CN102759510A - Spectral detection method of rape canopy information - Google Patents
Spectral detection method of rape canopy information Download PDFInfo
- Publication number
- CN102759510A CN102759510A CN201210226049XA CN201210226049A CN102759510A CN 102759510 A CN102759510 A CN 102759510A CN 201210226049X A CN201210226049X A CN 201210226049XA CN 201210226049 A CN201210226049 A CN 201210226049A CN 102759510 A CN102759510 A CN 102759510A
- Authority
- CN
- China
- Prior art keywords
- information
- spectral
- canopy
- rapeseed
- rape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 56
- 238000001514 detection method Methods 0.000 title claims abstract description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 45
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims abstract description 23
- 238000001228 spectrum Methods 0.000 claims abstract description 22
- 238000003062 neural network model Methods 0.000 claims abstract description 12
- 244000188595 Brassica sinapistrum Species 0.000 claims abstract 9
- 239000000523 sample Substances 0.000 claims description 22
- 238000013528 artificial neural network Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 238000012937 correction Methods 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 abstract description 2
- 241000196324 Embryophyta Species 0.000 description 19
- 240000002791 Brassica napus Species 0.000 description 14
- 229930002875 chlorophyll Natural products 0.000 description 13
- 235000019804 chlorophyll Nutrition 0.000 description 13
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000012549 training Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 4
- 238000007696 Kjeldahl method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000001863 plant nutrition Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000004468 VIS-NIR spectroscopy Methods 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000002364 input neuron Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 1
- 229960005375 lutein Drugs 0.000 description 1
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 description 1
- 235000012680 lutein Nutrition 0.000 description 1
- 239000001656 lutein Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种油菜冠层信息光谱检测方法,利用多通道光谱集于一体的信息检测模式,将从油菜冠层采集到的光谱信息利用预先训练完成的BP神经网络建立模型,得到SPAD值及全氮含量,经检验,模型预测性能与效果较好。本发明利用多通道光谱集于一体的信息检测模式,不仅不会因为光谱通道之间产生互扰,而且一些没有明显作用的光谱通道信息检测还能作为光线校正、环境影响校正的辅助通道,通过BP神经网络模型,提高了油菜冠层信息光谱检测的准确度,本发明的检测方法精确度高,采集样本信息方便,适应农业推广应用。The invention discloses a rapeseed canopy information spectral detection method, which utilizes an information detection mode integrating multi-channel spectra, uses a pre-trained BP neural network to establish a model for the spectral information collected from the rapeseed canopy, and obtains a SPAD value And total nitrogen content, after testing, the prediction performance and effect of the model are better. The present invention utilizes the information detection mode that integrates multi-channel spectrum, not only will not cause mutual interference between spectral channels, but also some spectral channel information detection that has no obvious effect can also be used as an auxiliary channel for light correction and environmental impact correction. The BP neural network model improves the accuracy of spectrum detection of rapeseed canopy information, the detection method of the invention has high precision, convenient collection of sample information, and is suitable for agricultural popularization and application.
Description
技术领域 technical field
本发明涉及一种植物信息光谱检测方法,尤其涉及一种油菜冠层信息光谱检测方法。 The invention relates to a plant information spectrum detection method, in particular to a rapeseed canopy information spectrum detection method. the
背景技术 Background technique
植物叶绿素、全氮含量是植物营养的主要组成部分,是植物光合作用有关的最重要的因素,叶绿素是所有能转化为植物营养光合作用的生物体,全氮是植物必需的营养元素之一,是氨基酸、蛋白质、生物碱、核酸和叶绿素等物质的主要组成成分。它们的含量可以直接或间接地反应植物的生命体征,研究和检测这些参数在植物中的含量具有重要意义。 Plant chlorophyll and total nitrogen content are the main components of plant nutrition and the most important factors related to plant photosynthesis. Chlorophyll is all organisms that can be transformed into plant nutrition photosynthesis. Total nitrogen is one of the essential nutrients for plants. It is the main component of substances such as amino acids, proteins, alkaloids, nucleic acids and chlorophyll. Their content can directly or indirectly reflect the vital signs of plants, so it is of great significance to study and detect the content of these parameters in plants. the
自然界中基本上所有物体的颜色主要由400-700nm区域的光谱反射特性决定的。正常生长的植物,叶片颜色由叶绿素的光谱特性决定,叶绿素对绿光有较强反射,所以其叶片呈绿色。叶绿素是植物含氮量的重要组分,作物冠层颜色的深浅能够反应出植株体内全氮代谢水平。缺氮时不同植物在可见、近红外波段的光谱反射率均表现出不同程度的增加趋势。国内外学者对各类作物通过不同传感器及光谱数据研究表明,光谱指数可以用于估测小麦、玉米、水稻和棉花等主要作物及蔬菜的叶绿素和全氮含量。综上可见,可见光区域的反射光谱及颜色特征可以用于估测作物叶片叶绿素和全氮含量。 The color of almost all objects in nature is mainly determined by the spectral reflection characteristics in the 400-700nm region. For normal growing plants, the color of the leaves is determined by the spectral characteristics of chlorophyll, which has a strong reflection of green light, so the leaves are green. Chlorophyll is an important component of plant nitrogen content, and the depth of crop canopy color can reflect the level of total nitrogen metabolism in the plant. The spectral reflectance of different plants in the visible and near-infrared bands showed different degrees of increase under nitrogen deficiency. Scholars at home and abroad have studied various crops through different sensors and spectral data and have shown that spectral indices can be used to estimate the chlorophyll and total nitrogen content of major crops and vegetables such as wheat, corn, rice, and cotton. In summary, the reflectance spectrum and color characteristics in the visible region can be used to estimate the chlorophyll and total nitrogen content of crop leaves. the
公开号为CN1746660A的发明专利申请,公开了一种利用冠层反射光谱作物冠层色素比值的新方法及设计的测量仪,能快速、方便地测定作物的SIPI值,准确地对作物冠层特征色素比值进行评估,对判断作物长势和指导氮肥使用有着重要作用。利用日光作光源,通过六个相同的具有特殊光谱响应特性的光电传感器,在近红外、红光和蓝光三个特征波长处,分别对日光入射光和植被的反射光进行探测,测得的信号经A/D转换后,由微控制器按SIPI值的计算公式求出SIPI值,然后根据SIPI计算得出表征作物生长状态的结果,所得结果由液晶显示器显示。测量结果可以保存在 仪器中,并且可以通过RS232串口传送到PC机上进行进一步的分析。这种探测方法及仪器对日光照明条件要求较低、结构简单、重量轻、成本低、使用方便,适合于大批量生产和应用。 The invention patent application with the publication number CN1746660A discloses a new method and a designed measuring instrument using the canopy reflection spectrum crop canopy pigment ratio, which can quickly and conveniently measure the SIPI value of the crop, and accurately measure the crop canopy characteristics. The evaluation of pigment ratio plays an important role in judging crop growth and guiding the use of nitrogen fertilizer. Using sunlight as the light source, through six identical photoelectric sensors with special spectral response characteristics, the incident light of sunlight and the reflected light of vegetation are respectively detected at three characteristic wavelengths of near infrared, red light and blue light, and the measured signal After A/D conversion, the microcontroller calculates the SIPI value according to the calculation formula of the SIPI value, and then calculates the result representing the growth state of the crop according to the SIPI value, and the obtained result is displayed on the liquid crystal display. The measurement results can be saved in the instrument, and can be transmitted to the PC through the RS232 serial port for further analysis. The detection method and the instrument have lower requirements on daylight lighting conditions, simple structure, light weight, low cost and convenient use, and are suitable for mass production and application. the
公开号为CN101403689A的发明专利申请,公开了一种基于可见-近红外光谱的植物叶片生理指标无损检测方法,可对叶绿素、氮素、叶黄素、水分等成分含量进行快速、多参数同时检测。该发明对校正集样本进行光谱采集,在对光谱数据进行预处理和波段优选后建立光谱值与植物组分含量标准之间的校正模型;采集未知样本的光谱,对光谱数据与处理后,将选定波段数据代入校正模型对待测组分的含量进行预测。该发明技术方案采用全谱信息,被测参数可扩展性强且提高了校正模型的预测精度和模型适应性;该发明采用的透反射检测方式增加了光谱灵敏度,而且对叶片类型的适应性更强;该发明采用的一种改进的小波分析方法对叶片光谱数据同时进行噪声去除和基线校正预处理,能有效提高预测精度。 The invention patent application with the publication number CN101403689A discloses a non-destructive detection method for physiological indicators of plant leaves based on visible-near infrared spectroscopy, which can quickly and simultaneously detect the contents of chlorophyll, nitrogen, lutein, water and other components . The invention collects the spectrum of the calibration set samples, and establishes a calibration model between the spectral value and the plant component content standard after preprocessing the spectral data and optimizing the band; collects the spectrum of the unknown sample, and after processing the spectral data, the The selected band data is substituted into the calibration model to predict the content of the component to be measured. The technical scheme of the invention uses full-spectrum information, the measured parameters are highly scalable, and the prediction accuracy and model adaptability of the correction model are improved; the transmission-reflection detection method adopted in the invention increases spectral sensitivity, and is more adaptable to leaf types. Strong; the invention uses an improved wavelet analysis method to simultaneously perform noise removal and baseline correction preprocessing on the leaf spectral data, which can effectively improve the prediction accuracy. the
现有技术中检测效果容易受到检测仪器等方面造成的系统误差。 The detection effect in the prior art is susceptible to systematic errors caused by detection instruments and the like. the
发明内容 Contents of the invention
本发明公开了一种油菜冠层信息光谱检测方法,解决了现有技术中检测效果容易受到检测仪器等方面造成的系统误差的问题。 The invention discloses a rape canopy information spectrum detection method, which solves the problem in the prior art that the detection effect is easily affected by system errors caused by detection instruments and the like. the
一种油菜冠层信息光谱检测方法,包括以下步骤: A rapeseed canopy information spectral detection method, comprising the following steps:
A、采集若干油菜叶片样本的光谱信息,获得其SPAD值; A, collect the spectral information of some rape leaf samples, obtain its SPAD value;
B、针对步骤A中的油菜叶片样本,检测其全氮含量; B, for the rape leaf sample in step A, detect its total nitrogen content;
C、将步骤A中的光谱信息作为输入变量,将与所述光谱信息对应的SPAD值和全氮含量作为输出变量,建立神经网络模型; C, with the spectral information in step A as input variable, with the SPAD value corresponding to described spectral information and total nitrogen content as output variable, set up neural network model;
D、采集待检测油菜的光谱信息并利用所述的模型得到该待检测油菜的SPAD值和全氮含量,以确定待检测油菜生长状态。 D. Collect the spectral information of the rapeseed to be detected and use the model to obtain the SPAD value and total nitrogen content of the rapeseed to be detected, so as to determine the growth state of the rapeseed to be detected. the
所述SPAD值是衡量一株植物叶绿素的相对含量的一个参数,是叶绿素含量的标志。 The SPAD value is a parameter to measure the relative content of chlorophyll in a plant, and is a sign of chlorophyll content. the
全氮含量指植物中氮素的总含量,氮是植物必须的大量元素,是蛋白质、叶绿素、核酸、酶、生物激素等重要生命物质的组成部分,同一时期不同作物需氮量不同,同一作物不同时期需氮量不同,同时,不同施氮处理对作物氮素吸收及产量的影响不同,检测全氮含量对农作物的生长和产 量影响甚大。 Total nitrogen content refers to the total nitrogen content in plants. Nitrogen is an essential macroelement for plants and a component of important living substances such as proteins, chlorophyll, nucleic acids, enzymes, and biological hormones. Different crops require different amounts of nitrogen in the same period, and the same crop The amount of nitrogen required in different periods is different. At the same time, different nitrogen application treatments have different effects on crop nitrogen absorption and yield. The detection of total nitrogen content has a great impact on crop growth and yield. the
所述的步骤A和步骤D中的光谱信息为油菜冠层部分叶片的光谱信息。检测冠层信息方便仪器操作,利于仪器动态、快速地检测植物的光谱信息。 The spectral information in the step A and step D is the spectral information of some leaves of the canopy of rapeseed. The detection of canopy information is convenient for instrument operation, and it is beneficial for the instrument to dynamically and quickly detect the spectral information of plants. the
若无特殊说明,以下光谱信息均泛指油菜冠层部分叶片的光谱信息。 Unless otherwise specified, the following spectral information generally refers to the spectral information of some leaves in the rape canopy. the
步骤A和步骤D中,向油菜叶片发射450-1200nm的探测光,采集经油菜叶片反射后的探测光,得到对应的光谱信息,在450-1200nm范围内对SPAD值和全氮含量进行检测具有敏感特性效应,这个区域的信息对油菜叶片SPAD值及全氮含量模型检测很有帮助。 In step A and step D, the probe light of 450-1200nm is emitted to the rape leaf, and the probe light reflected by the rape leaf is collected to obtain the corresponding spectral information, and the SPAD value and the total nitrogen content are detected in the range of 450-1200nm. Sensitive characteristic effect, the information in this area is very helpful for the model detection of rape leaf SPAD value and total nitrogen content. the
所述探测光在450-1200nm范围内的16路,16路探测光波长分别为450nm、480nm、550nm、640nm、680nm、720nm、780nm、820nm、860nm、880nm、940nm、960nm、1040nm、1100nm、1150nm、1200nm。 16 channels of the probe light in the range of 450-1200nm, the wavelengths of the 16 probe lights are 450nm, 480nm, 550nm, 640nm, 680nm, 720nm, 780nm, 820nm, 860nm, 880nm, 940nm, 960nm, 1040nm, 1100nm, 1150nm , 1200nm. the
所述的神经网络模型为BP神经网络模型。 The neural network model is a BP neural network model. the
本发明中先采集油菜叶片样本信息,先通过仪器测量与计算出油菜叶片样本的SPAD值和全氮含量值。对油菜叶片样本进行光谱数据扫描,并记录特征波段中每一波段的反射率,用光谱反射率(即所述的光谱信息)作为神经网络输入变量,将对应的通过仪器测量得到的SPAD值和全氮含量作为输出变量建立BP神经网络模型。 In the present invention, the rape leaf sample information is collected first, and the SPAD value and the total nitrogen content value of the rape leaf sample are measured and calculated by an instrument. Rapeseed leaf samples are scanned for spectral data, and the reflectance of each band in the characteristic band is recorded, and the spectral reflectance (that is, the spectral information) is used as the input variable of the neural network, and the corresponding SPAD value obtained by instrument measurement and The total nitrogen content was used as the output variable to establish the BP neural network model. the
BP神经网络模型建立后,为了提高其可靠性,一般需要进行训练,通过训练获得修正后的BP神经网络中的权值和阀值,计算仪器测量值与BP神经网络模型实际输出的误差。若误差不大于期望误差最小值,或已达到最大循环次数,则训练结束,否则继续。 After the BP neural network model is established, in order to improve its reliability, it generally needs to be trained. Through training, the weights and thresholds in the corrected BP neural network are obtained, and the error between the measured value of the instrument and the actual output of the BP neural network model is calculated. If the error is not greater than the minimum expected error, or the maximum number of cycles has been reached, the training ends, otherwise continue. the
与现有技术相比,本发明的有益效果是: Compared with prior art, the beneficial effect of the present invention is:
(1)BP神经网络通过每个输入变量对输出影响的权值修改来获取它对该参数的贡献率,与输出无关的输入变量通过BP网络训练后它所对应的权值将会被降至接近为0,提高了油菜冠层信息光谱检测的准确度,利于管理人员正确地施肥和培养。 (1) The BP neural network obtains its contribution rate to the parameter by modifying the weight value of each input variable on the output, and the input variable that has nothing to do with the output will be trained by the BP network and its corresponding weight will be reduced to It is close to 0, which improves the accuracy of spectral detection of rapeseed canopy information, and is beneficial for managers to fertilize and cultivate correctly. the
(2)利用多通道光谱集于一体的信息检测模式,采用BP神经网络建模方式,可使环境因素对检测的准确性和可靠性影响降到最低,不仅不会因为光谱通道之间产生互扰,而且一些没有明显作用的光谱通道信息检测还能作为光线校正、环境影响校正的辅助通道。对提高仪器的适应性能提 高有所帮助。 (2) Using the information detection mode integrating multi-channel spectrum and adopting BP neural network modeling method, the impact of environmental factors on the accuracy and reliability of detection can be minimized, and not only will there be no interaction between spectral channels interference, and some spectral channel information detection that has no obvious effect can also be used as an auxiliary channel for light correction and environmental impact correction. It is helpful to improve the adaptability of the instrument. the
附图说明 Description of drawings
图1为本发明方法所的SPAD值与仪器测量所的SPAD值的关系图。 Fig. 1 is the relation diagram of the SPAD value of the method of the present invention and the SPAD value of the instrument measurement. the
图2为本发明方法所的全氮含量与仪器测量所的全氮含量的关系图。 Fig. 2 is a graph showing the relationship between the total nitrogen content obtained by the method of the present invention and the total nitrogen content obtained by instrumental measurement. the
具体实施方式 Detailed ways
本发明一种油菜冠层信息光谱检测方法,用于油菜SPAD及全氮含量的测定,并借此确定植物的生长状态。 The invention discloses a rapeseed canopy information spectrum detection method, which is used for measuring the SPAD and total nitrogen content of the rapeseed, thereby determining the growth state of the plant. the
模型的建立 model building
(1)在油菜青叶期选择60个小区作为训练样本集,对该小区进行冠层光谱实验,另外选择15个小区作为预测样本集,用油菜冠层信息光谱检测仪的光谱检测探头对每个小区的油菜冠层进行冠层光谱扫描,太阳光在油菜冠层上反射出的光谱信息先通过16路光谱检测信息通道后,经过聚焦镜光通道将光束聚焦在滤波片中心处,通过滤光片将某特定波段的反射光谱信息传送到光电传感器,光电传感器经过微弱信号的放大及处理,获得每个小区油菜冠层的16个波段光谱反射值,DSP处理器将获得的16个波段光谱反射值通过接口电路在MCU的显示单元上显示。
(1)
为了实施本发明方法,可以采用油菜冠层信息光谱检测仪,包括光谱探测头和用于接收和处理光谱探测头输出信号的MCU,MCU还分别连接有指令输入单元、显示单元、存储单元及无线收发单元。 In order to implement the method of the present invention, can adopt rapeseed canopy information spectral detection instrument, comprise spectral detection head and be used to receive and process the MCU of output signal of spectral detection head, MCU is also respectively connected with instruction input unit, display unit, storage unit and wireless transceiver unit. the
光谱探测头包括在光路上依次布置的光谱检测信息通道、滤光片、光电传感器,以及与光电传感器电路连接的DSP处理器,DSP处理器与MCU之间通过接口电路相连。光电传感器电路和DSP处理器之间设有用于对光电传感器的输出信号进行调理与放大的预处理单元。 The spectral detection head includes a spectral detection information channel, a filter, a photoelectric sensor arranged in sequence on the optical path, and a DSP processor connected to the photoelectric sensor circuit, and the DSP processor is connected to the MCU through an interface circuit. A preprocessing unit for conditioning and amplifying the output signal of the photoelectric sensor is arranged between the photoelectric sensor circuit and the DSP processor. the
(2)对每一个小区通过SPAD-502检测仪器测量每个小区冠层SPAD值30次,通过求平均值获取该小区的SPAD值,通过摘取各小区区域内的油菜叶片,通过凯氏定氮法测量其全氮含量。
(2) measure each plot
其中,SPAD-502为日本MINOLTA公司生产的叶绿素计,该检测仪器通过测量植物叶片的光谱吸收特性测量植物叶绿素含量。凯氏定氮法是测定化合物或混合物中总氮量的一种方法,即在有催化剂的条件下,用浓 硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。 Among them, SPAD-502 is a chlorophyll meter produced by Japan MINOLTA Company. This detection instrument measures the chlorophyll content of plants by measuring the spectral absorption characteristics of plant leaves. The Kjeldahl method is a method for determining the total nitrogen in a compound or mixture, that is, under the condition of a catalyst, the sample is digested with concentrated sulfuric acid to convert the organic nitrogen into an inorganic ammonium salt, and then the ammonium is converted to an inorganic ammonium salt under alkaline conditions. The salt is converted into ammonia, distilled out with water vapor and absorbed by excess acid solution, and then titrated with standard alkali to calculate the amount of nitrogen in the sample. the
(3)用步骤(1)中训练样本集中的16个波段光谱反射值作为输入变量,将步骤(2)中检测仪器测量得到的SPAD值和全氮含量作为输出变量,建立BP神经网络模型。 (3) Use the 16-band spectral reflectance values in the training sample set in step (1) as input variables, and use the SPAD value and total nitrogen content measured by the detection instrument in step (2) as output variables to establish a BP neural network model. the
在BP神经网络中,其中输入神经元为16个,分别为450-1200nm范围内的特征波段450nm、480nm、550nm、640nm、680nm、720nm、780nm、820nm、860nm、880nm、940nm、960nm、1040nm、1100nm、1150nm、1200nm的光谱反射值,将16个波段的反射值作为x1、x2…x16 16个输入变量,检测仪器测量得到的SPAD值和全氮含量作为y1、y2 2个输出神经元,将数据经过标准化处理后,BP网络中Sigmoid参数选取0.9,取6个隐含神经元,训练1000次,得到结果如表1的映射关系,由于篇幅限制,本实施例选取典型的15个样本列于表1。其拟合残差值为0.00019。
In the BP neural network, there are 16 input neurons, which are the characteristic bands 450nm, 480nm, 550nm, 640nm, 680nm, 720nm, 780nm, 820nm, 860nm, 880nm, 940nm, 960nm, 1040nm, Spectral reflectance values at 1100nm, 1150nm, and 1200nm, take the reflectance values of 16 bands as x 1 , x 2 ... x 16 16 input variables, and the SPAD value and total nitrogen content measured by the detection instrument as y 1 ,
其中SY1和SY2分别是实际测量值,用来和仪器模型测量计算的结果进行对比。 Among them, SY1 and SY2 are the actual measured values, which are used to compare with the results calculated by the instrument model. the
表1 Table 1
(4)经过神经网络模型训练处理后,建立仪器的检测模型,用步骤(1)中预测样本集的16个波段光谱反射值作为神经网络输入变量,利用训练样本所得的BP神经网络,得到预测样本集的SPAD值和全氮含量, 并且与利用步骤(2)中得到预测样本集的仪器测量得到的SPAD值和全氮含量测量值进行比较,得到的关系如图1、图2所示。 (4) After the neural network model training process, establish the detection model of the instrument, use the 16 band spectral reflectance values of the predicted sample set in step (1) as the input variables of the neural network, and use the BP neural network obtained from the training samples to obtain the prediction The SPAD value and total nitrogen content of the sample set are compared with the SPAD value and total nitrogen content measured by the instrument of the predicted sample set obtained in step (2). The relationship obtained is shown in Figure 1 and Figure 2. the
模型SPAD计算中预测值与测量值之间相关系数R2=0.9361,全氮含量预测值与测量值之间的相关系数R2=0.8237,模型预测性能与效果较好,满足农业肥水管理对作物的养分检测要求。 The correlation coefficient R 2 between the predicted value and the measured value in the calculation of the model SPAD is 0.9361, and the correlation coefficient between the predicted value and the measured value of the total nitrogen content is R 2 = 0.8237. nutrient testing requirements.
所述相关系数为利用最小二乘-支持向量机所得,最小二乘-支持向量机是基于结构风险最小化,较好地提高学习机的泛化能力,对独立的测试集仍能够得到小的误差的数学统计方法。模型的相关系数越近大,均方根误差R越小,则模型的预测能力越好。 The correlation coefficient is obtained by using the least squares-support vector machine. The least squares-support vector machine is based on structural risk minimization, which can better improve the generalization ability of the learning machine, and can still obtain small Error mathematical statistics method. The closer the correlation coefficient of the model is, the smaller the root mean square error R is, and the better the predictive ability of the model is. the
实施例1~2 Embodiment 1~2
完成模型的建立后,开始实测油菜的生长状态,选择15个小区,用油菜冠层信息光谱检测仪的光谱检测探头对每个小区的油菜冠层进行冠层光谱扫描,应用本发明方法测得各小区的SPAD值及全氮含量,并与SPAD502、凯式测氮法所得的SPAD值及全氮含量进行比较,得到的部分数据如表2、表3所示。 After completing the establishment of the model, start the growth state of measured rape, select 15 sub-districts, carry out canopy spectrum scanning to the rape canopy of each sub-district with the spectral detection probe of rape canopy information spectrum detector, apply the method of the present invention to record The SPAD value and total nitrogen content of each plot were compared with the SPAD value and total nitrogen content obtained by SPAD502 and Kjeldahl method, and some data obtained are shown in Table 2 and Table 3. the
其中,Y1为利用BP网络模型计算得到的SPAD值,SY1为利用SPAD502得到的SPAD值,Y2为利用BP网络模型计算得到的全氮含量,SY1为利用凯式测氮法得到的全氮含量。 Among them, Y1 is the SPAD value calculated by using the BP network model, SY1 is the SPAD value obtained by using the SPAD502, Y2 is the total nitrogen content calculated by the BP network model, and SY1 is the total nitrogen content obtained by the Kjeldahl method. the
表2(实施例1) Table 2 (Example 1)
[0047] 表3(实施例2) Table 3 (embodiment 2)
由表2及表3可知,利用本发明得到的SPAD值及全氮含量与利用SPAD502仪器及凯式测氮法得到测量值相关系数均很小,满足农业肥水管理对作物的养分检测要求。 As can be seen from Table 2 and Table 3, the SPAD value obtained by the present invention and the total nitrogen content are all very small in relation to the measured values obtained by using the SPAD502 instrument and the Kjeldahl nitrogen measurement method, which meets the nutrient detection requirements of crops for agricultural fertilizer and water management. the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210226049XA CN102759510A (en) | 2012-06-29 | 2012-06-29 | Spectral detection method of rape canopy information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210226049XA CN102759510A (en) | 2012-06-29 | 2012-06-29 | Spectral detection method of rape canopy information |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102759510A true CN102759510A (en) | 2012-10-31 |
Family
ID=47054040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210226049XA Pending CN102759510A (en) | 2012-06-29 | 2012-06-29 | Spectral detection method of rape canopy information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102759510A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158408A (en) * | 2015-04-23 | 2015-12-16 | 安徽星鑫化工科技有限公司 | BP neural network-based chlorinated paraffin chlorinity indirect detection method |
CN106770072A (en) * | 2016-12-05 | 2017-05-31 | 青岛农业大学 | One kind arrives Wheat Leavess SPAD value evaluation methods before heading after turning green |
WO2017092136A1 (en) * | 2015-11-30 | 2017-06-08 | 江苏大学 | Quick measurement method for blade surface microstructure based on light interference technology |
CN106919740A (en) * | 2017-01-25 | 2017-07-04 | 广东省农业科学院农业资源与环境研究所 | Detect method, device and the electronic equipment of plant nitrogen content |
CN107271382A (en) * | 2017-06-02 | 2017-10-20 | 西北农林科技大学 | A kind of different growing rape leaf SPAD value remote sensing estimation methods |
CN111929318A (en) * | 2020-07-31 | 2020-11-13 | 青岛海尔智能技术研发有限公司 | Dust detection device and apparatus |
CN112287886A (en) * | 2020-11-19 | 2021-01-29 | 安徽农业大学 | Wheat plant nitrogen content estimation method based on hyperspectral image fusion map features |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2854585Y (en) * | 2005-12-28 | 2007-01-03 | 浙江大学 | Multispectral image diagnostic system for rape nitrogen nutrition |
US8012912B1 (en) * | 2007-09-28 | 2011-09-06 | Bret Barrick | Method of increasing the yield of sugar from sugarcane |
-
2012
- 2012-06-29 CN CN201210226049XA patent/CN102759510A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2854585Y (en) * | 2005-12-28 | 2007-01-03 | 浙江大学 | Multispectral image diagnostic system for rape nitrogen nutrition |
US8012912B1 (en) * | 2007-09-28 | 2011-09-06 | Bret Barrick | Method of increasing the yield of sugar from sugarcane |
Non-Patent Citations (2)
Title |
---|
裘正军: "应用SPAD和光谱技术研究油菜生长期间的氮素变化规律", 《农业工程学报》 * |
黄敏等: "基于可见-近红外光谱的油菜氮素预测的研究", 《第十二届国际油菜大会论文集》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158408A (en) * | 2015-04-23 | 2015-12-16 | 安徽星鑫化工科技有限公司 | BP neural network-based chlorinated paraffin chlorinity indirect detection method |
WO2017092136A1 (en) * | 2015-11-30 | 2017-06-08 | 江苏大学 | Quick measurement method for blade surface microstructure based on light interference technology |
CN106770072A (en) * | 2016-12-05 | 2017-05-31 | 青岛农业大学 | One kind arrives Wheat Leavess SPAD value evaluation methods before heading after turning green |
CN106919740A (en) * | 2017-01-25 | 2017-07-04 | 广东省农业科学院农业资源与环境研究所 | Detect method, device and the electronic equipment of plant nitrogen content |
CN107271382A (en) * | 2017-06-02 | 2017-10-20 | 西北农林科技大学 | A kind of different growing rape leaf SPAD value remote sensing estimation methods |
CN111929318A (en) * | 2020-07-31 | 2020-11-13 | 青岛海尔智能技术研发有限公司 | Dust detection device and apparatus |
CN112287886A (en) * | 2020-11-19 | 2021-01-29 | 安徽农业大学 | Wheat plant nitrogen content estimation method based on hyperspectral image fusion map features |
CN112287886B (en) * | 2020-11-19 | 2023-09-22 | 安徽农业大学 | Estimation method of wheat plant nitrogen content based on hyperspectral image fusion map features |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101382488B (en) | Method for detection of nitrogen content in fresh tea leaves using visible-near infrared diffuse reflectance spectroscopy | |
CN102759510A (en) | Spectral detection method of rape canopy information | |
CN101718683B (en) | Method for fast detection of chlorophyll content in leaf blades, modeling method and detection method | |
CN101936882B (en) | A method and device for non-destructive detection of crop nitrogen and moisture | |
Vigneau et al. | Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat | |
CN101482514B (en) | Disease detecting instrument and method | |
CN104849219B (en) | A kind of crop nitrogen nutrition diagnostic equipment and method | |
Saberioon et al. | A review of optical methods for assessing nitrogen contents during rice growth | |
CN109187398A (en) | A kind of EO-1 hyperion measuring method of wheat plant nitrogen content | |
CN103115879B (en) | Method for measuring content of chlorophyll a, chlorophyll b and carotenoid in plant live leaf by utilizing absorption spectrum | |
CN107607486B (en) | A kind of soil total nitrogen detection method and device | |
CN102042968A (en) | Grain quality near infrared rapid detection wireless system | |
CN101975759A (en) | Transmission-type nondestructive measuring device and method of water content of plant leaves | |
CN109187417A (en) | A kind of Terahertz of UAV system involves high-spectrum remote-sensing crops monitoring system | |
CN105136732A (en) | Field crop dual band imaging NDVI measurement apparatus | |
CN100480681C (en) | Plant growth information acquisition device based on near infrared spectrum | |
Sookchalearn et al. | A low-cost sensor for measuring and mapping chlorophyll content in cassava leaves | |
CN115684107A (en) | A method for early quantitative monitoring of rice salt stress based on sunlight-induced chlorophyll fluorescence index | |
CN117269106A (en) | Hyperspectral model for rapidly predicting content of capsicum protein | |
CN112362812A (en) | Remote sensing inversion model and method for rice leaf chlorophyll carotenoid content ratio based on Lars algorithm | |
CN102788796A (en) | Nutrient diagnosis device and nutrient diagnosis method for nitrogen of crops based on multi-information integration of high spectral images and fluorescent images | |
CN1566928A (en) | Measurement normalization vegetation differential index method and instrument | |
CN109932339B (en) | An all-weather light environment adaptive crop growth detection device and method | |
CN204405523U (en) | A kind of crop nitrogen nutrition diagnostic equipment | |
Ni et al. | Application of monitoring system about plant growth information based on spectroscopy technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121031 |