=civi-diui,In the formula: k 1i = a i v i -b i u i , k 2i = c i v i -d i u i ,
将式(37)、(38)带入(28)可得Substitute (37), (38) into (28) to get
Hdx+Qdπ=γ (39)Hdx+Qdπ=γ (39)
式中:Q为Rm×m的对角阵,其对角元素为Qii=-k1i+k2i;γ=z-h(x)-u+v+AA-BB,AA,BB∈Rm,AAi,BBi与式(37)、(38)中同。In the formula: Q is a diagonal matrix of R m×m , and its diagonal elements are Q ii =-k 1i +k 2i ; γ=zh(x)-u+v+AA-BB, AA,BB∈R m , AA i , BB i are the same as those in formulas (37) and (38).
根据式(39)、(26)及(27),可得修正方程为According to equations (39), (26) and (27), the modified equation can be obtained as
求解式(40)可得dx,dλ和dπ;由式(37)、(38)可得dv和du;将所得结果带入式(33)、(34)可得dα和dβ,则迭代即可持续进行。dx, dλ and dπ can be obtained by solving formula (40); dv and du can be obtained from formulas (37) and (38); dα and dβ can be obtained by bringing the obtained results into formulas (33) and (34), then the iteration is sustainable.
(2)COSH-MEAV等价模型的求解步骤(2) The solution steps of the COSH-MEAV equivalent model
在介绍COSH-MEAV等价模型的求解推导过程之后,发明人将求解步骤归纳如下:After introducing the solution and derivation process of the COSH-MEAV equivalent model, the inventor summarizes the solution steps as follows:
步骤C1:进行初始化,令x为平启动状态变量;选择λ(0)=π(0)=0及u(0),v(0),α(0),β(0)>0;令中心参数ρ∈(0,1)及确定收敛判据值,以及置迭代计数器为零。Step C1: initialize, let x be the state variable of flat start; select λ (0) = π (0) = 0 and u (0) , v (0) , α (0) , β (0) >0; make The central parameter ρ∈(0,1) determines the value of the convergence criterion, and sets the iteration counter to zero.
具体地,令x(0)∈Rn代表由所有节点电压幅值和相角组成的平启动状态变量(参考节点相角除外);选择λ(0)=π(0)=0及u(0),v(0),α(0),β(0)>0,其中λ∈Rc及π,α,β∈Rm为拉格朗日乘子矢量,m为量测量的个数,而c为零注入功率约束的个数;令中心参数ρ∈(0,1)及收敛判据ε=10-3,置迭代计数器k=0。Specifically, let x (0) ∈ R n represent the flat start state variable composed of all node voltage amplitudes and phase angles (except the reference node phase angle); choose λ (0) = π (0) = 0 and u ( 0) ,v (0) ,α (0) ,β (0) >0, where λ∈R c and π,α,β∈R m are Lagrangian multiplier vectors, and m is the number of measurements , and c is the number of zero injection power constraints; let the central parameter ρ∈(0,1) and the convergence criterion ε=10 -3 , set the iteration counter k=0.
步骤C2:计算对偶间隙Gap=αTv+βTu,判断是否收敛。具体地,若Gap<ε,则认为收敛,可直接进入步骤C7;否则为不收敛,进入步骤C3。Step C2: Calculate the dual gap Gap=α T v+β T u, and judge whether it is converged. Specifically, if Gap<ε, it is considered to be converged and can directly go to step C7; otherwise, it is not converged and goes to step C3.
步骤C3:求解修正方程,以完成对原变量和对偶变量的修正,得到[dxT dλT dπT]T,dv,du,dα和dβ。Step C3: Solve the correction equation to complete the correction of the original variable and the dual variable, and obtain [dx T dλ T dπ T ] T , dv,du, dα and dβ.
具体地,首先计算扰动参数μ=ρ·Gap/2m,然后求解式(40)得[dxT dλT dπT]T;求解式(37)、(38)得dv,du;求解(33)、(34)得dα,dβ。Specifically, first calculate the disturbance parameter μ=ρ·Gap/2m, then solve formula (40) to get [dx T dλ T dπ T ] T ; solve formulas (37), (38) to get dv,du; solve (33) , (34) get dα, dβ.
步骤C4:计算原问题和对偶问题的修正步长θP和θD,其中:Step C4: Calculate the modified step size θ P and θ D of the original problem and the dual problem, where:
步骤C5:分别修正原问题和对偶问题的变量为:Step C5: Correct the variables of the original problem and the dual problem as follows:
步骤C6:令迭代计数器k=k+1,进入步骤C2;以及Step C6: set iteration counter k=k+1, enter step C2; and
步骤C7:输出最优解,结束。Step C7: output the optimal solution, end.
为使本领域技术人员更好地理解本发明以及了解本发明相对现有技术的优点,申请人结合具体实施例进行进一步的阐释。In order to enable those skilled in the art to better understand the present invention and understand the advantages of the present invention over the prior art, the applicant further explains in conjunction with specific embodiments.
设定利用IEEE标准系统检验基于原-对偶内点算法的COSH-MEAV的性能。试验采用全量测,量测值通过在潮流计算的结果上叠加白噪声(均值为0,标准差为τ)来获得。对于电压量测,取τV=0.005p.u.;对于功率量测,取τPQ=1MW/MVar。测试环境为PC机,CPU为Intel(R)Core(TM)i3M370、主频为2.40GHz、内存2.00GB。The performance of COSH-MEAV based on primal-dual interior point algorithm is tested by using IEEE standard system. The test adopts full measurement, and the measurement value is obtained by superimposing white noise (mean value is 0, standard deviation is τ) on the result of power flow calculation. For voltage measurement, take τ V =0.005pu; for power measurement, take τ PQ =1MW/MVar. The test environment is a PC, the CPU is Intel(R) Core(TM) i3M370, the main frequency is 2.40GHz, and the memory is 2.00GB.
1.抗差性能的比较1. Comparison of tolerance performance
发明人将本发明的COSH-MEAV与其他状态估计器进行比较,来测试COSH-MEAV的抗差性。The inventors compared COSH-MEAV of the present invention with other state estimators to test the robustness of COSH-MEAV.
在IEEE-14系统上设置4个一致性不良数据(P1-2、Q1-2、P1、Q1)。所设置的不良量测值以及量测量的正确值如表1所示。Set four inconsistent data (P 1-2 , Q 1-2 , P 1 , Q 1 ) on the IEEE-14 system. Table 1 shows the set bad measurement value and the correct value of measurement.
表1 COSH-MEAV对IEEE 14系统一致性不良数据的辨识Table 1 COSH-MEAV identification of poor consistency data of IEEE 14 system
作为对比,首先用广为应用的WLS进行估计,并用LNR进行不良数据的辨识(简记为WLS+LNR)。首次辨识的结果为:10个量测量的标准化残差大于门槛值(3.0),这10个量测量被认为是可疑数据;其中标准化残差最大的量测量为P2-1,删去该量测后重新运行WLS;此时发现P2的标准化残差最大。以上过程循环4次,4个良好的量测量被LNR误认为是可疑数据而被删去,但真正的不良数据仍然存在。可见,WLS+LNR不能辨识一致性不良数据。As a comparison, the widely used WLS is used to estimate first, and LNR is used to identify bad data (abbreviated as WLS+LNR). The result of the first identification is: the standardized residuals of 10 quantity measurements are greater than the threshold value (3.0), and these 10 quantity measurements are considered suspicious data; among them, the quantity measurement with the largest standardized residual error is P 2-1 , and this quantity is deleted Re-run WLS after the test; at this time, it is found that P2 has the largest standardized residual. The above process is cycled 4 times, and 4 good measurements are mistaken for suspicious data by LNR and deleted, but the real bad data still exists. It can be seen that WLS+LNR cannot identify data with poor consistency.
应用COSH-MEAV方法的估计结果如表1所示。可以发现,即使量测量中存在一致性不良数据,COSH-MEAV的估计值与真值也可很好地吻合。在IEEE其他系统的多次试验也表明COSH-MEAV在估计的过程中可以自动抑制不良数据,具有良好的抗差性。The estimated results using the COSH-MEAV method are shown in Table 1. It can be found that COSH-MEAV's estimated and true values agree well even if there are poor consistency data in the quantity measurement. Many experiments in other IEEE systems also show that COSH-MEAV can automatically suppress bad data in the estimation process, and has good tolerance.
2.计算效率的比较2. Comparison of computational efficiency
发明人为了进行效率比较,在正常量测条件下分别对四种状态估计器WLS、WLAV、MNMR以及COSH-MEAV进行了测试,其中后三种属于抗差状态估计器。在试验中,WLS采用牛顿法求解,其他三种状态估计采用内点法求解;且MNMR采用两阶段法,即第一阶段进行WLS估计,第二阶段将WLS的估计值作为MNMR估计的初值进行计算。In order to compare the efficiency, the inventor tested four state estimators WLS, WLAV, MNMR and COSH-MEAV respectively under normal measurement conditions, among which the latter three are robust state estimators. In the experiment, WLS is solved by Newton's method, and the other three states are estimated by interior point method; and MNMR adopts a two-stage method, that is, WLS is estimated in the first stage, and the estimated value of WLS is used as the initial value of MNMR in the second stage Calculation.
共进行50次仿真试验,状态估计收敛时的迭代次数以及平均计算耗时如表2所示。由表2可见,在这四种状态估计器中,WLS的计算效率最高;而在后三种抗差状态估计器中,COSH-MEAV的计算效率最高;而且随着系统规模的增大,COSH-MEAV的迭代次数以及计算耗时增长的很缓慢,因而COSH-MEAV适用于实际的大规模系统的估计。A total of 50 simulation tests were carried out. The number of iterations and the average calculation time when the state estimation converges are shown in Table 2. It can be seen from Table 2 that among the four state estimators, WLS has the highest computational efficiency; among the latter three robust state estimators, COSH-MEAV has the highest computational efficiency; and with the increase of the system scale, COSH -The number of iterations and calculation time of MEAV grows very slowly, so COSH-MEAV is suitable for the estimation of actual large-scale systems.
综上所述,本发明提出的COSH-MEAV在估计过程中可有效抑制包括一致性不良数据在内的多个不良数据,显示了良好的抗差性,并具有很高的计算效率,非常适宜于实际工程应用。In summary, the COSH-MEAV proposed by the present invention can effectively suppress multiple bad data including bad consistency data in the estimation process, shows good tolerance, and has high computational efficiency, which is very suitable for in practical engineering applications.
表2 四种状态估计器的迭代次数以及计算耗时Table 2 The number of iterations and calculation time of the four state estimators
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510849367.5A CN105305440B (en) | 2015-11-27 | 2015-11-27 | The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510849367.5A CN105305440B (en) | 2015-11-27 | 2015-11-27 | The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105305440A CN105305440A (en) | 2016-02-03 |
CN105305440B true CN105305440B (en) | 2018-07-31 |
Family
ID=55202371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510849367.5A Active CN105305440B (en) | 2015-11-27 | 2015-11-27 | The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105305440B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106022968A (en) * | 2016-05-31 | 2016-10-12 | 华北电力大学 | Hyperbolic tangent robust state estimation method |
CN107317330A (en) * | 2017-07-14 | 2017-11-03 | 华北电力大学 | A kind of maximum value inverse ratio robust state estimation method |
CN107508282A (en) * | 2017-08-11 | 2017-12-22 | 华北电力大学 | A kind of inverse ratio type maximal index absolute value robust state estimation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0125050A1 (en) * | 1983-04-13 | 1984-11-14 | Niagara Mohawk Power Corporation | Apparatus for measuring the temperature and other parameters of an electric power conductor |
CN102868157A (en) * | 2012-09-11 | 2013-01-09 | 清华大学 | Robust estimation state estimating method based on maximum index absolute value target function |
-
2015
- 2015-11-27 CN CN201510849367.5A patent/CN105305440B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0125050A1 (en) * | 1983-04-13 | 1984-11-14 | Niagara Mohawk Power Corporation | Apparatus for measuring the temperature and other parameters of an electric power conductor |
CN102868157A (en) * | 2012-09-11 | 2013-01-09 | 清华大学 | Robust estimation state estimating method based on maximum index absolute value target function |
Also Published As
Publication number | Publication date |
---|---|
CN105305440A (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102868157B (en) | Robust estimation state estimating method based on maximum index absolute value target function | |
CN102801162B (en) | Two-stage linear weighted least-square power system state estimation method | |
CN101599643B (en) | A Power System Robust State Estimation Method Based on Exponential Objective Function | |
CN105512502B (en) | One kind is based on the normalized weight function the least square estimation method of residual error | |
CN102185308B (en) | Power system state estimating method for taking zero injection measurement equality constraint into consideration | |
CN103886193B (en) | Fuzzy self-adaptation robust estimation method of electric power system | |
CN105958470A (en) | Electric power system bilinear anti-error estimation method based on bilinear protruding optimization theory | |
CN105305440B (en) | The hyperbolic cosine type maximal index absolute value Robust filter method of POWER SYSTEM STATE | |
CN104680262A (en) | Receiving-end grid optimal layering and districting scheme obtaining method | |
CN103413053A (en) | Robust state estimation method based on interior point method for electrical power system | |
CN105514977B (en) | A kind of hyperbolic cosine type robust state estimation method of POWER SYSTEM STATE | |
CN106159947A (en) | A kind of computational methods of isolated island alternating current-direct current series-parallel connection micro-capacitance sensor three-phase based on order components decoupling trend | |
CN104794531A (en) | MDCOPF (modified direct current optimal power flow) method based on grid loss equivalent load model | |
CN103593566A (en) | Mixing-quadratic-programming-form electrical power system synthesis state estimation method | |
CN105514978B (en) | A kind of robust state estimation method of MINLP model form | |
CN106130011A (en) | A given method of initial value for power flow calculation based on network loss equivalent load model | |
CN110210690B (en) | Optimal configuration method for micro synchronous phasor measurement unit of power distribution system | |
CN109255541B (en) | Power distribution network robust state estimation method based on least square sum-by-one sum | |
CN104252571B (en) | WLAV robust state estimation methods based on many prediction correction interior points | |
CN105303471A (en) | Method for hyperbolic cosine maximum exponential square robust estimation of power system state | |
Ren et al. | Steady-state security region boundary modification model: a hybrid physical model-driven and data-driven approach | |
CN107508282A (en) | A kind of inverse ratio type maximal index absolute value robust state estimation method | |
CN106022968A (en) | Hyperbolic tangent robust state estimation method | |
CN110021931A (en) | It is a kind of meter and model uncertainty electric system assist predicted state estimation method | |
CN105322533B (en) | Adaptive t types robust state estimation method based on Gauss Markov model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |