CN102799171B - 检测故障码设置中的异常和使用分析症状增强维修文件 - Google Patents

检测故障码设置中的异常和使用分析症状增强维修文件 Download PDF

Info

Publication number
CN102799171B
CN102799171B CN201210165527.0A CN201210165527A CN102799171B CN 102799171 B CN102799171 B CN 102799171B CN 201210165527 A CN201210165527 A CN 201210165527A CN 102799171 B CN102799171 B CN 102799171B
Authority
CN
China
Prior art keywords
rule
diagnostic
dtc
fault
trouble code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210165527.0A
Other languages
English (en)
Other versions
CN102799171A (zh
Inventor
H.S.苏布拉马尼亚
S.辛赫
C.L.皮尼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN102799171A publication Critical patent/CN102799171A/zh
Application granted granted Critical
Publication of CN102799171B publication Critical patent/CN102799171B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0278Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

提供一种基于分析症状来识别维修车辆中的故障的根本原因的方法。取回与所识别DTC有关的参数识别数据。收集来自于经历DTC的多个车辆的参数识别数据。产生第一组诊断规则,第一组诊断规则识别用于执行DTC算法或触发DTC的车辆操作参数。产生第二组诊断规则,第二组诊断规则识别用于选择在触发DTC时获得的现场故障数据的车辆操作参数。从第二组诊断规则提取统计显著规则。第一组规则和统计显著规则协作地应用于参数识别数据,用于识别表示异常的参数识别数据的子组。主题专家分析异常,用于识别故障的根本原因。

Description

检测故障码设置中的异常和使用分析症状增强维修文件
技术领域
实施例总体上涉及识别故障码中的异常和基于异常分析来开发新的分析症状以增强维修文件。
背景技术
诊断软件算法使用故障码或诊断故障码(DTC)来帮助技术人员维修机器,例如在销售商处维修部门处的车辆。诊断故障码(DTC)在车辆中基于诊断软件算法来触发。维修使用的维修诊断工具等从车辆处理器存储器取回DTC,用于确定车辆特定部件中的故障。车辆中的每个处理器包括在车辆经受电气故障时存储DTC的存储器。维修技术人员可以检查当前触发的DTC或任何DTC的历史,用于确定车辆中的根本原因。DTC是用于识别车辆中的各个部件、电路或软件中发生的故障的字母数字代码。这种DTC与各种电动车辆功能相关,包括但不限于发动机操作、排放物、制动、动力系、安全性和转向。每个子系统可能具有其自身的车载处理器,用于监测子系统操作的故障,或者处理器可负责监测多个子系统的故障。当子系统处理器检测到故障时,产生一个或多个DTC。
DTC帮助维修人员查明关心的区域。DTC通过维修人员借助于扫描工具来取回。虽然DTC给维修人员查明关心的区域提供辅助,但是DTC并不提供与什么准确地引起问题的明确信息。通常,DTC指示特定部件、将部件连接到控制模块的电路或控制模块本身中的故障。现在,仍然由技术人员通过执行进一步的电路测试来识别根本原因,使用分析推理、先前经验或最佳估计。因而,DTC仅仅提供一定程度的诊断。附加诊断鉴别(diagnostic resolution)只能通过执行附加现场试验和从车辆收集附加操作参数数据来获得。有时,产生DTC的算法可能具有错误或者算法中规定的标定值对车辆操作条件敏感,这导致触发错误DTC。此外,DTC可能展现间歇性行为,由于没有触发间歇性DTC的操作参数数据,因而难以固定。故障的间歇性行为是在故障被触发和记录然而在维修修理中心故障条件不能复制时的情形。
扫描工具还可以取回在触发特定DTC时记录的停帧操作参数识别符(PID)。PID代码是部件的操作参数或者诊断算法的输出,其经由扫描工具记录,通过来自于车辆通信总线的读数传输。通信总线上的一个装置识别其负责的PID代码且返回与PID代码有关的信息,用于提供与感测与所检测故障有关的数据的装置中的一个或多个相关的进一步细节。然而,与DTC有关的PID的数量是非常多的且对于必须分析PID代码的维修人员来说是繁重的。
在许多情况下,在DTC算法中存在错误且DTC将在不合适前提条件下触发(例如,触发DTC的条件不合适)。此外,标定值可能基于操作条件敏感且操作参数需要再次标定。在收集和分析的巨大数量的PID代码时,DTC数据中存在的异常可借助于统计和数据挖掘技术识别。异常通常在分析保修索赔数据时识别。然而,保修数据仅仅在车辆生产且对修理进行索赔之后获得。因而,DTC展现异常的巨大数量的车辆可能已经维修。理想的是在开发阶段或者早期生产阶段期间识别DTC中的异常,从而在开发阶段或者早期生产阶段期间可以进行校正动作。
发明内容
实施例的优势在于识别DTC设置的异常。异常可在车辆的开发阶段期间检测,以使得在车辆进入生产时的保修修理数量最小化。所述系统使用基于设计文件和说明书的规则以及经由现场故障数据的数据挖掘的统计显著规则来识别与所触发DTC有关的信息PID,用于检测异常。异常可能是DTC的不合适前提条件或者敏感性标定值的结果。因而,分析症状被识别且故障的根本原因通过车辆外的过程确定,用于增强维修程序。在车辆开发阶段或者车辆早期生产期间优选进行部件、软件或维修文件的调节。通过校正故障码(例如,DTC)设置条件而不是增加新故障码,减少误判(no-trouble-found,NTF)率。
一个实施例设想一种基于参数识别数据中识别的异常来识别维修车辆中的故障的根本原因且执行校正动作的方法。执行诊断软件例程,以取回用于识别维修车辆的操作中的故障的诊断故障码。取回与识别有所检测故障的诊断故障码有关的参数识别数据。来自于经历诊断故障码的多个车辆的参数识别数据在计算机上收集。产生第一组诊断规则。第一组诊断规则识别用于执行诊断故障码算法或触发诊断故障码的车辆操作参数。产生第二组诊断规则。第二组诊断规则识别用于选择在触发诊断故障码时获得的现场故障数据的车辆操作参数。从第二组诊断规则提取统计显著规则。第一组规则和统计显著规则中的每一个协作地应用于参数识别数据,用于识别表示异常的参数识别数据的子组。主题专家分析异常,用于识别故障的根本原因。基于所识别的根本原因分析执行校正动作。
方案1. 一种基于参数识别数据中识别的异常来识别维修车辆中的故障的根本原因且执行校正动作的方法,所述方法包括以下步骤:
执行诊断软件例程,以取回用于识别维修车辆的操作中的故障的诊断故障码;
取回与识别有检测故障的诊断故障码有关的参数识别数据;
在计算机上收集来自于经历诊断故障码的多个车辆的参数识别数据;
产生第一组诊断规则,第一组诊断规则识别用于执行诊断故障码算法或触发诊断故障码的车辆操作参数;
产生第二组诊断规则,第二组诊断规则识别用于选择在触发诊断故障码时获得的现场故障数据的车辆操作参数;
从第二组诊断规则提取统计显著规则;
将第一组规则和统计显著规则中的每一个协作地应用于参数识别数据,用于识别表示异常的参数识别数据的子组;
主题专家分析异常,用于识别故障的根本原因;以及
基于所识别的根本原因分析来执行校正动作。
方案2. 根据方案1所述的方法,其中,第一组诊断规则从至少一个设计相关文件源获得。
方案3. 根据方案1所述的方法,其中,第二组诊断规则从分类器获得。
方案4. 根据方案1所述的方法,其中,第二组诊断规则从决策树获得。
方案5. 根据方案1所述的方法,其中,统计显著规则使用分类精度技术提取,其中,分类精度技术确定相应规则是否将大于分类阈值的与单个DTC有关的事件数量分类。
方案6. 根据方案5所述的方法,其中,用于识别统计显著规则是否满足相应类别的确定由以下公式表示:
其中,是使用相应规则识别的DTC1的分类情况数量,是使用相应规则识别的所有DTC的分类情况数量,且是预定百分比。
方案7. 根据方案1所述的方法,其中,统计显著规则使用群体百分比技术提取,其中,群体百分比技术确定由相应规则分类为单个诊断故障码类别的情况数量与诊断故障码类别的情况总数量相比是否满足群体阈值。
方案8. 根据方案7所述的方法,其中,用于识别统计显著规则是否满足群体阈值的确定由以下公式表示:
其中,是使用统计显著规则识别的DTC1的分类情况数量,Nt是所有DTC的所有分类情况的总数量,且是预定百分比。
方案9. 根据方案1所述的方法,其中,执行校正动作的步骤包括修正用于评估诊断故障码的诊断软件例程中的至少一个。
方案10. 根据方案1所述的方法,其中,执行校正动作的步骤包括修改由维修技术人员使用以评估故障的维修文件。
方案11. 根据方案1所述的方法,其中,执行校正动作的步骤包括修正用于触发诊断故障码的诊断软件例程。
方案12. 根据方案1所述的方法,其中,执行校正动作的步骤包括修改与故障有关的车辆部件。
方案13. 根据方案1所述的方法,其中,执行校正动作的步骤包括修正与故障有关的系统。
附图说明
图1是诊断修理报告系统的框图。
图2是从DTC和PID数据检测异常的框流程图。
图3图示了用于产生决策树的输入属性的示例性数据组。
图4是递归产生的决策树的示例性图示。
图5是通过应用统计显著规则识别的示例性曲线图子组参数识别数据。
具体实施方式
图1示出了诊断修理报告系统10。诊断修理报告系统10包括用于报告从维修车辆获得的诊断故障码(DTC)的多个维修中心12。还应当理解的是,数据可以在车辆的开关阶段和车辆的早期生产阶段两者期间从车队车辆和测试车辆取回。在开发阶段或早期生产阶段期间获取DTC数据和分析DTC数据的异常有助于减少车辆上作出的维修和保修索赔数量。
为了确定特定维修修理是否发生错误诊断,修理数据从维修车间取回。初始设备制造商(OEM),例如机动车公司,维护在线修理报告系统。此外,OEM从测试车辆和车队车辆收集数据。在该示例中,车辆被带到维修车间,例如销售商处的维修部门处。技术人员将使用扫描工具14在车辆上运行诊断检查,扫描工具14与车辆中的一个或多个处理器(例如,发动机控制模块)通信。车辆中的每个处理器都包括存储器或者在车辆经历问题且记录错误代码时使用远程存储器来存储DTC 16。在车辆处理器存储器中存储DTC 16使得维修技术人员不再需要试图再次获取车辆的问题,尤其是在车辆当前不处于问题的症状时;相反,维修技术人员可以检查在车辆存储器中存储的任何DTC的当前或过去历史,用于确定在发生问题时车辆内存在什么问题。DTC 16是用于识别在车辆的各个部件中发生的问题的数字字母代码。这种DTC 16可以与各种车辆功能相关,包括但不限于发动机操作、排放物、制动、动力系和转向。每个子系统可能具有其自身的车载处理器,用于监测子系统操作的故障,或者处理器可负责监测多个子系统的故障。当子系统处理器检测到故障时,产生一个或多个DTC 16。DTC 16存储在处理器存储器中,且在测试时由维修技术人员稍后取回。DTC 16有助于维修技术人员查明关心的区域。
为了取回DTC 16,维修技术人员在扫描工具14上输入请求取回当前或过去驾驶循环存储的DTC 16的模式。然而,DTC 16的数量在车辆中受限制,且如果同时触发多个DTC 16,那么找到根本原因变得非常困难。
扫描工具14还可以用于取回在DTC被触发且由车载处理器记录时记录的操作参数识别符(PID)18。子系统的健康状况通常由多个(例如,数千个)操作PID 18监测,其使用各个传感器和车载处理器中包含的诊断软件例程连续地收集。PID 18从停帧数据收集,其是在发生DTC时的一组有限数量的情况。
PID 18中的信息可以包括与其操作条件有关的数据(例如,提供空气-燃料混合物的比率,从而可以确定该比率是否在最小和最大值内)。DTC 16和PID 18收集且存储在多个存储装置20中,其可以取回以便稍后分析。
分析工具22与存储装置20通信,用于取回包含先前维修车辆的DTC 16和PID 18的维修数据的全部或一部分,以有助于识别当前维修车辆的根本原因。分析工具22可包括存储数据且执行本文所述的诊断例程的计算机、膝上型电脑、手持式无线处理装置或类似装置。
图2图示了用于从DTC和PID数据检测异常的框流程图。设计相关源30包括与设计说明书和主题专家(SME)规则有关的一个或多个数据库和/或打印文件。设计说明书和SME规则可包括维修程序、标定文件、操作指导、工程说明书和提供关于部件、电路、算法或与DTC有关的其它条件的操作参数的细节。
与相应DTC相关的规则从设计相关源30提取,且可包括用于运行DTC的规则、用于触发DTC的规则。
用于运行DTC的示例性规则,例如示例性挥发性排放物通风系统,可包括:(1)点火电压在11-18伏之间;大气压大于74 kPa;燃料液位在15-85%之间;发动机冷却剂温度小于35℃(95°F);且进气空气温度在4-30℃(39-86°F)之间。
用于设置DTC的规则的示例可包括:(1)燃料箱大于12英寸H2O真空度连续5秒;(2)燃料箱压力小于-2.5英寸H2O或大于5英寸连续60秒(在冷启动之后)。
现场故障数据源32包括维护现场故障数据的一个或多个数据库或其它存储器存储装置。现场故障数据的示例可包括但不限于故障码、停帧PID数据或保修索赔。停帧PID数据是在触发DTC时收集的操作参数的快照。PID表示各种操作条件,例如但不限于由维修技术人员经由扫描工具取回的发动机负载、发动机rpm、车辆速度、电压、电流、温度和压力。
使用分类器或决策树34从现场故障数据源32提取规则。分类器或决策树34用于从现场故障数据源32自动地获取与DTC有关的规则。分类器或决策树34基于满足PID数据的一部分的规则来产生用于DTC类别的规则。
构造决策树的数据在下表图示。
PID1 PID2 PID3 PID4 DTCset
2 85 85 0 DTC1
2 80 90 1 DTC1
1 83 86 0 DTC2
0 70 96 0 DTC2
0 68 80 0 DTC2
0 65 70 1 DTC1
1 64 65 1 DTC2
2 72 95 0 DTC1
2 69 70 0 DTC2
0 75 80 0 DTC2
2 75 70 1 DTC2
1 72 90 1 DTC2
1 81 75 0 DTC2
0 71 91 1 DTC1
构造决策树是递归表示的。在表中给出的数据组中,PID是输入属性,每个记录表示示例。存在两个不同DTC类别,“DTC1”和“DTC2”。存在四个输入属性,因而每个分离存在四种可能,在顶部水平上产生如图3所示的树。DTC1类别和DTC2类别的数量在树40、41、42的树叶处示出。仅具有一个类别(例如,DTC1或DTC2)的任何相应树叶将不需要进一步分离,因而,该树枝以下的递归过程将终止。确定不需要进一步分离的相应类别首先识别。为了确定哪个相应节点树叶将需要最少数量的分离,获得伪“纯度测量”,将获得产生最纯节点的属性。纯度测量标记为“信息”且以单位“位”测量。位表示假定到达该节点的示例,指定新情况应当分类为“是”还是“否”所需的预期信息量。与计算机存储器中使用的位的常规定义不同,对于本文所述的目的,预期信息量通常包含位的一部分,且通常小于1。位基于节点处的DTC1和DTC2类别的数量计算。
当评估图3中的第一树时,树叶节点处的DTC1和DTC2类别的数量分别为[3,2]、[0,4]和[2,3]。例如,在第一树叶40中,“3”表示存在DTC1的次数,“2”表示存在DTC2的次数;在第二树叶41中,“0”表示存在DTC1的次数,“4”表示存在DTC2的次数;在第三树叶42中,“2”表示存在DTC1的次数,“4”表示存在DTC2的次数。这些相应节点的信息值为:
Info([3,2]) = - (3/5)xlog(3/5) – (2/5)xlog(2/5) = 0.971位;
Info([0,4]) = - (0/4)xlog(0/4) – (4/4)xlog(4/4) = 0.0位;
Info([2,3]) = - (2/5)xlog(2/5) – (3/5)xlog(3/5) = 0.971位。
这些的平均信息值考虑从每个树枝下去的情况数量计算(例如,第一树枝5;第二树枝4;第三树枝5)。平均信息计算如下:
Info([3,2], [0,4], [2,3]) = (5/14)x0.971 + (4/14)x0.0 + (5/14)x0.971 = 0.693位。
平均值表示在给定PID1的树结构时预期将指定新情况的类别的信息量。在产生图3的树结构之前,树根处的训练样本包括9个DTC2节点和5个DTC1节点,与0.940位的信息值相对应。(即,Info([5,9]) = 0.940位)。作为所分析的第一树的结果,来自于初始树根的信息增益由如下公式表示:
gain(PID1) = info([5,9]) – info([3,2], [0,4], [2,3]) = 0.940 – 0.693 = 0.247位。
这编译为在输入属性PID1上产生树枝的信息值。
信息增益然后针对每个属性计算且选择提供最多信息分离的相应增益。对于图4所示的所有树,每个树的增益计算如下:
gain(PID1) = 0.247位
gain(PID2) = 0.029位
gain(PID3) = 0.152位
gain(PID4) = 0.048位。
PID1选择为树的树根处的分离属性。分析递归地继续。PID1上的进一步分离将不产生新结果,从而考虑其它三个属性(即,PID1、PID2、PID3),用于分离图4中的PID1的左上部分的最左树枝。新分离的信息增益如下:
gain(PID2) = 0.571位
gain(PID3) = 0.971位
gain(PID4) = 0.020位。
响应于信息增益,在该点选择PID3用于分离属性。从该树枝不需要进一步的分离,从而该树枝完成。该技术对于其余树枝继续。最终决策树在图4中显示。要注意的是,PID2信息不是将PID2分类为数据组的信息。
再次参考图2,从根据分类器或决策树34获得的规则提取统计显著规则。统计显著规则是满足参数识别数据的预定部分的规则。考虑两个因素以增加识别为统计显著的规则的置信度。第一因素是分类精度,第二因素是群体百分比。
在分类精度中,确定错误分类情况的数量是否低于表示规则属于特定类别的分类阈值。如果特定规则在单个类别预定百分比次数内正确地分类多个事件,那么满足第一因素。例如,第一触发DTC具有60个情况发生,第二DTC具有40个情况发生,总计发生100次。当将规则应用于两个DTC时,确定规则分类第一DTC的60个情况和第二DTC的6个情况。进行检查以确定规则是否将第一DTC分类大于预定次数百分比。所述确定由以下公式表示:
其中,是使用规则1识别的DTC1的分类情况数量,是使用规则1识别的所有DTC的分类情况数量,且是预定百分比。使用来自于上述示例的数量和阈值0.75,确定(60/66)>0.75为真。因而,规则将该单个DTC类别正确地分类大于75%次数,这满足第一因素。
第二因素是规则是否满足群体百分比阈值。群体百分比确定由规则分类的单个DTC类别的情况数量与该类别的情况总数量相比是否显著。第二因素的确定由以下公式表示:
其中,是使用规则1识别的DTC1的分类情况数量,Nt是使用所有规则识别的所有DTC的所有分类情况的总数量,且是预定百分比。使用来自于上述示例的数量和阈值0.5,确定(60/100)>0.5为真。因而,满足第二因素。统计显著规则的提取可使用所述因素中的一个或两者,或者可以使用用于识别和提取鲁棒规则的其它因素。
来自于设计相关源30的提取规则和来自于分类器或决策树34的统计显著规则在框36组合。
在框38,组合规则协作地应用于与触发DTC有关的PID,用于识别PID的子组。所识别子组满足每个统计显著规则。图5示出了曲线图,其中,PID子组通过协作地应用统计显著规则识别。应当理解的是,规则的反面是什么隔离和识别PID。例如,第一规则可以是EVAP系统指令清洗必须大于25%。因而,例程隔离EVAP系统指令清洗小于25%的PID。第二规则可以是EVAP系统蒸汽压力必须大于0 Pa。因而,例程隔离EVAP蒸汽压力小于0 Pa的PID。作为协作地应用于PID50的该组规则的结果,识别表示候选异常的PID子组52。
再次参考图2,在框42,在识别PID子组之后,数据由SME分析以确定与所触发DTC有关的异常。异常通过SME、其它胜任人员或自动系统检测。SME可以将DTC异常分类为两类。第一类是不合适前提条件DTC类,第二类是敏感性标定值类。
对于不合适前提条件DTC类,DTC基于在特定前提条件下运行的特定诊断算法触发。示例是用于检测EVAP系统中的大泄漏的DTC诊断算法设计成在加电(power up)模式之后但是在断电(power down)模式之前运行。此外,其它条件必须存在,例如:燃料液位在15-85%之间,发动机冷却剂温度小于35℃,且进气空气温度为4-30℃。如果在DTC设计算法中存在错误,那么在不合适前提条件下将触发DTC。例如,如果DTC诊断算法在发动机处于加电模式或断电模式时运行,那么在这些时段期间触发DTC将是不合适的。使用本文所述的PID分析,SME可以通过分析DTC异常来瞄准和识别不合适设置。
涉及敏感性标定值的异常在DTC软件由于设计条件的不合适实施或者操作参数的一些标定值敏感而具有错误时发生。例如,如果灵活燃料(乙醇混合)车辆设计成使用含有非常低或非常高百分比乙醇的特定百分比乙醇混合燃料操作,那么DTC可取决于关于燃料中的乙醇百分比的敏感性触发。这种类型的敏感性标定值可通过使用本文所述的技术隔离DTC且分析DTC异常来识别。因而,最终分类为未识别故障(trouble not identified,TNF)且随后通过增加新故障码来分类的修理可正确地分类为本文所述技术识别的相应故障码。
在框44,执行校正动作以校正引起异常的问题。校正可包括对车辆的电路、部件、子系统、系统或软件程序的设计校正。校正还可以对运行和执行DTC的诊断软件进行。此外,校正可以对维修修理程序和帮助技术人员分析问题和识别故障的根本原因的其它维修培训文件进行。因而,分析症状基于识别不满足所提取规则的参数识别数据来确定和分析。症状在以下意义上是分析/虚拟的,没有附加硬件或软件增加到车辆来检测故障的根本原因。相反,异常的识别和故障的根本原因通过车外的过程来确定。
虽然已经详细描述用于本发明的某些实施例,但是本发明所属领域技术人员将认识到由所附权利要求限定的用于实践本发明的各种替代设计和实施例。

Claims (13)

1.一种基于参数识别数据中识别的异常来识别维修车辆中的故障的根本原因且执行校正动作的方法,所述方法包括以下步骤:
执行诊断软件例程,以取回用于识别维修车辆的操作中的故障的诊断故障码;
取回与识别有检测故障的诊断故障码有关的参数识别数据;
在计算机上收集来自于经历诊断故障码的多个车辆的参数识别数据;
产生第一组诊断规则,第一组诊断规则识别用于执行诊断故障码算法或触发诊断故障码的车辆操作参数;
产生第二组诊断规则,第二组诊断规则识别用于选择在触发诊断故障码时获得的现场故障数据的车辆操作参数;
从第二组诊断规则提取统计显著规则;
将第一组规则和统计显著规则中的每一个协作地应用于参数识别数据,用于识别表示异常的参数识别数据的子组;
主题专家分析异常,用于识别故障的根本原因;以及
基于所识别的根本原因分析来执行校正动作。
2.根据权利要求1所述的方法,其中,第一组诊断规则从至少一个设计相关文件源获得。
3.根据权利要求1所述的方法,其中,第二组诊断规则从分类器获得。
4.根据权利要求1所述的方法,其中,第二组诊断规则从决策树获得。
5.根据权利要求1所述的方法,其中,统计显著规则使用分类精度技术提取,其中,分类精度技术确定相应规则是否将大于分类阈值的与单个DTC有关的事件数量分类。
6.根据权利要求5所述的方法,其中,用于识别统计显著规则是否满足相应类别的确定由以下公式表示:
其中,是使用相应规则识别的DTC1的分类情况数量,是使用相应规则识别的所有DTC的分类情况数量,且是预定百分比。
7.根据权利要求1所述的方法,其中,统计显著规则使用群体百分比技术提取,其中,群体百分比技术确定由相应规则分类为单个诊断故障码类别的情况数量与诊断故障码类别的情况总数量相比是否满足群体阈值。
8.根据权利要求7所述的方法,其中,用于识别统计显著规则是否满足群体阈值的确定由以下公式表示:
其中,是使用相应规则识别的DTC1的分类情况数量,Nt是所有DTC的所有分类情况的总数量,且是预定百分比。
9.根据权利要求1所述的方法,其中,执行校正动作的步骤包括修正用于评估诊断故障码的诊断软件例程中的至少一个。
10.根据权利要求1所述的方法,其中,执行校正动作的步骤包括修改由维修技术人员使用以评估故障的维修文件。
11.根据权利要求1所述的方法,其中,执行校正动作的步骤包括修正用于触发诊断故障码的诊断软件例程。
12.根据权利要求1所述的方法,其中,执行校正动作的步骤包括修改与故障有关的车辆部件。
13.根据权利要求1所述的方法,其中,执行校正动作的步骤包括修正与故障有关的系统。
CN201210165527.0A 2011-05-25 2012-05-25 检测故障码设置中的异常和使用分析症状增强维修文件 Expired - Fee Related CN102799171B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/115,216 US8509985B2 (en) 2011-05-25 2011-05-25 Detecting anomalies in fault code settings and enhancing service documents using analytical symptoms
US13/115216 2011-05-25

Publications (2)

Publication Number Publication Date
CN102799171A CN102799171A (zh) 2012-11-28
CN102799171B true CN102799171B (zh) 2015-03-11

Family

ID=47140606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210165527.0A Expired - Fee Related CN102799171B (zh) 2011-05-25 2012-05-25 检测故障码设置中的异常和使用分析症状增强维修文件

Country Status (3)

Country Link
US (1) US8509985B2 (zh)
CN (1) CN102799171B (zh)
DE (1) DE102012208537B4 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732112B2 (en) * 2011-12-19 2014-05-20 GM Global Technology Operations LLC Method and system for root cause analysis and quality monitoring of system-level faults
US8977423B2 (en) 2012-05-23 2015-03-10 Snap-On Incorporated Methods and systems for providing vehicle repair information
CN103914059B (zh) * 2013-01-09 2017-02-01 上海通用汽车有限公司 一种远程总线诊断方法及其系统
US9158834B2 (en) 2013-01-21 2015-10-13 Snap-On Incorporated Methods and systems for mapping repair orders within a database
US9336244B2 (en) 2013-08-09 2016-05-10 Snap-On Incorporated Methods and systems for generating baselines regarding vehicle service request data
US9477950B2 (en) 2014-09-04 2016-10-25 Snap-On Incorporated Prognostics-based estimator
US9672497B1 (en) 2013-11-04 2017-06-06 Snap-On Incorporated Methods and systems for using natural language processing and machine-learning to produce vehicle-service content
US9201930B1 (en) 2014-05-06 2015-12-01 Snap-On Incorporated Methods and systems for providing an auto-generated repair-hint to a vehicle repair tool
CN106462158B (zh) * 2014-06-26 2020-01-10 庞巴迪公司 使用检测事件的潜在原因的发生概率辅助维护飞机和其它移动平台的方法和设备
US9639995B2 (en) 2015-02-25 2017-05-02 Snap-On Incorporated Methods and systems for generating and outputting test drive scripts for vehicles
US10216796B2 (en) 2015-07-29 2019-02-26 Snap-On Incorporated Systems and methods for predictive augmentation of vehicle service procedures
US11144888B2 (en) 2015-10-02 2021-10-12 Snap-On Incorporated Method and system for augmenting real-fix tips with additional content
US11429936B2 (en) 2015-10-02 2022-08-30 Snap-On Incorporated System and method for dynamically-changeable displayable pages with vehicle service information
US10643158B2 (en) 2016-04-01 2020-05-05 Snap-On Incorporated Technician timer
US10692035B2 (en) * 2016-07-26 2020-06-23 Mitchell Repair Information Company, Llc Methods and systems for tracking labor efficiency
EP3287859B1 (en) * 2016-08-25 2023-01-25 Ningbo Geely Automobile Research & Development Co., Ltd. Methods and systems for detecting faults in vehicle control systems
US10733548B2 (en) 2017-06-16 2020-08-04 Snap-On Incorporated Technician assignment interface
JP7125491B2 (ja) * 2017-09-29 2022-08-24 ウィー プレディクト リミテッド 機械分析
US11102060B2 (en) * 2018-01-31 2021-08-24 Hewlett Packard Enterprise Development Lp Identification of a soft failure at a member
US10354462B1 (en) 2018-04-06 2019-07-16 Toyota Motor Engineering & Manufacturing North America, Inc. Fault diagnosis in power electronics using adaptive PCA
US10650616B2 (en) 2018-04-06 2020-05-12 University Of Connecticut Fault diagnosis using distributed PCA architecture
CN110389572A (zh) * 2018-04-23 2019-10-29 上海博泰悦臻电子设备制造有限公司 车辆零件故障提前预警方法、系统及服务器
CN110085324B (zh) * 2019-04-25 2023-09-08 深圳市华嘉生物智能科技有限公司 一种多重生存终端结果联合分析的方法
US11150623B2 (en) 2019-06-28 2021-10-19 GM Global Technology Operations LLC Data-driven approach for effective system change identification
US11288900B2 (en) * 2019-09-05 2022-03-29 GM Global Technology Operations LLC Method of enhanced component failure diagnosis for suggesting least probable fault
US11900273B2 (en) * 2019-09-30 2024-02-13 Juniper Networks, Inc. Determining dependent causes of a computer system event
US11904875B2 (en) 2019-10-08 2024-02-20 GM Global Technology Operations LLC Adaptive prognostics systems and methods for vehicles
CN110991668A (zh) * 2019-11-29 2020-04-10 合肥国轩高科动力能源有限公司 一种基于关联规则的电动汽车动力电池监控数据分析方法
FR3110721B1 (fr) 2020-05-20 2022-06-03 Thales Sa Procédé et dispositif électronique de détermination d'une liste d'action(s) de maintenance, programme d'ordinateur associé
CN112199145A (zh) * 2020-10-10 2021-01-08 上海星融汽车科技有限公司 车辆智能诊断方法、系统及诊断设备
JP7447855B2 (ja) * 2021-03-23 2024-03-12 トヨタ自動車株式会社 異常診断装置
CN114112402A (zh) * 2021-11-26 2022-03-01 蜂巢传动科技河北有限公司 车辆变速器的故障识别方法、装置及车辆
CN116502395A (zh) * 2023-01-18 2023-07-28 广东健怡投资有限公司 一种充电故障分析方法、充电故障分析装置以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226404A (zh) * 2008-01-28 2008-07-23 深圳华强信息产业有限公司 车辆故障远程检测诊断系统及其诊断方法
CN101246370A (zh) * 2007-02-15 2008-08-20 德尔菲技术公司 车辆诊断代码通信装置及利用该装置传送诊断数据的方法
CN101382803A (zh) * 2008-10-17 2009-03-11 奇瑞汽车股份有限公司 一种基于saej1939的车载在线诊断系统
CN101840233A (zh) * 2010-04-29 2010-09-22 深圳市共济科技有限公司 一种设备故障检测装置及设备故障检测方法
US7894949B2 (en) * 2006-11-03 2011-02-22 Bayerische Motoren Werke Aktiengesellschaft Fault tracing in the data bus system of a vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008854B2 (en) * 1995-06-07 2015-04-14 American Vehicular Sciences Llc Vehicle component control methods and systems
US20060095230A1 (en) 2004-11-02 2006-05-04 Jeff Grier Method and system for enhancing machine diagnostics aids using statistical feedback
DE102005027378B3 (de) 2005-06-14 2006-11-16 Daimlerchrysler Ag Dynamische Priorisierung von Prüfschritten in der Werkstattdiagnose
DE102005040142A1 (de) 2005-08-25 2007-03-01 Daimlerchrysler Ag Verfahren zur Identifikation komplexer Diagnosesituationen im Kundendienst
DE102007045255B4 (de) 2007-09-21 2021-11-18 Volkswagen Ag Verfahren zur Herstellung eines Diagnosesystems, insbesondere für ein Kraftfahrzeug
US8065342B1 (en) * 2008-02-22 2011-11-22 BorgSolutions, Inc. Method and system for monitoring a mobile equipment fleet
US8315760B2 (en) * 2008-12-03 2012-11-20 Mitchell Repair Information Company LLC Method and system for retrieving diagnostic information
US8301333B2 (en) * 2010-03-24 2012-10-30 GM Global Technology Operations LLC Event-driven fault diagnosis framework for automotive systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894949B2 (en) * 2006-11-03 2011-02-22 Bayerische Motoren Werke Aktiengesellschaft Fault tracing in the data bus system of a vehicle
CN101246370A (zh) * 2007-02-15 2008-08-20 德尔菲技术公司 车辆诊断代码通信装置及利用该装置传送诊断数据的方法
CN101226404A (zh) * 2008-01-28 2008-07-23 深圳华强信息产业有限公司 车辆故障远程检测诊断系统及其诊断方法
CN101382803A (zh) * 2008-10-17 2009-03-11 奇瑞汽车股份有限公司 一种基于saej1939的车载在线诊断系统
CN101840233A (zh) * 2010-04-29 2010-09-22 深圳市共济科技有限公司 一种设备故障检测装置及设备故障检测方法

Also Published As

Publication number Publication date
US20120303205A1 (en) 2012-11-29
CN102799171A (zh) 2012-11-28
DE102012208537A1 (de) 2012-11-29
US8509985B2 (en) 2013-08-13
DE102012208537B4 (de) 2019-03-28

Similar Documents

Publication Publication Date Title
CN102799171B (zh) 检测故障码设置中的异常和使用分析症状增强维修文件
JP7167009B2 (ja) 自動車保証の不正の予測のためのシステム及び方法
US8463485B2 (en) Process for service diagnostic and service procedures enhancement
CN102375452B (zh) 改善故障代码设定和隔离故障的事件驱动的数据挖掘方法
JP4928532B2 (ja) 車両の故障診断装置
US7499777B2 (en) Diagnostic and prognostic method and system
US20070226540A1 (en) Knowledge-Based Diagnostic System for a Complex Technical System, Comprising Two Separate Knowledge Bases for Processing Technical System Data and Customer Complaints
EP3156862B1 (en) Methods and apparatus for the creation and use of reusable fault model components in fault modeling and complex system prognostics
CN108376298A (zh) 一种风电机组发电机温度故障预警诊断方法
CN108027611B (zh) 利用受专家意见监督的决策模式学习的用于机器维护的决策辅助系统和方法
CN102096760A (zh) 在现场故障数据中检测异常
US10032322B2 (en) Validation tool for an aircraft engine monitoring system
CN106021771A (zh) 一种故障诊断方法及装置
CN108829088B (zh) 汽车诊断方法、装置及存储介质
CN110515781B (zh) 一种复杂系统状态监测及故障诊断方法
GB2450241A (en) Bayesian probability analysis for health monitoring and failure prediction of complex systems
KR102279351B1 (ko) 표준 공조기와 운용 공조기의 적합화를 통한 인공지능 기반 고장 진단 방법
CN114239734B (zh) 一种分布式车载健康管理系统
US20220253050A1 (en) Apparatus for assisting maintenance work, method of assisting maintenance work, and program for assisting maintenance work
Singh et al. Data-driven framework for detecting anomalies in field failure data
CN117671818B (zh) 一种车辆数据的管理系统
CN112199295A (zh) 一种基于频谱的深度神经网络缺陷定位方法及系统
EP4167040A1 (en) Fault model editor and diagnostic tool
US11339763B2 (en) Method for windmill farm monitoring
CN105787205A (zh) 基于fmea的故障模式影响关系图示方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150311

CF01 Termination of patent right due to non-payment of annual fee