CN102779622A - 无定形金属基有隙磁芯 - Google Patents

无定形金属基有隙磁芯 Download PDF

Info

Publication number
CN102779622A
CN102779622A CN2012102343219A CN201210234321A CN102779622A CN 102779622 A CN102779622 A CN 102779622A CN 2012102343219 A CN2012102343219 A CN 2012102343219A CN 201210234321 A CN201210234321 A CN 201210234321A CN 102779622 A CN102779622 A CN 102779622A
Authority
CN
China
Prior art keywords
magnetic
core
magnetic core
zero
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102343219A
Other languages
English (en)
Inventor
R·哈赛加瓦
R·J·马蒂斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METGRAS CO
Metglas Inc
Original Assignee
METGRAS CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METGRAS CO filed Critical METGRAS CO
Publication of CN102779622A publication Critical patent/CN102779622A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种磁性装置,所具有的物理缝隙的范围为约1~约20mm。所述磁性装置包含包括无定形Fe-基合金的磁芯。所述磁芯的磁路上具有物理缝隙。合金具有无定形的结构,并基于(Fe-Ni-Co)-(B-Si-C)。Fe+Ni+Co的成分总和在65~85原子%的范围内。其有利点在于,磁芯的整体导磁率为约40~200,并具有提高的磁性性能。

Description

无定形金属基有隙磁芯
本申请是申请号为200380110225.2、申请日为2003年12月10日、同题的专利申请的分案申请。
技术领域
本发明涉及磁芯;尤其涉及一种铁磁性无定形金属合金磁芯,该磁芯的磁路是有隙的,而且该磁芯特别适合用于电扼流圈和电流传感器。
技术背景
具有磁芯的电扼流圈和电流传感器应具有低的导磁率以对大电流进行控制或检测。通常,具有低导磁率的磁芯直到进入强磁场才会磁饱和。该磁场的上限取决于饱和感应或通量密度,通常称为磁芯材料的BS。由于BS值依赖于磁芯材料的化学性质,因此磁芯材料的选择取决于应用。导磁率μ被定义为磁通量B随施加场H的增量的而增加的增量,在应用中优选该导磁率μ是线性的材料,这是由于随着施加场强的增加,磁芯的磁性性能变得相对稳定。当导磁率是线性的时,与磁芯上铜线圈的电流成比例的上限磁场HP近似为BS/μ。这样,当要求较大的HP时,优选μ为较低值。另外,还优选具有线性的BH行为,因为这样可以显著地降低总的磁芯损失。对于电扼流圈,要求磁芯的BH特性具有合理的线性,而且BH曲线的适度水平的弯曲是可接受的。然而,对于电流传感器应用,要求具有良好线性的BH特性以保证传感器的精度。
达成良好BH线性的最优技术之一是利用沿着具有单轴磁各向异性的磁性材料的难磁化轴的磁化行为。磁各向异性是衡量磁性材料的磁化排列程度的指标。当没有外部磁场时,磁各向异性迫使磁性材料沿其所谓易磁化轴磁化,该易磁化轴处于能量最低的状态。对于晶体材料,磁各向异性的方向或易磁化轴通常沿着晶体学轴之一。作为示例,体心立方结构的铁的易磁化轴沿[001]方向。当这种单轴磁性材料沿易磁化轴被磁化时,所得到的BH曲线是矩形;材料呈现矫顽磁性HC,HC被定义为磁感应或磁通量B与磁场或H轴交叉处的磁场。在H=HC上方,磁性材料迅速随施加场饱和,达到B=BS,即饱和磁感应或磁通密度。当外部磁场是沿着远离易磁化轴90度方向时,响应磁通密度B随与磁各向异性场Hk对抗的H而线性变化,Hk被定义为8πK/BS,其中K是磁各向异性能。如此理论上,在H=HK时,B为BS
磁各向异性可被材料制造的后处理所诱导,所述后处理例如在提高的温度下进行磁场退火。当磁性材料被加热时,组分磁性原子被热激励而且趋向沿着施加场排列,从而引起上述的磁各向异性。这是通常用于使磁性材料具有线性BH行为的技术之一,上述磁性材料包括无定形磁性材料。另外一种技术是在磁性装置的磁路上引入物理缝隙。当使用这种方法时,整体的BH行为趋向于线性。然而,由于缝隙上的磁通量泄漏,在获得线性的同时也伴有磁损失的增加。因此希望尽可能地使缝隙大小最小化。另外,缝隙的引入必须使因开隙(gapping)而导致的应力或机械形变而引起的磁损失的增加为最小。
授予Takayama等人的美国专利No.4,587,507(以下称为专利’507)公开了在环形的、由无定形材料构成的磁性装置上引入物理缝隙的方法。该专利只专注于减小开隙时所造成的应力的影响。专利’507所保护的无定形磁性合金基本上由以下组合物构成:FexMny(SipBqPrCs)z,其中x+y+z(原子百分比)是100,y的范围为从0.001到10,z的范围为从21到25.5,p+q+r+s=1,p的范围为从0.40到0.75,r的范围为从0.0001到0.05,比率s/q的范围为从0.03到0.4,且z≤50p+1,z≤10p+19,z≥30p+2,且z≥13p+13.7。专利’507的保护要求必须具有Mn以在开隙后获得预期的磁损失的减少。
明显的需求是制备不含专利’507的成分约束的磁性装置的技术。还需要对缝隙尺寸有更完全的理解,上述缝隙尺寸影响磁损失从而影响磁性装置整体的磁性性能。当制造高性能的磁性装置时,必须明确地控制这一特征。本发明提供对上述每个问题的解决方案,包括由磁芯的开隙工艺所引起的应力效应。
发明内容
本发明提供一种可以避免上述成分约束的磁性装置及其制造方法。根据本发明制造的装置的缝隙尺寸可以容易地在约1~约20mm的范围获得。有利的是,磁性装置的整体磁性能被提高。装置包括一个在磁路上具有物理缝隙的、由无定形Fe基合金组成的磁芯。在优选实施方案中,合金具有无定形的结构;合金基于以下成份:(Fe-Ni-Co)-(B-Si-C),其Fe+Ni+Co的成分的总和在65~85原子%的范围内。
通常,在制造技术的实践中,磁性的Fe基无定形合金条带被卷绕成环状的磁芯。然后将该卷绕磁芯在没有外部磁场的条件下进行热处理。由于要求磁芯在开隙之后具有低的磁损失,设计热处理以使未开隙的磁芯具有尽可能低的导磁率。对在开隙后应具有大致线性的BH行为的磁芯进行热处理,以使BH曲线尽量为方形或尽量尖锐。在开隙之前,退火的磁芯被涂覆商业可得的环氧树脂例如杜邦EFB534SO或类似物。选择开隙工艺,以使由缝隙导致的应力或机械形变尽可能小。该工艺可包括喷水切割,以及研磨和放电切割。物理缝隙的尺寸是预先规定的;并且基于未开隙的磁芯的导磁率和开隙状态的磁芯的期望导磁率。开隙后,磁芯被涂覆薄树脂层、油漆或类似材料。该涂层可以保护缝隙的表面免于生锈。可替换地,磁芯的保护还可以通过将磁芯置于塑料壳体中来实现。当铜绕组被配置在本发明的磁芯上时,磁芯-绕组组件可以具有电流传感器和电扼流圈所需的性能,上述电流传感器和电扼流圈包括功率因数校正电感器。
附图说明
参考以下对优选实施方案的详细说明以及附图,可更完全地理解发明和本发明的其它显著优点,其中:
图1所示是一个具有尺寸为3.2mm的物理缝隙的磁芯的BH行为,所述磁芯基于在沿磁芯圆周方向施加约10Oe的磁场的条件下以350℃退火2小时的Fe基METGLAS2605SA1材料;
图2所示是对于如图1所示的磁芯的检测电压和被检测电流的函数关系;
图3所示是对于METGLAS2605SA1基磁芯的导磁率和物理缝隙的函数关系;
图4所示是具有尺寸为约3mm的物理缝隙的磁芯的BH行为,所述磁芯基于在无磁场的条件下以430℃退火7小时的Fe基METGLAS
Figure BSA00000746288000033
2605SA1条带;
图5所示为图4所示的磁芯的导磁率值相对于零施加场下的导磁率与直流偏置场的函数关系;和
图6所示为不同频率下磁芯损失和感应水平B的函数关系。
发明详述
许多环形的磁芯是通过将Fe基无定形合金条带进行带绕成形的,上述合金条带包括市售的METGLAS
Figure BSA00000746288000041
2605SA1和2605CO材料。磁芯的物理尺寸是:OD(外径)=8~70mm;ID(内径)=5~40mm,HT(高度)=5~25mm。在无外部磁场或有施加磁场的条件下,将该磁芯在300~450℃之间进行热处理1-12小时。退火参数的选择依赖于根据下述方式制造的有隙磁芯所期望的最终磁性性能。该磁芯浸渍于含有杜邦EFB534SO的环氧树脂中。通过切割涂覆后的磁芯以在环形的磁路上引入物理缝隙。物理缝隙的尺寸在大约1mm~约20mm之间。开隙工具包括喷水切割机和研磨和放电切割机。切割表面被涂覆树脂或油漆以保护其免于生锈。
对于涉及比如检测电流的应用,要求磁芯具有线性的BH行为。在此情况下,无隙磁芯应具有尽量为方形或尽量尖锐且弯曲尽量小的BH曲线,以使开隙后的BH曲线尽可能是线性的。为在无隙的磁芯上得到方形的BH曲线,在磁芯的热处理期间可以选择性地施加沿纵向的磁场。沿磁芯轴的方向施加横向磁场可以得到尖锐的BH回线。横向磁场强度的范围上限为约1500Oe。许多磁芯是通过将METGLAS
Figure BSA00000746288000042
2605SA1或2605CO条带进行带绕并在施加或未施加场的条件下以320℃~380℃退火约2小时而成形的。所获得的磁芯具有相对方形的BH行为。在磁芯上形成尺寸为约1~20mm的物理缝隙。图1所示为一种有隙磁芯的BH曲线,该曲线在直至大约H~70Oe(0.88A/m)的范围上具有约为180的线性的直流导磁率μdc。如上述定义,该磁场上限可被称为HP。相同的磁芯被用于制造在磁芯的ID截面具有单圈的载流线的电流传感器。检测线圈卷绕在磁芯上,并通过数字电压计监视信号电压。图2所示为检测电压,该检测电压是插入磁芯-线圈传感器的孔中的单圈载流线中的电流的函数。图中清楚地显示了起因于图1的BH行为的检测信号和电流之间良好的线性关系。如图3所示,导磁率因物理缝隙的增加而进一步减少。减小的导磁率使提高电流的检测上限成为可能。例如,由约15mm的物理缝隙所得到的为50的导磁率可把磁场的上限提高到约240Oe(3A/m)而磁芯的BH行为直到此限仍保持线性。随之,可以使单圈电流传感器的电流上限提高到超过2700A的水平。
对于例如电扼流圈的应用,要求磁芯具有低的导磁率。开隙的目的是减少磁芯的导磁率。然而,这将提高缝隙处的磁通泄漏所造成的磁损失。因此优选较小的尺寸的物理缝隙。通过在未开隙状态下以尽量低的导磁率开始可以将上述自冲突效应降至最低。从而也使上述的退火参数得以优化。对于利用市售的METGLAS
Figure BSA00000746288000051
2605SA1条带制成的不开隙磁芯,退火温度为410℃~450℃,退火时间为3~12小时。在开隙后,磁芯的导磁率为约20~140。
图4所示为具有约3mm的缝隙的一个上述例子。磁芯的OD,ID和HT分别约为34,22和11mm。物理缝隙尺寸被改变以优化具有规定的OD,ID和HT的磁芯的磁性性能。图5所示为一个这种例子的结果,显示了图4所示的磁芯的磁导率相对于在零施加场下的导磁率与直流偏置场的函数关系,表明该磁芯在磁场超过100Oe(1.25A/m)时仍然是磁有效的。一个无物理缝隙的相似磁芯的有效范围只能达到约10Oe(0.125A/m)。图6所示为在不同频率下的磁芯损失与激励感应或磁通密度水平B的函数关系。例如,在100kHz和0.1T的感应水平,观测到约140W/kg的磁芯损失。在下述的表II中,对本发明的磁芯的性能和市售的磁芯的性能进行了比较。表II中的特征表明,当用作电扼流圈时,本发明的有隙的磁芯呈现改善的性能。这使得本发明的有隙磁芯尤其适用于处理大电流的功率因数校正电感器。
表II
Figure BSA00000746288000052
下列实施例提供了对本发明的更全面的理解。所表示的特定的技术、条件、材料、比例以及数据用于原理性的说明,而且本发明的实施例是典型例,而非对本发明范围的限制。
实施例
磁性表征
利用市售的BH回线示踪仪对在直流激励下的开隙前和开隙后的环形磁芯进行测量。图1和图4是磁芯的典型BH曲线。测量时,磁芯上配置有分别具有20圈的初级和次级绕组。初级线圈通过施加场H磁性地激励磁芯,而次级线圈测量其关于结果感应B的磁性响应。直流导磁率μdc是B关于H的斜率。遵循IEEE标准393-1991“磁芯测试程序IEEE标准”,利用市售的感应桥和磁芯损失测量装置,对具有绕组的相同磁芯的高频特性进行表征。图3、5和6就是如此获得的。
电学表征
对于电流检测,将携带将要检测的电流的单圈线圈插入图1所示环形磁芯中央的孔中,并将一个5圈的线圈置于磁芯上用于测量与电流成比例的检测电压。使用市售的数字电压计测量检测。图2就是如此获得的。
根据对本发明的上述详细说明可知,并不一定严格地遵循上述细节,本领域的技术人员可以进行进一步的变更和改良,所有这些变更和改良落入本发明由所附的权利要求所规定的范围。

Claims (12)

1.一种磁性装置,包含基于卷绕成环状核芯的无定形Fe基合金条带的有隙磁芯,
所述有隙磁芯已由具有方形BH曲线或尖锐BH曲线的无隙核芯制成,所述无隙核芯在导入所述缝隙之前被热处理,和
所述有隙磁芯由在其磁路上的物理缝隙组成,所述磁芯的整体导磁率为40-200,且具有线性的BH特征,
其中所述无定形Fe基合金基于(Fe-Ni-Co)-(B-Si-C),其中Fe+Ni+Co的含量总和在65~85原子%的范围内。
2.如权利要求1所述的磁性装置,所述物理缝隙的范围为1~20mm。
3.如权利要求1所述的磁性装置,其具有超过一个的用来形成磁芯-线圈组件的铜绕组。
4.如权利要求3所述的磁性装置,其中所述磁芯-线圈组件是电流传感器。
5.如权利要求3所述的磁性装置,其中所述磁芯-线圈组件是电扼流圈。
6.如权利要求3所述的磁性装置,其中所述磁芯-线圈组件是功率因数校正电感器。
7.如权利要求1所述的磁性装置,所述无隙核芯已经在磁场存在下被热处理。
8.如权利要求7所述的磁性装置,其中所述具有方形BH特征的无隙核芯在热处理过程中具有沿卷绕成环状的条带的长度方向施加的纵向磁场。
9.如权利要求7所述的磁性装置,其中所述具有尖锐BH特征的无隙核芯具有沿卷绕成环状的条带的宽度方向施加的横向磁场。
10.一种制备磁性装置的方法,包含基于卷绕成环状核芯的无定形Fe基合金条带的有隙磁芯,
热处理具有方形BH特征或尖锐BH特征的无隙核芯;
在热处理过程中施加磁场;
开隙无隙磁芯,所述开隙由在其磁路上产生物理缝隙组成,
其中,所述磁芯的整体导磁率为40-200,且具有线性的BH特征,和
其中所述无定形Fe基合金基于(Fe-Ni-Co)-(B-Si-C),其中Fe+Ni+Co的含量总和在65~85原子%的范围内。
11.如权利要求10所述的制备磁性装置的方法,其中对所述具有方形BH特征的无隙核芯,在热处理过程中,沿卷绕成环状的条带的长度方向施加纵向磁场。
12.如权利要求10所述的制备磁性装置的方法,其中对所述具有尖锐的BH特征的无隙核芯,沿卷绕成环状的条带的宽度方向施加横向磁场。
CN2012102343219A 2003-01-30 2003-12-10 无定形金属基有隙磁芯 Pending CN102779622A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/354,711 2003-01-30
US10/354,711 US6992555B2 (en) 2003-01-30 2003-01-30 Gapped amorphous metal-based magnetic core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2003801102252A Division CN1781167A (zh) 2003-01-30 2003-12-10 无定形金属基有隙磁芯

Publications (1)

Publication Number Publication Date
CN102779622A true CN102779622A (zh) 2012-11-14

Family

ID=32770407

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2003801102252A Pending CN1781167A (zh) 2003-01-30 2003-12-10 无定形金属基有隙磁芯
CN2012102343219A Pending CN102779622A (zh) 2003-01-30 2003-12-10 无定形金属基有隙磁芯

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2003801102252A Pending CN1781167A (zh) 2003-01-30 2003-12-10 无定形金属基有隙磁芯

Country Status (8)

Country Link
US (1) US6992555B2 (zh)
EP (1) EP1593132A4 (zh)
JP (2) JP5341294B2 (zh)
KR (1) KR100733116B1 (zh)
CN (2) CN1781167A (zh)
AU (1) AU2003299639A1 (zh)
TW (1) TWI351044B (zh)
WO (1) WO2004070739A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877486B1 (fr) * 2004-10-29 2007-03-30 Imphy Alloys Sa Tore nanocristallin pour capteur de courant, compteurs d'energie a simple et a double etage et sondes de courant les incorporant
US7864013B2 (en) * 2006-07-13 2011-01-04 Double Density Magnetics Inc. Devices and methods for redistributing magnetic flux density
US7307504B1 (en) * 2007-01-19 2007-12-11 Eaton Corporation Current transformer, circuit interrupter including the same, and method of manufacturing the same
EP2224461B1 (en) * 2009-02-25 2011-11-30 Liaisons Electroniques-Mecaniques Lem S.A. Magnetic circuit with wound magnetic core
KR101197234B1 (ko) * 2011-04-08 2012-11-02 주식회사 아모그린텍 비정질 금속 코어와, 이를 이용한 유도장치 및 그 제조방법
JP6085904B2 (ja) * 2012-05-31 2017-03-01 ブラザー工業株式会社 ノイズ低減装置、電源装置、及びノイズ低減装置におけるコアの配置方法
JP2014199902A (ja) * 2013-03-15 2014-10-23 株式会社東芝 線路、スパイラルインダクタ、ミアンダインダクタ、ソレノイドコイル
WO2016085598A1 (en) 2014-11-25 2016-06-02 Cummins Inc. Magnetic core with flexible packaging
CN105990321B (zh) * 2015-02-05 2018-10-26 中国科学院金属研究所 一种基于铁镍多元合金磁芯的微型薄膜电感
JP6790405B2 (ja) * 2016-03-25 2020-11-25 中国電力株式会社 電流検出用センサ及び地絡点標定システム
US10840004B2 (en) 2018-08-23 2020-11-17 Hamilton Sundstrand Corporation Reducing reluctance in magnetic devices
WO2020070309A1 (en) * 2018-10-05 2020-04-09 Abb Schweiz Ag Magnetic core arrangement, inductive device and installation device
US11980636B2 (en) 2020-11-18 2024-05-14 Jazz Pharmaceuticals Ireland Limited Treatment of hematological disorders

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2048575B (en) * 1979-05-04 1983-01-26 Thorn Electrical Ind Ltd Electrical choke or transformer
US4321090A (en) * 1980-03-06 1982-03-23 Allied Corporation Magnetic amorphous metal alloys
JPS57193005A (en) * 1981-05-23 1982-11-27 Tdk Corp Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same
US4637843A (en) * 1982-05-06 1987-01-20 Tdk Corporation Core of a noise filter comprised of an amorphous alloy
US4606977A (en) * 1983-02-07 1986-08-19 Allied Corporation Amorphous metal hardfacing coatings
US5011553A (en) * 1989-07-14 1991-04-30 Allied-Signal, Inc. Iron-rich metallic glasses having high saturation induction and superior soft ferromagnetic properties
JPH04362805A (ja) * 1991-06-11 1992-12-15 Toshiba Corp 共振フィルタおよびそれを用いたホームオートメイション        システム
JPH0590051A (ja) * 1991-09-30 1993-04-09 Mitsui Petrochem Ind Ltd 磁心の製造方法
JPH0766046A (ja) * 1993-08-26 1995-03-10 Matsushita Electric Works Ltd 電磁装置
CN2164052Y (zh) * 1993-08-30 1994-05-04 武汉中科新技术产业公司 铁芯线圈式脉动电流传感器
US5399944A (en) * 1993-10-29 1995-03-21 Motorola Lighting, Inc. Ballast circuit for driving gas discharge
JPH0853739A (ja) * 1995-06-12 1996-02-27 Toshiba Corp 軟磁性合金
FR2740259B1 (fr) * 1995-10-24 1997-11-07 Thomson Csf Noyau magnetique mixte
US5923236A (en) * 1996-04-29 1999-07-13 Alliedsignal Inc. Magnetic core-coil assembly for spark ignition system
US6144279A (en) * 1997-03-18 2000-11-07 Alliedsignal Inc. Electrical choke for power factor correction
IL128067A (en) * 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
EP1114429B1 (de) * 1998-09-17 2003-11-12 Vacuumschmelze GmbH Stromwandler mit gleichstromtoleranz
JP2000104141A (ja) * 1998-09-28 2000-04-11 Res Inst Electric Magnetic Alloys 耐食性に優れた軟磁性合金
JP2002530853A (ja) * 1998-11-13 2002-09-17 バクームシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 変流器での使用に適した磁心とその製造方法及び変流器
JP2001085257A (ja) * 1999-09-10 2001-03-30 Tamura Seisakusho Co Ltd チョークコイル用磁芯の製造方法およびチョークコイル用磁心
US6480008B2 (en) * 1999-12-03 2002-11-12 Mitutoyo Corporation Capacitive distance sensor for surface configuration determining apparatus
JP4582864B2 (ja) * 2000-05-30 2010-11-17 株式会社東芝 磁性コアおよびそれを用いた磁性部品

Also Published As

Publication number Publication date
KR100733116B1 (ko) 2007-06-27
TWI351044B (en) 2011-10-21
JP2006514432A (ja) 2006-04-27
CN1781167A (zh) 2006-05-31
JP5341294B2 (ja) 2013-11-13
US20040150503A1 (en) 2004-08-05
AU2003299639A1 (en) 2004-08-30
AU2003299639A8 (en) 2004-08-30
TW200428424A (en) 2004-12-16
EP1593132A2 (en) 2005-11-09
WO2004070739A3 (en) 2005-01-06
KR20050096168A (ko) 2005-10-05
WO2004070739A2 (en) 2004-08-19
JP2011171772A (ja) 2011-09-01
US6992555B2 (en) 2006-01-31
EP1593132A4 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
EP1840906B1 (en) Magnetic core for current transformer, current transformer and watthour meter
US6507262B1 (en) Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP2011171772A (ja) 間隙を設けた非晶質金属系の磁性コア
CN101432827B (zh) 一种电流互感器用磁芯、电流互感器和瓦特计
US7583173B2 (en) Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing them
US7861403B2 (en) Current transformer cores formed from magnetic iron-based alloy including final crystalline particles and method for producing same
Hasegawa et al. Advances in ferromagnetic metallic glasses
JP2013168637A (ja) 電子的物品監視のための金属ガラス合金
KR100698606B1 (ko) 고주파 응용 자기 유리질 합금
Tumanski Modern magnetic materials-the review
KR101057463B1 (ko) 선형 BH 루프를 갖는 Fe계 비정질 금속 합금
Dietrich Magnetically soft materials
Leary et al. Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications
Bolotin et al. Influence of the technological process conditions to parameters of magnetic cores from ribbon amorphous alloys
Günther et al. A user guide to soft magnetic materials
CN102047358A (zh) 用于电流传感器的磁芯
Gonzalez et al. Effects of nanocrystallization on the magnetostriction of Co-based amorphous alloys
Lucke High-Frequency Transformer Materials
Benyosef Improvements with Amorphous and Nanocrystalline Ribbons to be Applied as Fluxgate Sensor Cores
Salach et al. Analysis of Mechanisms of Influence of Torque on Properties of Ring-Shaped Magnetic Cores, from the Point of View of Magnetoelastic Sensors Sensitivity
Yoshizawa et al. Improvement of magnetic properties in Fe‐based nanocrystalline alloys by addition of Si, Ge, C, Ga, P, Al elements and their applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1175883

Country of ref document: HK

C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121114