CN102790793A - Decision method and control module facing to cloud computing virtual machine migration - Google Patents

Decision method and control module facing to cloud computing virtual machine migration Download PDF

Info

Publication number
CN102790793A
CN102790793A CN201210142116XA CN201210142116A CN102790793A CN 102790793 A CN102790793 A CN 102790793A CN 201210142116X A CN201210142116X A CN 201210142116XA CN 201210142116 A CN201210142116 A CN 201210142116A CN 102790793 A CN102790793 A CN 102790793A
Authority
CN
China
Prior art keywords
migration
virtual machine
module
virtual
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210142116XA
Other languages
Chinese (zh)
Inventor
陆月明
邹超
孙松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201210142116XA priority Critical patent/CN102790793A/en
Publication of CN102790793A publication Critical patent/CN102790793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Computer And Data Communications (AREA)

Abstract

本发明提出了一种面向云计算虚拟机迁移的决策方法及控制模块。该方法由迁移触发模块,虚拟主机选择模块和目的节点选择模块三部分组成。首先,通过迁移触发模块设置系统负载阈值,并利用负载预测技术,使系统有效避免瞬间负载峰值触发不必要的虚拟机迁移;然后,虚拟主机选择模块根据迁移代价最小策略选择所要迁移的虚拟主机,把虚拟机迁移代价降到最低,节约系统资源;最后,目的节点选择模块提出基于加权概率选择算法的目的节点选择策略,有效解决了因大量虚拟机迁移引发的群聚冲突问题。最终,该方法能够很好地实现负载均衡,使资源得到公平合理的应用。The invention proposes a decision-making method and a control module for cloud computing virtual machine migration. The method consists of three parts: a migration trigger module, a virtual host selection module and a destination node selection module. First, the system load threshold is set through the migration trigger module, and the load forecasting technology is used to effectively avoid the unnecessary virtual machine migration triggered by the instantaneous load peak; then, the virtual host selection module selects the virtual host to be migrated according to the minimum migration cost strategy, Minimize the cost of virtual machine migration and save system resources; finally, the destination node selection module proposes a destination node selection strategy based on a weighted probability selection algorithm, which effectively solves the cluster conflict problem caused by the migration of a large number of virtual machines. Ultimately, this method can achieve load balancing very well, so that resources can be applied fairly and reasonably.

Description

一种面向云计算虚拟机迁移的决策方法及控制模块A decision-making method and control module for cloud computing virtual machine migration

技术领域 technical field

本发明涉及一种面向云计算虚拟机迁移的决策方法及控制模块,该方法应用于云计算网络系统中虚拟机迁移,属于计算机科学与技术领域。The invention relates to a decision-making method and a control module for cloud computing virtual machine migration. The method is applied to virtual machine migration in a cloud computing network system and belongs to the field of computer science and technology.

背景技术 Background technique

云计算(cloud computing)是近几年国际上兴起的技术方向,也是目前信息技术领域的研究热点。云计算是一种全新的、基于互联网的计算方式。通过这种方式,整个系统的硬件资源被虚拟化成一个统一的虚拟资源池,然后借助虚拟化管理平台把系统中所有的资源按照实际需求或其他策略分配给用户。由于云计算实现了计算机资源的统一管理,用户不再参与底层硬件资源、系统平台甚至是应用软件的搭建、管理和维护,而只需关注自身产品的实际需求,这样就大大降低了企业的运行维护成本。面对其巨大商机,国内外信息产业巨头如IBM、Amazon、Microsoft、Google、华为、中国移动、百度等都已发布自己的云计算平台。Cloud computing (cloud computing) is a technology direction that has risen internationally in recent years, and it is also a research hotspot in the field of information technology. Cloud computing is a new computing method based on the Internet. In this way, the hardware resources of the entire system are virtualized into a unified virtual resource pool, and then all resources in the system are allocated to users according to actual needs or other policies with the help of a virtualization management platform. Because cloud computing realizes the unified management of computer resources, users no longer participate in the construction, management and maintenance of underlying hardware resources, system platforms, and even application software, but only need to pay attention to the actual needs of their own products, which greatly reduces the operating costs of enterprises. maintenance costs. Faced with its huge business opportunities, domestic and foreign information industry giants such as IBM, Amazon, Microsoft, Google, Huawei, China Mobile, Baidu, etc. have released their own cloud computing platforms.

虚拟机迁移技术是云计算中一项关键技术,通过它可以将虚拟机及其服务从一个物理节点(源计算机)完整地迁移到另一个物理节点(目的计算机)。借助虚拟机迁移技术,云计算系统实现了系统在线维护和升级、资源动态管理、系统故障容忍以及动态负载均衡,从而提高了系统资源和能源使用效率,并提高了系统安全性能。Virtual machine migration technology is a key technology in cloud computing, through which virtual machines and their services can be completely migrated from one physical node (source computer) to another physical node (destination computer). With the help of virtual machine migration technology, the cloud computing system realizes online system maintenance and upgrade, resource dynamic management, system fault tolerance and dynamic load balancing, thereby improving system resource and energy efficiency, and improving system security performance.

按虚拟机迁移过程触发因素,虚拟机迁移可分为CPU触发、内存触发、网络带宽触发以及外存储触发四类;按迁移过程中是否中断对用户请求响应并提供服务,虚拟机迁移可分为静态迁移和动态迁移两类。静态迁移是一种停机迁移,即在迁移触发后被迁移的虚拟机立即停止执行并拒绝响应新的服务,直到虚拟机迁移完成;而动态迁移则为系统在不中断对外提供服务或在不被用户感知的前提下完成虚拟机迁移。目前,主流的虚拟化软件提供商都已提出了自己的虚拟机在线迁移技术,如VMware公司的VMotion和Xen公司的Live Migration等。According to the trigger factors of the virtual machine migration process, virtual machine migration can be divided into four types: CPU trigger, memory trigger, network bandwidth trigger, and external storage trigger; according to whether the response to user requests and service provision are interrupted during the migration process, virtual machine migration can be divided into four types: There are two types of static migration and dynamic migration. Static migration is a kind of downtime migration, that is, after the migration is triggered, the migrated virtual machine immediately stops executing and refuses to respond to new services until the virtual machine migration is completed; while dynamic migration is for the system to provide services to the outside world without interruption or without being interrupted. Complete virtual machine migration under the premise of user awareness. At present, mainstream virtualization software providers have proposed their own virtual machine online migration technologies, such as VMotion of VMware and Live Migration of Xen.

现有的迁移机制一般是通过虚拟机控制器管理整个迁移过程,主要以主机CPU利用率作为节点启动迁移的依据,而其迁移目的节点的选择策略通常是基于随机选择或基于最小带宽占用,导致现有的迁移策略普遍缺乏对系统资源敏感性和资源分析的全面性。另外,采用现有的迁移策略进行虚拟机迁移容易导致瞬间负载峰值触发不必要的虚拟机迁移,或引发由群聚效应引起的迁移服务冲突,甚至因迁移目的节点选择不合理而触发二次迁移。针对云计算系统中虚拟机迁移具有迁移数据传输量大、耗时长等特点,本专利提出了一种面向云计算虚拟机迁移的决策方法及控制模块,其中包含迁移触发模块、虚拟主机选择模块以及目的节点选择模块。该方法可有效避免触发不必要的虚拟机迁移,降低虚拟机迁移引起的系统负载,解决因大量虚拟机迁移引发的群聚冲突问题,并很好地平衡了系统负载,最终实现对云计算网络中虚拟机迁移的决策和控制。The existing migration mechanism generally manages the entire migration process through the virtual machine controller, and mainly uses the host CPU utilization as the basis for the node to start the migration, and the selection strategy of the migration destination node is usually based on random selection or based on the minimum bandwidth occupation, resulting in Existing migration strategies generally lack comprehensiveness in system resource sensitivity and resource analysis. In addition, the use of existing migration strategies for virtual machine migration may easily lead to unnecessary virtual machine migration triggered by instantaneous load peaks, or cause migration service conflicts caused by clustering effects, and even trigger secondary migration due to unreasonable selection of migration destination nodes . In view of the fact that virtual machine migration in the cloud computing system has the characteristics of large amount of migration data transmission and long time consumption, this patent proposes a decision-making method and control module for cloud computing virtual machine migration, which includes a migration trigger module, a virtual host selection module and Destination node selection module. This method can effectively avoid triggering unnecessary virtual machine migration, reduce the system load caused by virtual machine migration, solve the cluster conflict problem caused by the migration of a large number of virtual machines, and balance the system load well, and finally realize the cloud computing network Decision and control of virtual machine migration in .

发明内容 Contents of the invention

依据当前的技术背景和条件,并针对云计算网络和虚拟计算资源管理与调度的特点和要求,本发明提出一种面向云计算虚拟机迁移的决策方法及控制模块。Based on the current technical background and conditions, and aiming at the characteristics and requirements of cloud computing network and virtual computing resource management and scheduling, the present invention proposes a decision-making method and control module for cloud computing virtual machine migration.

本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:

本发明是一种面向云计算虚拟机迁移的决策方法及控制模块,它主要由迁移触发模块,虚拟主机选择模块和目的节点选择模块三部分组成。图1显示了上述3个组成部分及其相互关系。其中,每部分的功能如下:The invention is a decision-making method and a control module for cloud computing virtual machine migration, which mainly consists of a migration trigger module, a virtual host selection module and a destination node selection module. Figure 1 shows the above three components and their interrelationships. Among them, the functions of each part are as follows:

迁移触发模块,该模块是云计算环境中虚拟机迁移控制功能模块的一个组件,它的功能为实时监测物理节点(服务器)及其虚拟机的资源使用情况,并结合负载预测技术判定源节点是否需要启动虚拟机迁移过程,避免触发不必要的虚拟机迁移。The migration trigger module is a component of the virtual machine migration control function module in the cloud computing environment. Its function is to monitor the resource usage of the physical node (server) and its virtual machine in real time, and determine whether the source node is The virtual machine migration process needs to be initiated to avoid triggering unnecessary virtual machine migrations.

虚拟主机选择模块,该模块是云计算环境中虚拟机迁移控制功能模块的一个组件,它的功能为根据在源节点(服务器)上运行的各个虚拟机资源分配与使用情况选择最终被迁移的虚拟主机,把虚拟机迁移代价降到最低,节约系统资源。The virtual host selection module is a component of the virtual machine migration control function module in the cloud computing environment. The host machine minimizes the cost of virtual machine migration and saves system resources.

目的节点选择模块,该模块是云计算环境中虚拟机迁移控制功能模块的一个组件,它的功能为根据其他节点(除源节点外)的资源使用情况选择虚拟机迁移的目的节点,避免群聚效应引发服务冲突,并帮助系统实现负载均衡。The destination node selection module is a component of the virtual machine migration control function module in the cloud computing environment. Its function is to select the destination node for virtual machine migration according to the resource usage of other nodes (except the source node) to avoid clustering The effect causes service conflicts and helps the system to achieve load balancing.

在云计算系统环境中,虚拟机迁移控制模块可以采用分布式部署,也可以采用集中式部署。采用分布式是将迁移控制模块部署在每一个网络节点,节点通过广播的形式发布自己的负载情况以及迁移请求;而采用集中式则是将迁移控制模块只部署在系统的管理主机(Administrator),管理主机集中统计网络中所有节点及在其上运行的虚拟机资源分配与利用情况,并统一管理网络中所有虚拟机迁移请求。为方便管理,在云计算系统中一般采用集中式部署。在本专利中如未加详细说明,迁移控制模块默认采用集中式部署方式。In a cloud computing system environment, the virtual machine migration control module can be deployed in a distributed or centralized manner. In distributed mode, the migration control module is deployed on each network node, and the nodes publish their load status and migration requests in the form of broadcast; in centralized mode, the migration control module is only deployed on the management host (Administrator) of the system. The management host collects statistics on all nodes in the network and the resource allocation and utilization of virtual machines running on them, and manages all virtual machine migration requests in the network in a unified manner. To facilitate management, centralized deployment is generally adopted in cloud computing systems. If there is no detailed description in this patent, the migration control module adopts a centralized deployment mode by default.

如图2流程图所示,在云计算环境中完成虚拟机迁移可分为如下5个步骤:a、源节点(服务器)启动迁移触发模块,b、迁移触发模块启动虚拟机迁移程序,c、虚拟主机选择模块选择需要迁移的虚拟主机,d、目的节点选择模块选择虚拟机迁移的目的节点,e、系统建立网络连接,完成虚拟机迁移。As shown in the flow chart of Figure 2, completing the virtual machine migration in the cloud computing environment can be divided into the following 5 steps: a, the source node (server) starts the migration trigger module, b, the migration trigger module starts the virtual machine migration program, c, The virtual host selection module selects the virtual host to be migrated, d. the destination node selection module selects the destination node for virtual machine migration, and e. the system establishes a network connection to complete the virtual machine migration.

(一)源节点(服务器)启动迁移触发模块。当节点负载长时间超过负载阈值会造成服务响应变慢或网络堵塞,甚至导致虚拟机死机或源节点(服务器)崩溃。在本专利中迁移触发模块根据节点的具体资源配置与所提供的服务为每一个节点的CPU、内存、外存储器以及带宽分别设置负载阈值。当节点负载超过规定的阈值,源节点(服务器)启动迁移触发模块并记录触发类型。(1) The source node (server) starts the migration trigger module. When the node load exceeds the load threshold for a long time, it will cause slow service response or network congestion, and even cause the virtual machine to crash or the source node (server) to crash. In this patent, the migration trigger module sets load thresholds for each node's CPU, memory, external storage, and bandwidth according to the specific resource configuration and services provided by the node. When the node load exceeds the specified threshold, the source node (server) starts the migration trigger module and records the trigger type.

(二)迁移触发模块启动虚拟机迁移程序。迁移触发模块以周期T持续监听节点负载,在连续的N个监测周期内,源节点负载如满足以下三个条件:a、负载均值超过设置的阈值,b、至少有n(0<n≤N)次监测值超过阈值,c、利用负载预测技术得到源节点(服务器)在未来N个周期的负载同样满足前两个条件,则迁移触发模块在源节点上启动虚拟机迁移程序。如上述三个条件不能同时满足,则迁移触发模块继续侦听。其中,n和N越小,触发条件越宽松,导致无效迁移的可能性越大;反之,n和N越大,触发条件越严格,引发系统性能下降甚至是因负载过重引发系统崩溃的可能性越大(2) The migration trigger module starts the virtual machine migration program. The migration trigger module continuously monitors the node load with a period T. In the continuous N monitoring periods, if the source node load meets the following three conditions: a. The load average value exceeds the set threshold; b. There are at least n (0<n≤N ) times the monitoring value exceeds the threshold, c, using the load prediction technology to obtain the load of the source node (server) in the next N cycles also meets the first two conditions, then the migration trigger module starts the virtual machine migration program on the source node. If the above three conditions cannot be satisfied at the same time, the migration trigger module continues to listen. Among them, the smaller n and N are, the looser the trigger conditions are, and the greater the possibility of invalid migration is; on the contrary, the larger n and N are, the stricter the trigger conditions are, which may cause system performance degradation or even system crash due to heavy load more sex

(三)虚拟主机选择模块选择需要迁移的虚拟主机。虚拟主机选择模块选需迁移的虚拟主机主要考虑如下两方面:a、所迁移的虚拟主机占用的计算资源必须大于节点负载超过负载阈值部分,即迁移后的节点负载可重新回到负载阈值以内;b、迁移时间、宕机时间(down time)需尽可能短,迁移完成所需的数据传输量尽可能少。根据迁移触发类型、虚拟机提供服务的类型以及迁移对系统负载与服务请求影响,本策略对虚拟机所占用的计算机资源(CPU,内存,外存储,网络带宽)赋予迁移代价加权系数(hc,hm,hs,hb),其中hc+hm+hs+hb=1。其具体步骤如下:(3) The virtual host selection module selects the virtual host to be migrated. The virtual host selection module selects the virtual host to be migrated mainly considering the following two aspects: a. The computing resources occupied by the migrated virtual host must be greater than the part where the node load exceeds the load threshold, that is, the migrated node load can return to within the load threshold; b. The migration time and downtime (down time) should be as short as possible, and the amount of data transfer required for the completion of the migration should be as small as possible. According to the type of migration trigger, the type of service provided by the virtual machine, and the impact of migration on system load and service requests, this policy assigns a migration cost weighted coefficient (h c , h m , h s , h b ), where h c +h m +h s +h b =1. The specific steps are as follows:

(1)虚拟主机选择模块检测节点上所有虚拟机{VM|VM1,VM2,…}实际使用的计算机资源,其中将虚拟机VMi(VMi∈VM)的资源(CPU,内存,外存储,网络带宽)占用量记为:(VMic,VMim,VMis,VMib)。(1) The virtual host selection module detects the computer resources actually used by all virtual machines {VM|VM1, VM2, ...} on the node, among which the resources (CPU, memory, external storage, network bandwidth) of the virtual machine VMi (VMi∈VM) ) is recorded as: (VMi c , VMi m , VMi s , VMi b ).

(2)虚拟主机选择模块根据源节点(服务器)超出阈值的负载大小和触发类型,筛选出所有在迁出后能使源节点(服务器)负载恢复到阈值以内的虚拟机。(2) The virtual host selection module screens out all virtual machines that can restore the load of the source node (server) to within the threshold after relocation according to the load size and trigger type of the source node (server) exceeding the threshold.

(3)虚拟主机选择模块计算所有被筛选出虚拟机的迁移代价加权值H。VMi的迁移代价加权值Hi=VMic*hc+VMim*hm+VMis*hs+VMib*hb(3) The virtual host selection module calculates the migration cost weighted value H of all selected virtual machines. The migration cost weight value H i of VMi =VMi c *h c +VMi m *h m +VMi s *h s +VMi b *h b .

(4)选取H值最小的虚拟机作为迁移的虚拟主机。(4) Select the virtual machine with the smallest H value as the virtual host for migration.

(四)目的节点选择模块选择虚拟机迁移的目的节点。在接受到虚拟主机选择模块提供的虚拟主机相关信息后,目的节点选择模块根据虚拟主机对计算资源的需求选择迁移目的节点。选择目的节点主要从如下两方面考虑:a、目的节点所有资源中的空闲资源部分必须达到所迁移虚拟主机对资源的需求。空闲资源是指目的节点负载阈值减去已使用的资源量后的资源剩余量。其中,已使用的资源量与步骤(二)中获取源节点(服务器)负载的计算方法相似,通过先统计并预测M个周期的系统负载值然后求平均值得到。b、在满足条件的节点集合中,综合负载越低的节点接收虚拟机迁移可能性越大,同时应避免多个迁移服务群聚效应引发的服务冲突。基于以上考虑,本专利对满足条件的节点(服务器)资源(CPU,内存,外存储,网络带宽)赋予相应的权重值:(dc,dm,ds,db),其中dc+dm+ds+db=1。(4) The destination node selection module selects a destination node for virtual machine migration. After receiving the relevant information about the virtual host provided by the virtual host selection module, the destination node selection module selects the migration destination node according to the demand of the virtual host for computing resources. The selection of the destination node is mainly considered from the following two aspects: a. The idle resources of all the resources of the destination node must meet the resource requirements of the migrated virtual host. Idle resources refer to the remaining resources after subtracting the used resources from the load threshold of the destination node. Wherein, the used resource amount is similar to the calculation method of obtaining the load of the source node (server) in step (2), which is obtained by first counting and predicting the system load values of M periods and then calculating the average value. b. In the set of nodes that meet the conditions, the node with the lower comprehensive load is more likely to receive virtual machine migration, and at the same time, service conflicts caused by the clustering effect of multiple migration services should be avoided. Based on the above considerations, this patent assigns corresponding weight values to node (server) resources (CPU, memory, external storage, network bandwidth) that meet the conditions: (d c , d m , d s , d b ), where d c + d m +d s +d b =1.

其具体步骤如下:The specific steps are as follows:

(1)目的节点选择模块通过类似于步骤(二)中先观察后预测的负载监测技术获取所有节点{DN|DN1,DN2,…}的空闲资源大小,并将节点DNi(DNi∈DN)的资源(CPU,内存,外存储,网络带宽)占用量记为:(DNic,DNim,DNis,DNib)。(1) The destination node selection module obtains the free resource size of all nodes {DN|DN1, DN2, ...} through the load monitoring technology similar to the observation first and prediction in step (2), and assigns the node DNi (DNi∈DN) The occupancy of resources (CPU, memory, external storage, network bandwidth) is recorded as: (DNi c , DNi m , DNi s , DNi b ).

(2)根据目的节点的空余资源量必须大于被迁移虚拟主机所需资源量的原则,目的节点选择模块筛选出所有可以接受虚拟主机的节点(服务器)。(2) According to the principle that the amount of free resources of the destination node must be greater than the amount of resources required by the migrated virtual host, the destination node selection module screens out all nodes (servers) that can accept the virtual host.

(3)目的节点选择模块计算被筛选出的节点(服务器)优先作为虚拟机迁移目的节点的加权值D,其中DNi作为目的节点的加权值Di=DNic*dc+DNim*dm+DNis*ds+DNib*db(3) The destination node selection module calculates the selected node (server) as the weighted value D of the virtual machine migration destination node, wherein DNi is used as the weighted value of the destination node D i = DNi c * d c + DNi m * d m +DNi s *d s +DNi b *d b .

(4)目的节点选择模块计算每个节点可能成为目的节点的加权概率值:pi=Di/∑Di,通过概率选择方式从被筛选出的节点集合中选择一个节点作为目的节点。其中,Di值越大的节点被选为目的节点的可能性越大。(4) The destination node selection module calculates the weighted probability value of each node that may become a destination node: p i =D i /ΣD i , and selects a node from the selected node set as the destination node by means of probability selection. Among them, the node with the larger Di value is more likely to be selected as the destination node.

(5)在虚拟机迁移程序执行过程中,目的节点选择模块将锁定源节点和目的节点,将这两个节点作为其他虚拟机迁移程序的迁移目的节点加权值D被强制置为0,直到本次虚拟机迁移程序执行结束。(5) During the execution of the virtual machine migration program, the destination node selection module will lock the source node and the destination node, and use these two nodes as the migration destination nodes of other virtual machine migration programs. The execution of the secondary virtual machine migration program ends.

(五)源节点(服务器)和目的节点建立网络连接并完成虚拟机迁移。(5) The source node (server) establishes a network connection with the destination node and completes the migration of the virtual machine.

附图说明 Description of drawings

图1面向云计算虚拟机迁移的决策方法及控制模块示意图Figure 1 Schematic diagram of the decision-making method and control module for cloud computing virtual machine migration

图2面向云计算虚拟机迁移的流程图Figure 2 Flowchart of Cloud Computing-oriented Virtual Machine Migration

图3面向云计算虚拟机迁移的决策方法及控制模块实例图Figure 3 The decision-making method and control module instance diagram for cloud computing virtual machine migration

具体实施方式 Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例也仅仅是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings of the embodiments of the present invention. Obviously, the described embodiments are only the embodiments of the present invention. Some examples, but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

为了具体说明面向云计算的虚拟机迁移决策方法和控制模块,这里给出了一个如图3的实施例。在该实施例中,系统由一个采用集中式部署的虚拟机迁移控制模块和四台服务器组成,分别为源节点、节点1、节点2、节点3(IP分别为:10.108.36.100、10.108.36.101、10.108.36.102、10.108.36.103)。源服务器系统为双核x86系统,CPU主频为2.4GHz,CPU负载阈值为68%,在源服务器上运行有三个虚拟机(VM1,VM2,VM3)。In order to specifically illustrate the cloud computing-oriented virtual machine migration decision-making method and control module, an embodiment as shown in FIG. 3 is given here. In this embodiment, the system consists of a virtual machine migration control module that adopts centralized deployment and four servers, which are source node, node 1, node 2, and node 3 (IPs are: 10.108.36.100, 10.108.36.101 , 10.108.36.102, 10.108.36.103). The source server system is a dual-core x86 system with a CPU frequency of 2.4GHz and a CPU load threshold of 68%. There are three virtual machines (VM1, VM2, VM3) running on the source server.

第一步,如图3(a)所示,在t0时刻源服务器CPU负载超过设置的阈值68%,迁移触发模块被触发启动并记录下触发类型为CPU触发。In the first step, as shown in Figure 3(a), at time t 0 , the CPU load of the source server exceeds the set threshold of 68%, and the migration trigger module is triggered to start and records that the trigger type is CPU trigger.

第二步,如图3(a)所示,迁移触发模块以0.5s为周期连续监测20个周期。迁移触发模块监测得到源服务器的CPU负载均值为83%(大于阈值68%并超出15%)且其中多于10次负载值大于负载阈值;另外,通过负载预测技术,在未来20个周期内源节点CPU负载也满足以上两个条件,迁移触发模块启动虚拟机迁移程序并触发虚拟主机选择模块。In the second step, as shown in Figure 3(a), the migration trigger module continuously monitors for 20 periods with a period of 0.5s. The migration trigger module monitors that the average CPU load of the source server is 83% (greater than the threshold of 68% and exceeding 15%), and the load value is greater than the load threshold for more than 10 times; in addition, through the load prediction technology, the source server will The node CPU load also meets the above two conditions, and the migration trigger module starts the virtual machine migration program and triggers the virtual host selection module.

第三步,如图3(b)所示,虚拟主机选择模块监测到三个虚拟机计算资源(CPU,内存,外存储,网络带宽)使用情况分别为(14%*4.8GHz,2.0G,2.5T,1.2GB/s)、(25%*4.8GHz,2.5G,3.5T,1.5GB/s)、(30%*4.8GHz,3.0G,3.7T,1.6GB/s),其中VM2和VM3的CPU负载均值大于15%,满足作为虚拟主机的初步条件。设迁移代价加权系数(hc,hm,hs,hb)为(0.1,0.3,0.4,0.2),可有虚拟机VM2的迁移代价加权值H2=25%*4.8*0.1+2.5*0.3+3.5*0.4+1.5*0.2=2.57,同理有虚拟机VM3的迁移代价加权值H3=2.84;最终,虚拟主机选择模块选择VM2为被迁移的虚拟主机,同时触发并把VM2的相关信息告知目的节点选择模块。The third step, as shown in Figure 3 (b), the virtual host selection module monitors the usage of three virtual machine computing resources (CPU, memory, external storage, network bandwidth) as (14%*4.8GHz, 2.0G, 2.5T, 1.2GB/s), (25%*4.8GHz, 2.5G, 3.5T, 1.5GB/s), (30%*4.8GHz, 3.0G, 3.7T, 1.6GB/s), where VM2 and The average CPU load of VM3 is greater than 15%, which meets the preliminary conditions for being a virtual host. Let migration cost weighting coefficients (h c , h m , h s , h b ) be (0.1, 0.3, 0.4, 0.2), the migration cost weighted value H 2 of virtual machine VM2 = 25%*4.8*0.1+2.5 *0.3+3.5*0.4+1.5*0.2=2.57, similarly, the weighted value H 3 of the migration cost of the virtual machine VM3=2.84; finally, the virtual host selection module selects VM2 as the virtual host to be migrated, and simultaneously triggers and converts VM2 The relevant information informs the destination node selection module.

第四步,如图3(c)所示,目的节点选择模块提取其他所有节点资源空余信息,分别为节点1(1.0GHz,2.0G,4T,2.0GB/s)、节点2(2.0GHz,3.0G,4.3T,2.5GB/s)、节点3(2.5GHz,3.5G,5.0T,2.5G B/s),根据虚拟主机选择模块提供的VM2相关信息,由于节点1的CPU和内存剩余值都不能满足VM2的需求,初步筛选出节点2与节点3为备选目的节点,并设置(dc,dm,ds,db)为(0.3,0.3,0.2,0.2);目的节点选择模块根据权值计算策略得到节点2作为目的节点的加权值D为D2=2.0*0.3+3.0*0.3+4.3*0.2+2.5*0.2=2.86,同理,D3=3.3。根据加权概率值pi=Di/∑Di的得到p2=45%、p3=55%,目的节点选择模块根据概率选择策略最终选择节点3为目的服务器。The fourth step, as shown in Figure 3(c), the destination node selection module extracts the resource vacancy information of all other nodes, which are node 1 (1.0GHz, 2.0G, 4T, 2.0GB/s), node 2 (2.0GHz, 3.0G, 4.3T, 2.5GB/s), node 3 (2.5GHz, 3.5G, 5.0T, 2.5G B/s), according to the VM2 related information provided by the virtual host selection module, due to the CPU and memory remaining value of node 1 None of them can meet the needs of VM2, so Node 2 and Node 3 are preliminarily screened out as alternative destination nodes, and (d c , d m , d s , d b ) are set to (0.3, 0.3, 0.2, 0.2); the destination node selection According to the weight value calculation strategy, the module obtains the weight value D of node 2 as the destination node as D2=2.0*0.3+3.0*0.3+4.3*0.2+2.5*0.2=2.86, similarly, D3=3.3. According to p 2 =45% and p 3 =55% obtained from the weighted probability value pi=Di/ΣDi, the destination node selection module finally selects node 3 as the destination server according to the probability selection strategy.

最后,如图3(d)所示,源服务器(10.108.36.100)与节点3(10.108.36.102)间建立网络连接,进行相应的计算机资源迁移并完成整个虚拟机迁移过程。Finally, as shown in Figure 3(d), a network connection is established between the source server (10.108.36.100) and node 3 (10.108.36.102), the corresponding computer resources are migrated and the entire virtual machine migration process is completed.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (4)

1.一种面向云计算虚拟机迁移的决策方法及控制模块,其特征在于:该方法由迁移触发模块,虚拟主机选择模块和目的节点选择模块三部分组成。其中,迁移触发模块判断系统是否需要触发虚拟机迁移;虚拟机选择模块决定源节点上的哪个虚拟主机需要迁移;目的节点选择模块决定迁移的目的节点(服务器)。1. A decision-making method and control module for cloud computing virtual machine migration, characterized in that: the method is composed of a migration trigger module, a virtual host selection module and a destination node selection module. Wherein, the migration trigger module judges whether the system needs to trigger virtual machine migration; the virtual machine selection module decides which virtual host on the source node needs to be migrated; the destination node selection module decides the destination node (server) for migration. 2.根据权利要求1所述的迁移触发模块,其特征在于:该模块通过设置系统负载阈值,并利用负载预测技术判定源节点(服务器)是否需要触发虚拟机迁移程序,使系统有效避免瞬间负载峰值触发不必要的虚拟机迁移。2. The migration trigger module according to claim 1, characterized in that: the module determines whether the source node (server) needs to trigger the virtual machine migration program by setting the system load threshold and using load prediction technology, so that the system can effectively avoid instantaneous load Spikes trigger unnecessary virtual machine migrations. 3.根据权利要求1所述的迁移主机选择模块,其特征在于:该模块首先筛选出所有迁移后能使源节点(服务器)低于负载阈值运行的虚拟机,然后计算虚拟机的迁移代价加权值,最后选择加权值最小的虚拟机作为迁移主机;该模块使虚拟机迁移代价降到最低,节约系统资源。3. The migration host selection module according to claim 1, characterized in that: the module first screens out all virtual machines that can make the source node (server) run below the load threshold after all migrations, and then calculates the weighted migration cost of the virtual machines value, and finally select the virtual machine with the smallest weighted value as the migration host; this module minimizes the cost of virtual machine migration and saves system resources. 4.根据权利要求1所述的目的节点选择模块,其特征在于:该模块通过使用加权概率算法选择目的节点,对目标节点的资源进行全面的分析,有效解决了因大量虚拟机迁移引发的群聚冲突问题,并很好地实现负载均衡,使资源得到公平合理的应用。4. The target node selection module according to claim 1, characterized in that: the module selects the target node by using a weighted probability algorithm, and conducts a comprehensive analysis of the resources of the target node, effectively solving the cluster problem caused by the migration of a large number of virtual machines. Aggregate conflicts, and achieve load balancing well, so that resources can be used fairly and reasonably.
CN201210142116XA 2012-05-08 2012-05-08 Decision method and control module facing to cloud computing virtual machine migration Pending CN102790793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210142116XA CN102790793A (en) 2012-05-08 2012-05-08 Decision method and control module facing to cloud computing virtual machine migration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210142116XA CN102790793A (en) 2012-05-08 2012-05-08 Decision method and control module facing to cloud computing virtual machine migration

Publications (1)

Publication Number Publication Date
CN102790793A true CN102790793A (en) 2012-11-21

Family

ID=47156092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210142116XA Pending CN102790793A (en) 2012-05-08 2012-05-08 Decision method and control module facing to cloud computing virtual machine migration

Country Status (1)

Country Link
CN (1) CN102790793A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002038A (en) * 2012-12-13 2013-03-27 华为技术有限公司 Processing method and device for elastic load balancing
CN103077082A (en) * 2013-01-08 2013-05-01 中国科学院深圳先进技术研究院 Method and system for distributing data center load and saving energy during virtual machine migration
CN103440158A (en) * 2013-07-29 2013-12-11 西北工业大学 Hotspot migration method for cloud resource scheduling
CN103514046A (en) * 2013-09-24 2014-01-15 华为技术有限公司 Virtual machine placement method and cluster management server
CN103607459A (en) * 2013-11-21 2014-02-26 东北大学 Dynamic resource monitoring and scheduling method of cloud computing platform IaaS layer
CN103825963A (en) * 2014-03-18 2014-05-28 中国科学院声学研究所 Virtual service transition method
CN103856480A (en) * 2012-11-30 2014-06-11 国际商业机器公司 User datagram protocol (UDP) packet migration in a virtual machine (VM) migration
CN103916438A (en) * 2013-01-06 2014-07-09 上海计算机软件技术开发中心 Cloud testing environment scheduling method and system based on load forecast
CN104008018A (en) * 2014-05-22 2014-08-27 南京邮电大学 Virtual machine online migration method in cloud computing environment
CN104184806A (en) * 2014-08-14 2014-12-03 合肥工业大学 IAAS virtual machine dynamic migration method balancing energy consumption and service quality
CN104199736A (en) * 2014-06-30 2014-12-10 浙江大学苏州工业技术研究院 Energy-saving method for data center in cloud environment
CN104216756A (en) * 2013-05-30 2014-12-17 富士通株式会社 Virtual machine managing apparatus, method of managing virtual machine, and information processing system
CN104283951A (en) * 2014-09-29 2015-01-14 华为技术有限公司 A method, device and system for instance migration
CN104461673A (en) * 2013-09-18 2015-03-25 华为技术有限公司 Virtual machine transferring judgment method and device
CN104468759A (en) * 2014-11-27 2015-03-25 中国联合网络通信集团有限公司 Method and device for achieving application migration in PaaS platform
CN104836819A (en) * 2014-02-10 2015-08-12 阿里巴巴集团控股有限公司 Dynamic load balancing method and system, and monitoring and dispatching device
CN104935628A (en) * 2015-04-20 2015-09-23 电子科技大学 A method of migrating multiple associated virtual machines between multiple data centers
CN105335234A (en) * 2015-10-29 2016-02-17 贵州电网有限责任公司电力调度控制中心 Method for immediately migrating virtual machine
CN105359489A (en) * 2013-08-08 2016-02-24 华为技术有限公司 Method, device and system for scheduling resources
CN106528270A (en) * 2016-11-16 2017-03-22 航天信息股份有限公司 Automatic migration method and system of virtual machine based on OpenStack cloud platform
CN106598693A (en) * 2016-05-11 2017-04-26 河南理工大学 Energy consumption and load aware virtual machine integration method based on time delay strategy
CN106681797A (en) * 2016-12-28 2017-05-17 深圳先进技术研究院 Virtual machine application migration method and device and server
CN106844051A (en) * 2017-01-19 2017-06-13 河海大学 The loading commissions migration algorithm of optimised power consumption in a kind of edge calculations environment
CN106874116A (en) * 2017-02-14 2017-06-20 郑州云海信息技术有限公司 A kind of server selection method and device for placing newly-built virtual machine
CN107196865A (en) * 2017-06-08 2017-09-22 中国民航大学 A kind of adaptive threshold overload moving method of Load-aware
CN107783823A (en) * 2017-11-21 2018-03-09 郑州云海信息技术有限公司 A kind of load-balancing method and device
CN108563489A (en) * 2018-04-02 2018-09-21 郑州云海信息技术有限公司 A kind of virtual machine migration method and system of data center's total management system
CN110321198A (en) * 2019-07-04 2019-10-11 广东石油化工学院 A kind of container cloud platform computing resource and Internet resources coordinated dispatching method and system
CN110389813A (en) * 2019-06-17 2019-10-29 东南大学 A Virtual Machine Dynamic Migration Method Oriented to Network Shooting Range
CN110401695A (en) * 2019-06-12 2019-11-01 北京因特睿软件有限公司 Cloud resource dynamic dispatching method, device and equipment
CN110865872A (en) * 2019-11-14 2020-03-06 北京京航计算通讯研究所 Virtualized cluster resource scheduling system based on resource rationalization application
CN111897652A (en) * 2020-07-30 2020-11-06 湖南匡楚科技有限公司 L-BFGS-based cloud resource dynamic optimization method
CN112669908A (en) * 2019-10-15 2021-04-16 香港中文大学 Predictive model incorporating data packets
WO2021129534A1 (en) * 2019-12-23 2021-07-01 华为技术有限公司 Method for migrating function node, and related device
CN115242662A (en) * 2022-09-22 2022-10-25 音信云(武汉)信息技术有限公司 Cloud computing-based data resource allocation method and device
WO2023274049A1 (en) * 2021-06-30 2023-01-05 华为技术有限公司 Virtual machine migration method and related apparatus
CN115878329A (en) * 2023-02-02 2023-03-31 天翼云科技有限公司 Host resource scheduling method and device, electronic equipment and storage medium
CN117850973A (en) * 2023-12-15 2024-04-09 天翼云科技有限公司 Virtual machine migration triggering method and system based on deep learning
CN119862040A (en) * 2025-03-24 2025-04-22 中国电子信息产业集团有限公司第六研究所 Cloud platform resource scheduling method and device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739287A (en) * 2008-11-13 2010-06-16 国际商业机器公司 Device, system and method for managing virtual machines
US20100274890A1 (en) * 2009-04-28 2010-10-28 Patel Alpesh S Methods and apparatus to get feedback information in virtual environment for server load balancing
CN102096601A (en) * 2011-02-11 2011-06-15 浪潮(北京)电子信息产业有限公司 Virtual machine migration management method and system
CN102236582A (en) * 2011-07-15 2011-11-09 浙江大学 Method for balanced distribution of virtualization cluster load in a plurality of physical machines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739287A (en) * 2008-11-13 2010-06-16 国际商业机器公司 Device, system and method for managing virtual machines
US20100274890A1 (en) * 2009-04-28 2010-10-28 Patel Alpesh S Methods and apparatus to get feedback information in virtual environment for server load balancing
CN102096601A (en) * 2011-02-11 2011-06-15 浪潮(北京)电子信息产业有限公司 Virtual machine migration management method and system
CN102236582A (en) * 2011-07-15 2011-11-09 浙江大学 Method for balanced distribution of virtualization cluster load in a plurality of physical machines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭涛 等: "基于个性化的云平台虚拟机部署机制的研究", 《大连理工大学学报》 *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856480A (en) * 2012-11-30 2014-06-11 国际商业机器公司 User datagram protocol (UDP) packet migration in a virtual machine (VM) migration
CN103002038A (en) * 2012-12-13 2013-03-27 华为技术有限公司 Processing method and device for elastic load balancing
CN103002038B (en) * 2012-12-13 2016-01-20 华为技术有限公司 The processing method of elastic load equilibrium and device
CN103916438B (en) * 2013-01-06 2017-04-12 上海计算机软件技术开发中心 Cloud testing environment scheduling method and system based on load forecast
CN103916438A (en) * 2013-01-06 2014-07-09 上海计算机软件技术开发中心 Cloud testing environment scheduling method and system based on load forecast
CN103077082B (en) * 2013-01-08 2016-12-28 中国科学院深圳先进技术研究院 A kind of data center loads distribution and virtual machine (vm) migration power-economizing method and system
CN103077082A (en) * 2013-01-08 2013-05-01 中国科学院深圳先进技术研究院 Method and system for distributing data center load and saving energy during virtual machine migration
CN104216756B (en) * 2013-05-30 2017-08-29 富士通株式会社 Virtual machine administration device, the method and information processing system for managing virtual machine
CN104216756A (en) * 2013-05-30 2014-12-17 富士通株式会社 Virtual machine managing apparatus, method of managing virtual machine, and information processing system
CN103440158A (en) * 2013-07-29 2013-12-11 西北工业大学 Hotspot migration method for cloud resource scheduling
CN103440158B (en) * 2013-07-29 2016-03-30 西北工业大学 The hotspot migration method of facing cloud scheduling of resource
CN105359489A (en) * 2013-08-08 2016-02-24 华为技术有限公司 Method, device and system for scheduling resources
CN104461673B (en) * 2013-09-18 2018-10-30 华为技术有限公司 A kind of virtual machine (vm) migration determination method and device
CN104461673A (en) * 2013-09-18 2015-03-25 华为技术有限公司 Virtual machine transferring judgment method and device
CN103514046A (en) * 2013-09-24 2014-01-15 华为技术有限公司 Virtual machine placement method and cluster management server
CN103514046B (en) * 2013-09-24 2017-04-26 华为技术有限公司 Virtual machine placement method and cluster management server
CN103607459A (en) * 2013-11-21 2014-02-26 东北大学 Dynamic resource monitoring and scheduling method of cloud computing platform IaaS layer
CN104836819A (en) * 2014-02-10 2015-08-12 阿里巴巴集团控股有限公司 Dynamic load balancing method and system, and monitoring and dispatching device
CN103825963B (en) * 2014-03-18 2017-12-22 中国科学院声学研究所 Virtual Service moving method
CN103825963A (en) * 2014-03-18 2014-05-28 中国科学院声学研究所 Virtual service transition method
CN104008018A (en) * 2014-05-22 2014-08-27 南京邮电大学 Virtual machine online migration method in cloud computing environment
CN104008018B (en) * 2014-05-22 2017-03-08 南京邮电大学 The online moving method of virtual machine under cloud computing environment
CN104199736A (en) * 2014-06-30 2014-12-10 浙江大学苏州工业技术研究院 Energy-saving method for data center in cloud environment
CN104184806B (en) * 2014-08-14 2017-05-17 合肥工业大学 IAAS virtual machine dynamic migration method balancing energy consumption and service quality
CN104184806A (en) * 2014-08-14 2014-12-03 合肥工业大学 IAAS virtual machine dynamic migration method balancing energy consumption and service quality
CN104283951A (en) * 2014-09-29 2015-01-14 华为技术有限公司 A method, device and system for instance migration
CN104283951B (en) * 2014-09-29 2018-03-27 华为技术有限公司 The method, apparatus and system of a kind of instance migration
CN104468759A (en) * 2014-11-27 2015-03-25 中国联合网络通信集团有限公司 Method and device for achieving application migration in PaaS platform
CN104468759B (en) * 2014-11-27 2018-06-01 中国联合网络通信集团有限公司 The method and apparatus that application migration is realized in PaaS platform
CN104935628A (en) * 2015-04-20 2015-09-23 电子科技大学 A method of migrating multiple associated virtual machines between multiple data centers
CN105335234A (en) * 2015-10-29 2016-02-17 贵州电网有限责任公司电力调度控制中心 Method for immediately migrating virtual machine
CN106598693A (en) * 2016-05-11 2017-04-26 河南理工大学 Energy consumption and load aware virtual machine integration method based on time delay strategy
CN106528270A (en) * 2016-11-16 2017-03-22 航天信息股份有限公司 Automatic migration method and system of virtual machine based on OpenStack cloud platform
CN106681797A (en) * 2016-12-28 2017-05-17 深圳先进技术研究院 Virtual machine application migration method and device and server
CN106681797B (en) * 2016-12-28 2019-11-29 深圳先进技术研究院 A kind of virtual machine application moving method, device and a kind of server
CN106844051A (en) * 2017-01-19 2017-06-13 河海大学 The loading commissions migration algorithm of optimised power consumption in a kind of edge calculations environment
CN106874116A (en) * 2017-02-14 2017-06-20 郑州云海信息技术有限公司 A kind of server selection method and device for placing newly-built virtual machine
CN107196865A (en) * 2017-06-08 2017-09-22 中国民航大学 A kind of adaptive threshold overload moving method of Load-aware
CN107196865B (en) * 2017-06-08 2020-07-24 中国民航大学 Load-aware adaptive threshold overload migration method
CN107783823A (en) * 2017-11-21 2018-03-09 郑州云海信息技术有限公司 A kind of load-balancing method and device
CN108563489A (en) * 2018-04-02 2018-09-21 郑州云海信息技术有限公司 A kind of virtual machine migration method and system of data center's total management system
CN110401695A (en) * 2019-06-12 2019-11-01 北京因特睿软件有限公司 Cloud resource dynamic dispatching method, device and equipment
CN110389813B (en) * 2019-06-17 2023-07-28 东南大学 Virtual machine dynamic migration method for network target range
CN110389813A (en) * 2019-06-17 2019-10-29 东南大学 A Virtual Machine Dynamic Migration Method Oriented to Network Shooting Range
CN110321198A (en) * 2019-07-04 2019-10-11 广东石油化工学院 A kind of container cloud platform computing resource and Internet resources coordinated dispatching method and system
CN110321198B (en) * 2019-07-04 2020-08-25 广东石油化工学院 Container cloud platform computing resource and network resource cooperative scheduling method and system
CN112669908A (en) * 2019-10-15 2021-04-16 香港中文大学 Predictive model incorporating data packets
CN110865872A (en) * 2019-11-14 2020-03-06 北京京航计算通讯研究所 Virtualized cluster resource scheduling system based on resource rationalization application
WO2021129534A1 (en) * 2019-12-23 2021-07-01 华为技术有限公司 Method for migrating function node, and related device
CN113098917A (en) * 2019-12-23 2021-07-09 华为技术有限公司 Method for migrating functional nodes and related equipment
CN113098917B (en) * 2019-12-23 2024-06-04 华为云计算技术有限公司 Method and related device for migrating functional nodes
CN111897652A (en) * 2020-07-30 2020-11-06 湖南匡楚科技有限公司 L-BFGS-based cloud resource dynamic optimization method
CN111897652B (en) * 2020-07-30 2021-07-30 福建意德信息技术有限公司 L-BFGS-based cloud resource dynamic optimization method
WO2023274049A1 (en) * 2021-06-30 2023-01-05 华为技术有限公司 Virtual machine migration method and related apparatus
CN115242662B (en) * 2022-09-22 2023-02-17 音信云(武汉)信息技术有限公司 Data resource allocation method and device based on cloud computing
CN115242662A (en) * 2022-09-22 2022-10-25 音信云(武汉)信息技术有限公司 Cloud computing-based data resource allocation method and device
CN115878329A (en) * 2023-02-02 2023-03-31 天翼云科技有限公司 Host resource scheduling method and device, electronic equipment and storage medium
CN117850973A (en) * 2023-12-15 2024-04-09 天翼云科技有限公司 Virtual machine migration triggering method and system based on deep learning
CN119862040A (en) * 2025-03-24 2025-04-22 中国电子信息产业集团有限公司第六研究所 Cloud platform resource scheduling method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
CN102790793A (en) Decision method and control module facing to cloud computing virtual machine migration
Khoshkholghi et al. Energy-efficient algorithms for dynamic virtual machine consolidation in cloud data centers
CN105159751B (en) The virtual machine migration method of energy efficient in a kind of cloud data center
Esfandiarpoor et al. Structure-aware online virtual machine consolidation for datacenter energy improvement in cloud computing
EP3507692B1 (en) Resource oversubscription based on utilization patterns in computing systems
CN102724277B (en) The method of live migration of virtual machine and deployment, server and group system
CN108829494A (en) Container cloud platform intelligence method for optimizing resources based on load estimation
Sayadnavard et al. A reliable energy-aware approach for dynamic virtual machine consolidation in cloud data centers
CN102981890B (en) A kind of calculation task in Visualized data centre and virtual machine deployment method
CN107404523A (en) Cloud platform adaptive resource dispatches system and method
CN107196865A (en) A kind of adaptive threshold overload moving method of Load-aware
CN102958166A (en) Resource allocation method and resource management platform
CN112380005A (en) Data center energy consumption management method and system
Supreeth et al. VM scheduling for efficient dynamically migrated virtual machines (VMS-EDMVM) in cloud computing environment
CN104008018B (en) The online moving method of virtual machine under cloud computing environment
CN103441918A (en) Self-organizing cluster server system and self-organizing method thereof
CN106201700A (en) The dispatching method that a kind of virtual machine migrates online
Melhem et al. Selection process approaches in live migration: A comparative study
CN114880129A (en) Resource utilization rate prediction perception cloud data center virtual machine resource allocation method
Rajabzadeh et al. New comprehensive model based on virtual clusters and absorbing Markov chains for energy-efficient virtual machine management in cloud computing
CN115167984B (en) Virtual machine load balancing placement method considering physical resource competition based on cloud computing platform
CN114741160B (en) A dynamic virtual machine integration method and system based on balancing energy consumption and service quality
Barlaskar et al. Energy-efficient virtual machine placement using enhanced firefly algorithm
CN117632355A (en) Virtual resource high-speed scheduling system based on cloud platform resource monitoring
CN110865872A (en) Virtualized cluster resource scheduling system based on resource rationalization application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121121