CN102778424B - 一种纤维织物厚度方向渗透率测试装置和测试方法 - Google Patents

一种纤维织物厚度方向渗透率测试装置和测试方法 Download PDF

Info

Publication number
CN102778424B
CN102778424B CN201210301604.0A CN201210301604A CN102778424B CN 102778424 B CN102778424 B CN 102778424B CN 201210301604 A CN201210301604 A CN 201210301604A CN 102778424 B CN102778424 B CN 102778424B
Authority
CN
China
Prior art keywords
fabric
die cavity
fluid
permeability
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210301604.0A
Other languages
English (en)
Other versions
CN102778424A (zh
Inventor
贾玉玺
孙筱辰
王照静
董抒华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201210301604.0A priority Critical patent/CN102778424B/zh
Publication of CN102778424A publication Critical patent/CN102778424A/zh
Application granted granted Critical
Publication of CN102778424B publication Critical patent/CN102778424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明公开了一种纤维织物厚度方向渗透率测试装置,包括上模、下模、模腔厚度支架;本发明还公开了一种纤维织物厚度方向渗透率的测试方法,包括如下步骤:注射前的准备步骤;注射的步骤;测量试验数据,并计算渗透率的步骤。本发明重点分析预制件的多层次结构、多类型单胞及其排列组合方式对预制件渗透率空间分布的影响,建立渗透率及其分布与结构相关性的数学模型,揭示复合材料浸润缺陷的形成机理与规律,发展浸润缺陷的形成判据与控制方法,从而促进复合材料在我国航空航天、汽车、建筑、风电等领域的应用和推广。

Description

一种纤维织物厚度方向渗透率测试装置和测试方法
技术领域
本发明涉及一种材料测试领域,尤其涉及一种纤维织物厚度方向渗透率测试装置和测试方法。
背景技术
在“大型飞机”国家重大专项以及材料技术“结构功能复合化”发展趋势的大背景下,复合材料液态模塑成型因其整体化、低成本、净尺寸的结构件制造特点而倍受关注。然而在其制品中经常出现干斑与孔隙等浸润缺陷,它们的形成与纤维预制件渗透性能的不均匀性密切相关。因此,构建预制件渗透率及其分布与多层次结构参数的相关性模型,进而精确预报复合材料浸润缺陷,是亟待解决的关键问题。
发明内容
本发明为解决上述技术问题,提供一种纤维织物厚度方向渗透率测试装置和测试方法,它具有测试装置结构简单,测试结果误差小,能够准确构建预制件渗透率及其分布与多层次结构参数的相关性模型,进而精确预报复合材料浸润缺陷的优点。
为了实现上述目的,本发明采用如下技术方案。
本发明的纤维织物厚度方向渗透率测试装置,包括上模、下模、模腔厚度支架;所述下模上设有凹槽,凹槽内放置有筛板式分流器;所述模腔厚度支架被压紧在上模和下模之间,纤维织物放置在模腔厚度支架所围的模腔内并覆盖在筛板式分流器上,所述纤维织物厚度方向渗透率测试装置还包括注射口和溢料口,注射口与流体注射装置相连,溢料口与流体收集和计量装置相连,所述注射口设置在下模上,溢料口设置在上模上。
所述流体注射装置可以是树脂注射泵。
所述流体注射装置用的液态流体可以是大豆油或树脂。
所述上模上设有透视窗。
所述模腔厚度支架由相同或不同厚度的不锈钢框板组成,可根据实际需要组合成不同厚度的模腔。
所述筛板式分流器可以是带若干圆孔的不锈钢薄板,筛板式分流器有利于流体从集中注射口分散开,同步、均匀地流进纤维织物,增加厚度方向渗透率测试的准确度。
本测试装置的通用性强,无论是碳纤维、玻璃纤维、硼纤维、氧化铝纤维、天然植物纤维、有机高分子纤维等各种材料的纤维,还是编织布、单向布、非弯折织物、无纺布等各种几何构型的纤维,都可以用本装置测试其渗透率。
本发明还提供了一种纤维织物厚度方向渗透率的测试方法,包括如下步骤:
(1)注射前的准备步骤;
(2)注射的步骤;
(3)测量试验数据,并计算渗透率的步骤。
所述步骤(1)中,
1)打开上模和下模,用酒精或丙酮等溶剂将模具表面的油性物质擦拭干净,晾干;按照纤维织物厚度选择或组合模腔厚度支架并用圆柱定位销固定,在模腔厚度支架内侧贴密封胶条(其厚度稍高于模腔厚度支架)。按密封条内部区域尺寸,裁剪纤维织物。
注意纤维织物与密封胶条的缝隙不能太小也不能太大。若缝隙太小,密封胶条在高度方向受压缩而发生宽度方向延展时将推挤纤维织物使其变形;若缝隙太大,将形成注射时的边缘效应使纤维织物渗透率测试严重失真。
2)铺覆纤维织物后合上上模和下模并锁模紧固。
3)将溢料口与注射口接上耐压的塑料管;注射口与注射枪连接,溢料口与流体收集和计量装置相连。
所述步骤(2)中,
打开注射枪开关,将控制阀打开,向模腔内注入液体。等到完全浸润纤维织物后,关闭控制阀。
所述步骤(3)中,
1)每单位时间内流过纤维织物截面的流体体积流量(Q)可以通过用量杯测量在每单位时间内溢料口流出的流体体积而得到;
2)截面面积(A)可以根据模腔的长度(即纤维织物的长度)乘以模腔的宽度(即纤维织物的宽度)来得到;
3)纤维织物上的压力差(ΔP)可以取为注射口的流体压力,注射口的流体压力可以通过数字压力表测得(因为在厚度方向的流体流动是短程流动,流体出口端就是大气环境端---一个标准大气压,所以注射口的数字压力表上显示的压力就是纤维织物上的压力差);
4)流体流动方向上的长度(L)为模腔的厚度;
5)流体黏度(μ)则根据试验用流体的商品基础数据表查得;
6)将上述物理量的数值代入Darcy定律,即可求得纤维织物在测试方向上的渗透率(K)。
本发明的原理为达西定律,
Q A = KΔP μL
Darcy(达西)定律以及物理量符号的说明:在纤维复合材料加工过程中,树脂在增强材料中的流动模型通常采用Darcy定律。该模型对牛顿流体在多孔介质中的流动进行了数学描述。这个定律可以表示为:每单位时间内流过试样截面的树脂体积流量(Q)与截面面积(A)和试样上的压力差(ΔP)成正比,与试样流动方向上的长度(L)和黏度(μ)成反比:常量K的量纲是L2,被定义为渗透率。
本发明的有益效果是:开展纤维预制件的多层次结构-渗透性能-树脂浸润行为-复合材料浸润缺陷的集成研究。重点分析预制件的多层次结构、多类型单胞及其排列组合方式对预制件渗透率空间分布的影响,建立渗透率及其分布与结构相关性的数学模型,揭示复合材料浸润缺陷的形成机理与规律,发展浸润缺陷的形成判据与控制方法,从而促进复合材料在我国航空航天、汽车、建筑、风电等领域的应用和推广。
附图说明
图1是本发明的纤维织物厚度方向渗透率测试装置的结构示意图。
其中,1、上模;2、下模;3、模腔厚度支架;4、纤维织物;5、注射口;6、溢料口;7、凹槽;8、筛板式分流器。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
本实施例的纤维织物厚度方向渗透率测试装置,包括上模1、下模2、模腔厚度支架3;所述下模2上设有凹槽7,凹槽7内放置有筛板式分流器8;所述模腔厚度支架3被压紧在上模1和下模2之间。纤维织物4放置在模腔厚度支架3所围的模腔内,并覆盖在筛板式分流器8上,所述纤维织物厚度方向渗透率测试装置还包括注射口5和溢料口6,注射口5和流体注射装置相连,溢料口6与流体收集和计量装置相连,所述注射口5设置在下模2上,溢料口6设置在上模1上,所述上模1上设有透视窗。
本实施例的纤维织物厚度方向渗透率的测试方法,包括如下步骤:
(1)注射前的准备步骤;1)打开上模1和下模2,用酒精或丙酮等溶剂将模具表面的油性物质擦拭干净,晾干;按照纤维织物4的厚度选择或组合模腔厚度支架3并用圆柱定位销固定,在模腔厚度支架3内侧贴密封胶条(其厚度稍高于模腔厚度支架3)。按密封条内部区域尺寸,裁剪纤维织物4。注意纤维织物4与密封胶条的缝隙不能太小也不能太大。若缝隙太小,密封胶条在高度方向受压缩而发生宽度方向延展时将推挤纤维织物4使其变形;若缝隙太大,将形成注射时的边缘效应使纤维织物渗透率测试严重失真。2)铺覆纤维织物4后合上上模1和下模2并锁模紧固。3)将溢料口与注射口接上耐压的塑料管;注射口与注射枪连接,溢料口与流体收集和计量装置相连。
(2)注射的步骤;打开注射枪开关,将控制阀打开,向模腔内注入液体。等到完全浸润纤维织物4后,关闭控制阀。
(3)测量试验数据,并计算渗透率的步骤:
1)每单位时间内流过纤维织物截面的流体体积流量(Q)可以通过用量杯测量在每单位时间内溢料口流出的流体体积而得到;
2)截面面积(A)可以根据模腔的长度(即纤维织物的长度)乘以模腔的宽度(即纤维织物的宽度)来得到;
3)纤维织物上的压力差(ΔP)取为注射口的流体压力,注射口的流体压力可以通过数字压力表测得(因为在厚度方向的流体流动是短程流动,流体出口端就是大气环境端---一个标准大气压,所以注射口的数字压力表上显示的压力就是纤维织物上的压力差);
4)流体流动方向上的长度(L)为模腔的厚度;
5)流体黏度(μ)则根据试验用流体的商品基础数据表查得;
6)将上述物理量的数值代入Darcy定律,即可求得纤维织物在测试方向上的渗透率(K)。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (1)

1.一种纤维织物厚度方向渗透率测试装置的测试方法,所述纤维织物厚度方向渗透率测试装置包括上模、下模、模腔厚度支架;所述下模上设有凹槽,凹槽内放置有筛板式分流器;所述模腔厚度支架被压紧在上模和下模之间,纤维织物放置在模腔厚度支架所围的模腔内并覆盖在筛板式分流器上,所述纤维织物厚度方向渗透率测试装置还包括注射口和溢料口,注射口与流体注射装置相连,溢料口与流体收集和计量装置相连,所述注射口设置在下模上,溢料口设置在上模上;其特征是,所述模腔厚度支架由相同或不同厚度的不锈钢框板组成;所述流体注射装置是树脂注射泵;所述流体注射装置用的流体是大豆油或树脂;所述上模上设有透视窗;
所述的测试方法,包括如下步骤:
(1)注射前的准备步骤;
1)打开上模和下模,用酒精或丙酮将模具表面的油性物质擦拭干净,晾干;按照纤维织物厚度选择或组合模腔厚度支架并固定,在模腔厚度支架内侧贴密封胶条,其厚度稍高于模腔厚度支架;按密封条内部区域尺寸,裁剪纤维织物;
注意纤维织物与密封胶条的缝隙不能太小也不能太大;若缝隙太小,密封胶条在高度方向受压缩而发生宽度方向延展时将推挤纤维织物使其变形;若缝隙太大,将形成注射时的边缘效应使纤维织物渗透率测试严重失真;
2)铺覆纤维织物后合上上模和下模并锁模紧固;
3)将溢料口与注射口接上耐压的塑料管;注射口与注射枪连接,溢料口与流体收集和计量装置相连;
(2)注射的步骤;打开注射枪开关,将控制阀打开,向模腔内注入液体;等到完全浸润纤维织物后,关闭控制阀;
(3)测量试验数据,并计算渗透率的步骤;
1)每单位时间内流过纤维织物截面的流体体积流量通过用量杯测量在每单位时间内溢料口流出的流体体积而得到;
2)截面面积根据模腔的长度乘以模腔的宽度得到;
3)纤维织物上的压力差为注射口的流体压力;
4)流体流动方向上的长度为模腔的厚度;
5)流体黏度则根据试验用流体的商品基础数据表查得;
6)将每单位时间内流过纤维织物截面的流体体积流量、截面面积、压力差、流体流动方向上的长度、流体黏度的数值代入Darcy定律,即可求得纤维织物在测试方向上的渗透率。
CN201210301604.0A 2012-08-22 2012-08-22 一种纤维织物厚度方向渗透率测试装置和测试方法 Active CN102778424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210301604.0A CN102778424B (zh) 2012-08-22 2012-08-22 一种纤维织物厚度方向渗透率测试装置和测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210301604.0A CN102778424B (zh) 2012-08-22 2012-08-22 一种纤维织物厚度方向渗透率测试装置和测试方法

Publications (2)

Publication Number Publication Date
CN102778424A CN102778424A (zh) 2012-11-14
CN102778424B true CN102778424B (zh) 2014-12-17

Family

ID=47123408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210301604.0A Active CN102778424B (zh) 2012-08-22 2012-08-22 一种纤维织物厚度方向渗透率测试装置和测试方法

Country Status (1)

Country Link
CN (1) CN102778424B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954169A (zh) * 2016-04-20 2016-09-21 西北工业大学 一种纤维织物厚向稳态渗透率的测量方法及测量系统
CN109283111B (zh) * 2018-09-20 2021-01-19 中国民用航空飞行学院 一种织物透水性能测试装置及测试方法
CN111337402A (zh) * 2019-11-01 2020-06-26 东华大学 一种不同厚度纤维织物面内渗透率快速测试装置
CN111220528B (zh) * 2020-03-04 2020-10-30 常熟市全申化纤有限公司 一种纳米纤维织物防水测试装置
CN112345432B (zh) * 2021-01-08 2021-04-09 中海储能科技(北京)有限公司 一种碳纤维布铺层方向渗透率的测试装置及测试方法
CN113720746B (zh) * 2021-08-23 2022-07-22 合肥工业大学 渗透剂在纤维布中的渗透率测试装置及测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051019A (zh) * 2007-05-15 2007-10-10 北京航空航天大学 纤维铺层面内及厚度方向渗透率测试装置与饱和渗透率测试方法
CN202735220U (zh) * 2012-08-22 2013-02-13 山东大学 一种纤维织物厚度方向渗透率测试装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809674B2 (ja) * 2005-12-27 2011-11-09 進 吉田 透気度試験機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051019A (zh) * 2007-05-15 2007-10-10 北京航空航天大学 纤维铺层面内及厚度方向渗透率测试装置与饱和渗透率测试方法
CN202735220U (zh) * 2012-08-22 2013-02-13 山东大学 一种纤维织物厚度方向渗透率测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"纤维预制体铺层法向渗透率测定方法及影响因素的研究";阳小林;《中国优秀硕士学位论文全文数据库》;20091231;第33-35页 *

Also Published As

Publication number Publication date
CN102778424A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
CN102778423B (zh) 一种纤维织物单向面内渗透率测试方法
CN102778424B (zh) 一种纤维织物厚度方向渗透率测试装置和测试方法
CN102809530B (zh) 一种纤维织物径向面内渗透率测试装置
CN105588796A (zh) 一种精确快速测定土壤渗透系数的装置
Buntain et al. Compression flow permeability measurement: a continuous technique
CN204789158U (zh) 一种非饱和土多场耦合的三轴试验装置
CN102141504A (zh) 在铺层厚度方向上测试气体渗透率的测试装置及其方法
Lu et al. Constant flow method for concurrently measuring soil-water characteristic curve and hydraulic conductivity function
CN103954743B (zh) 真空辅助成型工艺纤维织物压实特性及渗透率性能一体化测试装置
CN206161492U (zh) 一种可实现变水压力作用的渗透装置
CN202735220U (zh) 一种纤维织物厚度方向渗透率测试装置
CN105181552A (zh) 利用柔性壁渗透仪获得粘土中核素迁移参数的实验方法
Shojaei et al. An experimental study of saturated and unsaturated permeabilities in resin transfer molding based on unidirectional flow measurements
CN101788450B (zh) 非均质含水介质渗透性的测定方法
CN202735221U (zh) 一种纤维织物单向面内渗透率测试装置
Young et al. Permeability measurement of bidirectional woven glass fibers
Agogue et al. Efficient permeability measurement and numerical simulation of the resin flow in low permeability preform fabricated by automated dry fiber placement
CN203224427U (zh) 粗粒土渗透系数测量装置
CN108982323A (zh) 用于平板预成型体纤维渗透率的测量装置及其方法
CN202735219U (zh) 一种纤维织物径向面内渗透率测试装置
Yoon et al. Vacuum assisted resin transfer molding (VARTM) process incorporating gravitational effects: a closed-form solution
CN103439235A (zh) 一种不同平板纤维预成型体渗透率测量方法
CN104297121B (zh) 天然纤维织物面内非饱和渗透率的测量方法
Grofti et al. Simultaneous characterization of preform expansion and permeability in vacuum assisted resin infusion
CN115436254A (zh) 基于碳纳米管窄带监测流动前锋的渗透率测试方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant