CN102754383B - 用于通信系统路由组件级高度可用性的系统和方法 - Google Patents

用于通信系统路由组件级高度可用性的系统和方法 Download PDF

Info

Publication number
CN102754383B
CN102754383B CN201180002894.2A CN201180002894A CN102754383B CN 102754383 B CN102754383 B CN 102754383B CN 201180002894 A CN201180002894 A CN 201180002894A CN 102754383 B CN102754383 B CN 102754383B
Authority
CN
China
Prior art keywords
information
route
assembly
renewal
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180002894.2A
Other languages
English (en)
Other versions
CN102754383A (zh
Inventor
陈怀谟
赵强林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN102754383A publication Critical patent/CN102754383A/zh
Application granted granted Critical
Publication of CN102754383B publication Critical patent/CN102754383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/084Configuration by using pre-existing information, e.g. using templates or copying from other elements
    • H04L41/0846Configuration by using pre-existing information, e.g. using templates or copying from other elements based on copy from other elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • G06F11/2038Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant with a single idle spare processing component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • G06F11/2048Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant where the redundant components share neither address space nor persistent storage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2097Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements maintaining the standby controller/processing unit updated

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种用于通信系统路由组件级高度可用性的系统和方法。一种用于提供路由组件级高度可用性的方法包含:使来自主用信息源的信息同步;检测路由组件中的故障;用备份路由组件代替所述出故障的路由组件;以及完成所述信息的同步。

Description

用于通信系统路由组件级高度可用性的系统和方法
本发明要求2010年3月29递交的发明名称为“用于路由组件级高度可用性的系统和方法”的第61/318,459号美国临时申请案的在先申请优先权,且进一步要求2010年7月1日递送的发明名称为“用于通信系统路由组件级高度可用性的系统和方法”的第12/829,315号美国非临时申请案的在先申请优先权。所述临时申请案和非临时申请案两者在此以引入的方式并入本文本中。
技术领域
本发明大体上涉及用于数字通信的系统和方法,且更特定来说,涉及用于通信系统路由组件级高度可用性的系统和方法。
发明背景
许多服务提供商已开始通过提供商的通信系统向其客户提供实时网络业务,例如,因特网语音协议(VoIP)、因特网协议(IP)电视等等。归因于这些业务的实时性质,服务提供者以令人满意的水平向其客户提供连续服务可非常关键。因此,服务提供商需要使其网络服务对于其客户始终可用。
路由器是在通信系统中将实时网络服务提供给客户的主要构造块。在路由器中运行着许多路由协议,例如开放式最短路径优先(OSPF)和边界网关协议(BGP)。这些协议维持着最新的网络拓扑且计算到通信系统中的每一目的地的最佳路由。路由器中的路由表管理器(RTM)将每一路由协议所计算的所有路由维持于路由表中,且选择具有到每一目的地的较高优先权的路由。所有这些选定的路由被转发表管理器(FTM)存储在转发信息库(FIB)中以供转发包。
通常,通信系统中的每一路由器通过执行路由协议以与其邻近的路由器交换关于通信系统的信息而与通信系统中的任何其它路由器具有与通信系统的拓扑一致的概观。因此,每一路由器与通信系统中的任何其它路由器具有一致的FIB,且适当地将包转发到其目的地。如果在FIB或通信系统的拓扑概观中存在任何不一致,则可发生路由循环,且实时网络服务可能被中断。
具有高度可用性的通用路由器由主用主板(AMB)和备用主板(SMB)组成。RTM和路由协议,例如OSPF和BGP,运行于AMB和SMB上。在某些路由器中,不同的软件组件,例如RTM和BGP,可作为单独过程运行。在通信系统中可能发生的重要问题是,路由器通过技术从路由器中的故障,例如失败的组件切换,恢复过来的时间可能较长,因为在某些过程之间的大量数据的同步,例如,RTM与BGP之间的路由表中的数百万BGP路由,可能花费较长时间。在恢复期间,路由器可能相对于网络中的其它路由器具有不一致的FIB或对通信系统的拓扑的概观。不一致可导致路由循环,以及实时网络服务降级或中断。
因此,需要用于从路由器中的故障快速恢复过来的系统和方法。因此,出故障的路由器将在执行失败的组件切换后与网络中的其它路由器即时地(或即刻)具有一致的FIB和对通信系统的概观。由通信系统提供的实时网络服务将不会受路由器内的故障显著影响。
发明内容
通过提供用于通信系统路由组件级高度可用性的系统和方法的本发明的优选实施例,一般地解决或回避了这些和其它问题,且一般地实现了技术优点。
根据本发明的优选实施例,提供一种用于使来自主用信息源的信息同步的方法。所述方法包含:检测信息中的改变;将关于所改变的信息的第一更新发送到备份信息源;将第二更新发送到一个或一个以上主用信息消耗装置中的每一者;以及向备份信息源提交所改变的信息。第二更新得自所改变的信息。
根据本发明的另一优选实施例,提供一种用于提供路由组件级高度可用性的方法。所述方法包含:使来自主用信息源的信息同步;检测出故障的路由组件;用备份路由组件代替所述出故障的路由组件;以及完成信息的同步。
根据本发明的另一优选实施例,提供一种路由器。所述路由器包含:接收器,其将耦合到数据输入端口;发射器,其将耦合到数据输出端口;主用主板,其耦合到所述发射器和所述接收器;备用主板,其耦合到所述主用主板;以及控制器,其耦合到所述主用主板和所述备用主板。所述接收器通过所述数据输入端口接收传入信息,所述发射器通过所述数据输出端口发射传出信息,所述主用主板提供路由管理并执行路由协议以将传入信息路由到其既定接收方,且所述备用主板在所述主用主板中出故障的情况下提供对所述主用主板的冗余。所述控制器检测所述主用主板中的故障,且当检测到故障时用备用组件交换出故障的固件。
实施例的优点在于,显著减少了在检测到路由组件中的故障并代替出故障的路由组件时必须在各种相关路由组件间进行交换以使相关路由信息同步的数据量。因此,使相关路由信息同步花费实质上较少的时间,从而减少了对实时服务的负面影响。
实施例的进一步优点是,可代替广泛多种路由组件,进而增加了在提供多个路由组件高度可用性方面的灵活性。
上文已相当广泛地概述了本发明的特征和技术优点,以为了更好地理解随后的对实施例的详细描述。下文将描述实施例的额外特征和优点,其形成本发明的权利要求书的标的。所属领域的技术人员将了解,所揭示的概念和特定实施例可容易用作用于修改或设计其它结构或过程以实行本发明的相同目的的基础。所属领域的技术人员还应认识到,此类等效建构不偏离所附权利要求书中所陈述的本发明的精神和范围。
附图简述
为了更完整地理解本发明及其优点,现在参考结合附图进行的以下描述,附图中:
图1a是通信系统的图;
图1b是路由器的图;
图1c是图1b中所展示的控制件的详细视图的图;
图2a是路由器的一部分的图;
图2b是信息同步中的A-PRO操作的流程图;
图2c是用新组件交换出出故障的组件并使新组件服务的操作的流程图;
图3a是与A-OSPF相关的路由器的一部分的图;
图3b是LSA和路由同步中的A-OSPF操作的流程图;
图3c是用新组件交换出出故障的A-OSPF组件并使新组件服务的操作的流程图;
图4a是与A-RTM相关的路由器的一部分的图;
图4b是路由同步中的A-RTM操作的流程图;
图4c是用新组件交换出出故障的A-RTM组件并使新组件服务的操作的流程图;
图5a是路由器的另一部分的图;
图5b是信息同步中的A-PRO操作的流程图;
图5c是用新组件交换出出故障的A-PRO组件并使新组件服务的操作的流程图;
图6a是与A-FTM相关的路由器的一部分的图;
图6b是路由同步中的A-FTM操作的流程图;以及
图6c是用新组件交换出出故障的A-FTM组件并使新组件服务的操作的流程图。
具体实施方式
下文详细论述目前优选的实施例的制作和使用。然而,应了解,本发明提供可以广泛多种具体环境体现的许多可适用的发明性概念。所论述的具体实施例仅说明用以制作和使用本发明的具体方式,且不限制本发明的范围。
将在具体环境中相对于优选实施例,即在提供实时服务的通信系统中的路由器,来描述本发明。然而,本发明还可适用于提供实时、准实时、时间敏感、时间不敏感,或其组合的服务的其它通信中的路由器。
图1a说明通信系统100。通信系统100可包含一个或一个以上路由器,例如路由器120、路由器121和路由器122。路由器可连接到一个或一个以上其它路由器。举例来说,路由器120可连接到路由器121和路由器122。
一般来说,每一路由器具有关于通信系统的网络拓扑的信息。每一路由器基于关于所述网络拓扑的信息而计算到目的地的最佳路由。可将最佳路由写入路由表中,可将最佳路由从所述路由表传递到转发表,转发表用于将例如IP包等数据转发到其目的地。
图1b说明路由器150。路由器150可为用于例如通信系统100的通信系统中的路由器的一实施方案。路由器150可为有线路由器、无线路由器,或其组合。本文中的论述不区分有线或无线路由器。因此,术语路由器的使用可适用于有线路由器、无线路由器,或有线和无线路由器的组合。
路由器150包含可用于接收一般呈IP包的形式的传入信息的接收单元155。路由器150还包含可用于发射传出信息的发射单元157。接收单元155和发射单元157可耦合到主用主板(AMB)159。AMB 159可由执行例如路由表管理等路由任务、执行路由协议等的单元组成,其可用于将所接收的传入信息路由到其既定接收方。
作为一实例,AMB 159可用处理元件实施,例如通用处理器、专用处理器、控制器、信号处理单元等。在替代性实施例中,AMB 159可用经特殊设计以提供例如路由表管理等路由功能性、执行路由协议等的功能块实施。AMB159还可包含专用存储器来存储例如路由等信息。
为了增加可用性,即可靠性,路由器150可包含一个以上主板。如图1b中所示,路由器150还包含备用主板(SMB)161,其可实质上类似于AMB159。根据一实施例,AMB 159和SMB 161可为等同的,从而意味着SMB 161可提供与AMB 159等同的功能性。SMB 161可向路由器150提供冗余的度量。根据替代性实施例,SMB 161可实施AMB 159的功能性的子集,从而仅提供AMB 159的一些功能性。举例来说,AMB 159可包含未实施于SMB 161中的主用信息消耗装置。
路由器150还包含可用于控制路由器150的操作的控制件163,所述操作例如为检测故障、交换组件(例如,针对适当地操作的组件交换出故障的组件)等。可使用通用处理器或专用处理器或控制器、组合逻辑、状态机或其组合来实施控制件163。存储器165可用于存储配置信息、为路由数据提供存储空间、清除存储器、缓冲空间等。存储器165可为只读存储器、随机存取存储器、可编程只读存储器等的组合。
图1c说明控制件163的详细视图。控制件163包含用于检测AMB 159中的故障的故障检测单元172,和用于用备用组件交换出故障的组件的组件交换单元174。
故障检测单元173可检测AMB 159的组件中的故障。根据一替代性实施例,不检测AMB 150的单一组件的故障,故障检测单元172可检测出整个AMB 159出现故障。可使用多种技术来执行检测故障。举例来说,如果组件在指定时间量之后不响应,则可认为组件是出故障的组件。或者,如果组件对特定请求不作出响应,则可认为组件是出故障的组件。此外,如果组件未在指定的参数内操作,则可认为组件是出故障的组件。检测出故障的组件可超出实施例的范围,且将不在本文中进行进一步论述。
组件交换单元174可用于用备用组件交换出故障的组件。举例来说,如果特定组件被检测为有故障,则组件交换单元174可执行用备用组件代替有故障组件可为必需的操作,例如信号路径重新路由、旗标设定等。组件交换单元仅可交换出有故障组件,与有故障组件相同类型的所有组件,或含有有故障组件的整个板。
图2a说明路由器200的一部分。路由器200的AMB 205和SMB 207在图2a中突出显示。图2a中展示从出故障的组件进行恢复以及用于在AMB 205与SMB 207之间进行数据同步的技术。
在AMB 205中,可能有主用发生器(A-PRO)210在执行,而在SMB 207中,备用发生器(S-PRO)212可能在执行。此外,可能有多个主用消耗装置(A-CON),例如A-CON-1215和A-CON-N 217在AMB 205中执行,以及多个备用消耗装置(S-CON),例如S-CON-1220和S-CON-N 222,在SMB 207中执行。
可认为A-PRO 210是主用信息源,因为其产生供主用信息消耗装置,例如A-CON,消耗的信息。可认为S-PRO 212是备份信息源,因为其既定为在A-PRO 210出故障的情况下A-PRO 210的代替物。类似地,可认为S-CON是备份信息消耗装置,万一A-CON中的一者或一者以上出故障,则备份A-CON。
A-PRO 210可与S-PRO 212以及A-CON通信,而每一A-CON可与A-PRO210及其对应的S-CON通信。举例来说,A-CON-1215可与A-PRO 210和S-CON-1220通信。S-PRO 212可与A-PRO 210通信,且每一S-CON可与其对应的A-CON通信。作为一实例,S-CON-N 222可与A-CON-N 217通信。
图2a还说明AMB 205与SMB 207之间的用以使信息同步的传输序列。在A-PRO 210发现已存在信息改变时,A-PRO 210向S-PRO 212发送更新(展示为事件1“UPDATE”),而可开始信息同步。根据一实施例,信息改变可包含一条新信息、对一条现有信息的修改、对一条现有信息的删除,或其组合。更新含有信息改变。
S-PRO 212在成功地接收到更新之后可即刻在S-PRO 212处理了更新之后将对更新的确认发送回A-PRO 210(展示为事件2“ACK”)。处理更新可包含检查更新、解码更新、存储来自所解码更新的信息,等等。A-PRO 210还可在从S-PRO 212接收到确认之后将得自信息改变的更新-d发送到A-CON,例如A-CON-1215和A-CON-N 217(展示为事件3-1“UPDATE-D”和3-N “UPDATE-D”)。根据一实施例,得自信息改变的更新-d可在一种情况下含有信息改变,且在另一种情况下含有由信息改变产生的信息。根据另一实施例,A-PRO 210可同时地或依次地将更新-d发送到A-CON。
在从A-PRO 210接收到更新-d且处理了更新之后,A-CON中的每一者可将更新-d发送到其对应的S-CON,举例来说,A-CON-1 215可将更新-d发送到S-CON-1 220等(展示为事件4-1“UPDATE-D”和4-N“UPDATE-D”)。S-CON中的每一者在从其对应的A-CON接收到更新-d并处理了更新-d之后,可将对更新-d的确认发送到其对应的A-CON(展示为事件5-1“ACK”和5-N“ACK”)。作为一实例,S-CON-N 222可将确认发送到A-CON-N 217。
对于每一更新(或离散信息单元),存在用以指示S-PRO 212中的更新状态的旗标。更新的一个状态可为“从A-PRO接收”,其指示S-PRO 212从A-PRO 210接收到更新。在S-PRO 212接收到并处理了更新之后,用于更新的旗标被S-PRO 212设定为“从A-PRO接收”。更新的另一状态可为“存储在S-CON中”,其指示S-CON中的每一者接收到并存储了得自更新中所包含的信息改变的更新-d。
在从其对应的S-CON接收到确认后,每一A-CON可即刻将对来自A-PRO210的更新-d的确认发送回A-PRO 210(展示为事件6-1“ACK”和6-N“ACK”)。在从所有其A-CON接收到确认之后,A-PRO 210可将更新提交发送到S-PRO212(展示为事件7“COMMIT”)。根据一实施例,更新提交可为向S-PRO 212的指示,其指示所有S-CON接收到并存储了得自更新中所包含的信息改变的更新-d。实际上,所述提交告知S-PRO 212将旗标设定为“存储于S-CON中”。S-PRO 212可随后在其处理了更新提交之后将提交确认发送到A-PRO210(展示为事件8“COM-ACK”)。
图2b说明信息同步中的A-PRO操作250的流程图。A-PRO操作250可指示A-PRO,例如A-PRO 210中发生的操作,如在A-PRO检测到信息改变时A-PRO使信息与S-PRO、A-CON和S-CON同步。图2b中所展示的A-PRO操作250可为A-PRO的角度下的图2a中所展示的事件的汇总,且其中未展示确认。
A-PRO操作250可开始于A-PRO检测信息改变,且由于所检测到的信息改变而更新S-PRO(方框255)。除了更新S-PRO之外,A-PRO还可更新A-CON(方框257)。在更新了S-PRO和A-CON之后,A-PRO可向S-PRO提交信息改变(方框259)。A-PRO操作250可随后终止。
图2c说明用新组件交换出出故障的组件并使新组件服务的操作275的流程图。操作275可指示当路由器检测到出故障的组件且使用组件交换以用新组件代替出故障的组件时路由器的控制件,例如控制件163中发生的操作。
可以不同粒度进行组件交换。举例来说,在较细粒度下,组件交换仅可用新组件代替出故障的组件。在中等粒度下,组件交换可用新组件代替出故障的组件以及与出故障的组件相同类型(相同组件类型)的组件。而在较高粒度下,组件交换可用新板代替含有出故障的组件的整个板。操作275可说明在任何粒度水平下出现的操作。
操作275可开始于路由器检测故障(方框280)。可使用多种技术来执行检测故障。在检测到出故障的组件之后,可用新组件交换出出故障的组件(方框282)。所交换出的组件可取决于组件交换的粒度。举例来说,如果A-PRO出故障,则可用S-PRO代替出故障的A-PRO,或用SMB代替含有出故障的A-PRO的整个板,即AMB。类似地,如果A-CON出故障,则出故障的A-CON被S-CON代替,所有A-CON(包含出故障的A-CON)可被S-CON代替,含有出故障的A-CON的板可被代替,等等。
为了论述目的,考虑三个示范性情况:1)检测到AMB 205已出故障,于是AMB 205被SMB 207代替,其中AMB 205的PRO 210和A-CON-1 215到A-CON-N 217被SMB 207的S-PRO 212和S-CON-1 220到S-CON-N 222代替。SMB 207的S-PRO 212和S-CON-1 220到S-CON-N 222现在变为A-PRO和A-CON。2)检测到A-PRO 210已出故障,于是A-PRO 210可被S-PRO 212代替,其中S-PRO 212变为A-PRO。3)检测到A-CON-1 215已出故障,于是所有A-CON(A-CON-1 215到A-CON-N 217)可被S-CON(S-CON-1 220到S-CON-N 222)代替,其中S-CON变为A-CON。
在已用新组件交换出故障的组件(方框282)之后,A-PRO(原始A-PRO或新A-PRO)可将存储于A-PRO的存储器、高速缓冲存储器、表格等中的具有状态“从A-PRO接收”的所有数据发送到A-CON(方框284)。由于具有状态“从A-PRO接收”的数据量通常较小,所以可非常快速地执行将所述数据发送到A-CON。
如果出故障的组件是A-CON,则信息同步可正常进行(例如,如2a和2b中所描述)。同步完成(方框286),路由器可重新开始正常操作且操作275可随后终止。
虽然未图示,但为了让操作275尽可能快地完成,可能需要使用例如图2a和2b中所示的技术的A-PRO 210、S-PRO 212、A-CON和S-CON的信息同步。
图3a说明路由器300的一部分。路由器300的AMB 305和SMB 307在图3a中突出显示。图3a中展示从出故障的组件进行恢复(具体来说,展示路由器300中的开放式最短路径优先(OSPF)和路由表管理(RTM))以及用于AMB 305与SMB 307之间的数据同步的技术。
在AMB 305中,可能有主用OSPF(A-OSPF)310在执行,而在SMB 307中,备用OSPF(S-OSPF)312可能在执行。此外,可能有主用RTM(A-RTM)315和备用RTM(S-RTM)317分别正在AMB 305和SMB 307中执行。A-OSPF310与S-OSPF 312和A-RTM 315通信,而A-RTM 315与A-OSPF 310和S-RTM317通信,且S-RTM 317与A-RTM 315通信。
可认为A-OSPF 310是主用信息源,因为其产生供主用信息消耗装置,例如A-RTM 315,消耗的信息(例如,路由)。可认为S-OSPF 312是备份信息源,因为其既定为在A-OSPF 310出故障的情况下A-OSPF 310的代替物。类似地,可认为S-RTM 317是备份信息消耗装置,万一A-RTM 315出故障,则备份A-RTM 315。
图3a还说明AMB 305与SMB 307之间的用以使信息(例如,链路状态广告和路由)同步的传输序列。在A-OSPF 310发现已存在链路状态广告(LSA)改变时,A-OSPF 310向S-OSPF 312发送LSA(展示为事件1“LSA”),而可开始LSA同步。根据一实施例,LSA改变可包含新LSA、对现有LSA的修改、对现有LSA的删除,或其组合。
在成功地接收到LSA之后,S-PRO 312可即刻在S-OSPF 312进一步处理了LSA之后将对LSA的确认发送回A-OSPF 310(展示为事件2“ACK”)。处理LSA可包含检查LSA、解码LSA、存储来自所解码LSA的信息,等等。A-OSPF 310还可在从S-OSPF 312接收到确认之后将得自LSA改变的路由或一组路由发送到A-RTM 315(展示为事件3“ROUTE”)。在从A-OSPF 310接收到路由并处理了路由之后,A-RTM 315可将路由发送到S-RTM 317(展示为事件4“ROUTE”)。S-RTM 317在从A-RTM 315接收到路由并处理了路由之后,可将对路由的确认发送到A-RTM 315(展示为事件5“ACK”)。
在从S-RTM 317接收到确认后,A-RTM 315可即刻将对来自A-OSPF 310的路由的确认发送回A-OSPF 310(展示为事件6“ACK”)。在从A-RTM 315接收到对路由或一组路由的确认之后,A-OSPF 310可将LSA提交发送到S-OSPF312(展示为事件7“COMMIT”)。根据一实施例,LSA提交可为向S-OSPF 312的指示,其指示得自LSA的路由或一组路由存储于S-RTM中。此可通过设定用于LSA的状态旗标(称为“存储于S-RTM中”)来表示。S-OSPF 312可随后在其处理了LSA提交之后将提交确认发送到A-OSPF 310(展示为事件8“COM-ACK”)。
对于每一LSA(或离散信息单元),存在用以指示S-OSPF 312中的LSA状态的旗标。LSA的一个状态可为“从A-OSPF接收”,其指示S-OSPF 312从A-OSPF 310接收到LSA。S-OSPF 312在其从A-OSPF 310接收到LSA之后设定用于LSA的旗标“从A-OSPF接收”。LSA的另一状态可为“存储于S-RTM中”,其指示接收到S-RTM 317且存储了得自LSA的路由或一组路由。S-OSPF 312在其从A-OSPF 310接收到LSA的提交之后设定用于LSA的旗标“存储于S-RTM中”并复位旗标“从A-OSPF接收”。
图3b说明LSA和路由同步中的A-OSPF操作350的流程图。A-OSPF操作350可指示A-OSPF,例如A-OSPF 310中发生的操作,如在A-OSPF检测到LSA改变时使LSA与S-OSPF同步,且使路由与A-RTM同步。图3b中所展示的A-OSPF操作350可为A-OSPF的角度下的图3a中所展示的事件的汇总,且其中未展示确认。
A-OSPF操作350可开始于A-OSPF检测LSA改变,且由于所检测到的LSA改变而更新S-OSPF(方框355)。除了更新S-OSPF之外,A-OSPF还可更新A-RTM(方框357)。在更新了S-OSPF和A-RTM之后,A-OSPF可向S-OSPF提交LSA改变(方框359)。A-OSPF操作350可随后终止。
图3c说明用新组件交换出出故障的组件并使新组件服务的操作375的流程图。操作375可指示当路由器检测到出故障的组件且使用组件交换以用新组件代替出故障的组件时路由器的控制件,例如控制件163中发生的操作。
操作375可开始于路由器检测故障(方框380)。如先前所论述,可使用多种技术执行检测故障的发生,且在本文中将不进行论述。在检测到出故障的组件之后,可用新组件交换出出故障的组件(方框382)。如先前所论述,可以不同粒度进行组件交换且所交换出的组件可取决于组件交换的粒度。举例来说,如果A-OSPF出故障,则可用S-OSPF代替出故障的A-OSPF,或用SMB代替含有出故障的A-OSPF的整个板,即AMB。类似地,如果A-RTM出故障,则出故障的A-RTM可被S-RTM代替,含有出故障的A-RTM的板可被代替,等等。
为了论述目的,考虑三个示范性情况:1)检测到AMB 305已出故障,于是AMB 305可被SMB 307代替,其中AMB 305的A-OSPF 310和A-RTM 315被SMB 307的S-OSPF 312和S-RTM 317代替。SMB 307的S-OSPF 312和S-RTM317现在分别变为A-OSPF和A-RTM。2)检测到A-OSPF 310已出故障,于是A-OSPF 310可被S-OSPF 312代替,其中S-OSPF 312变为A-OSPF。3)检测到A-RTM 315已出故障,于是A-RTM 315可被S-RTM 317代替,其中S-RTM317变为A-RTM。
在已用新组件交换出故障的组件(方框382)之后,A-OSPF(原始A-OSPF或新A-OSPF)可将存储于A-OSPF的存储器、高速缓冲存储器、表格等中的通过具有状态“从A-OSPF接收”的LSA得到的所有路由发送到A-RTM(方框384)。由于具有状态“从A-OSPF接收”的LSA的数目通常较小,所以可非常快速地执行A-OSPF将得自LSA的路由发送到A-RTM。
如果出故障的组件是A-RTM 315,则信息同步可正常进行(例如,如3a和3b中所描述)。同步完成(方框386),路由器可重新开始正常操作且操作375可随后终止。
虽然未图示,但为了让操作375尽可能快地完成,可能需要使用例如图3a和3b中所示的技术的A-OSPF 310、S-OSPF 312、A-RTM 315和S-RTM 317的信息同步。
图4a说明路由器400的一部分。路由器400的AMB 405和SMB 407在图4a中突出显示。图4a中展示从出故障的组件进行恢复(具体来说,展示路由器400中的路由表管理(RTM)和转发表管理(FTM))以及用于AMB 405与SMB 407之间的数据同步的技术。
在AMB 405中,可能有主用RTM(A-RTM)410在执行,而在SMB 407中,备用RTM(S-RTM)412可能在执行。此外,可能有主用FTM(A-FTM)415和备用FTM(S-FTM)417分别正在AMB 405和SMB 407中执行。A-RTM 410与S-RTM 412和A-FTM 415通信,而A-FTM 415与A-RTM 410和S-FTM 417通信,且S-FTM 417与A-FTM 415通信。
可认为A-RTM 410是主用信息源,因为其产生供主用信息消耗装置,例如A-FTM 415,消耗的信息(例如,路由)。可认为S-RTM 412是备份信息源,因为其既定为在A-RTM 410出故障的情况下A-RTM 410的代替物。类似地,可认为S-FTM 417是备份信息消耗装置,万一A-FTM 415出故障,则备份A-FTM 415。
图4a还说明AMB 405与SMB 407之间的用以使信息(例如,路由)同步的传输序列。在A-RTM 410发现已存在路由改变时,A-RTM 410向S-RTM 412发送路由(展示为事件1“ROUTE”),而可开始路由同步。根据一实施例,路由改变可包含新路由、对现有路由的修改、对现有路由的删除,或其组合。
S-RTM 412在成功地接收到路由之后可即刻在S-RTM 412进一步处理了路由之后将对路由的确认发送回A-RTM 410(展示为事件2“ACK”)。处理路由可包含检查路由、解码路由、存储来自所解码路由的信息,等等。A-RTM 410还可在从S-RTM 412接收到确认之后将路由发送到A-FTM 415(展示为事件3“ROUTE”)。在从A-RTM 410接收到路由并处理了路由之后,A-FTM 415可将路由发送到S-FTM 417(展示为事件4“ROUTE”)。S-FTM 417在从A-FTM 415接收到路由并处理了路由之后,可将对路由的确认发送到A-FTM 415(展示为事件5“ACK”)。
在从S-FTM 417接收到确认后,A-FTM 415可即刻将对来自A-RTM 410的路由的确认发送回A-RTM 410(展示为事件6“ACK”)。在从A-FTM 415接收到确认之后,A-RTM 410可将路由提交发送到S-RTM 412(展示为事件7“COMMIT”)。根据一实施例,路由提交可为向S-RTM 412的指示,其指示S-FTM 417接收到并存储了路由。S-RTM 412可随后在其处理了路由提交之后将提交确认发送到A-RTM 410(展示为事件8“COM-ACK”)。
对于每一路由(或离散信息单元),存在用以指示S-RTM 412中的路由状态的旗标。路由的一个状态可为“从A-RTM接收”,其指示S-RTM 412从A-RTM 410接收到路由。路由的另一状态可为“存储于S-FTM中”,其指示S-FTM 417接收到并存储了路由。
图4b说明路由同步中的A-RTM操作450的流程图。A-RTM操作450可指示A-RTM,例如A-RTM 410中发生的操作,如在A-RTM检测到路由改变时A-RTM使路由与S-RTM、A-FTM和S-FTM同步。图4b中所展示的A-RTM操作450可为A-RTM的角度下的图4a中所展示的事件的汇总,且未展示确认。
A-RTM操作450可开始于A-RTM检测路由改变,且由于所检测到的路由改变而更新S-RTM(方框455)。除了更新S-RTM之外,A-RTM还可更新A-FTM(方框457)。在更新了S-RTM和A-FTM之后,A-RTM可向S-RTM提交路由改变(方框459)。A-RTM操作450可随后终止。
图4c说明用新组件交换出出故障的组件并使新组件服务的操作475的流程图。操作475可指示当路由器检测到出故障的组件且使用组件交换以用新组件代替出故障的组件时路由器的控制件,例如控制件163中发生的操作。
操作475可开始于路由器检测故障(方框480)。如先前所论述,可使用多种技术执行检测故障的发生,且在本文中将不进行论述。在检测到出故障的组件之后,可用新组件交换出出故障的组件(方框482)。如先前所论述,可以不同粒度进行组件交换且所交换出的组件可取决于组件交换的粒度。举例来说,如果A-RTM出故障,则可用S-RTM代替出故障的A-RTM,或用SMB代替含有出故障的A-RTM的整个板,即AMB。类似地,如果A-FTM出故障,则出故障的A-FTM可被S-FTM代替,含有出故障的A-FTM的板可被代替,等等。
为了论述目的,考虑三个示范性情况:1)检测到AMB 405已出故障,于是AMB 405可被SMB 407代替,其中AMB 405的A-RTM 410和A-FTM 415被SMB 407的S-RTM 412和S-FTM 417代替。SMB 407的S-RTM 412和S-FTM417现在分别变为A-RTM和A-FTM。2)检测到A-RTM 410已出故障,于是A-RTM 410可被S-RTM 412代替,其中S-RTM 412变为A-RTM。3)检测到A-FTM 415已出故障,于是A-FTM 415可被S-FTM 417代替,其中S-FTM F17变为A-FTM。
在已用新组件交换出故障的组件(方框482)之后,A-RTM(原始A-RTM或新A-RTM)可将存储于A-RTM的存储器、高速缓冲存储器、表格等中的具有状态“从A-RTM接收”的所有路由发送到A-FTM(方框484)。由于具有状态“从A-RTM接收”的路由的数目通常较小,所以可非常快速地执行将所述路由发送到A-FTM。
如果出故障的组件是A-FTM 415,则信息同步可正常进行(例如,如4a和4b中所描述)。同步完成(方框486),路由器可重新开始正常操作且操作475可随后终止。
虽然未图示,但为了让操作475尽可能快地完成,可能需要使用例如图4a和4b中所示的技术的A-RTM 410、S-RTM 412、A-FTM 415和S-FTM 417的信息同步。
图5a说明路由器500的一部分。路由器500的AMB 505和SMB 507在图5a中突出显示。图5a中展示从出故障的组件进行恢复以及用于在AMB 505与SMB 507之间进行数据同步的技术。
在AMB 505中,可能有主用发生器(A-PRO)510在执行,而在SMB 507中,备用发生器(S-PRO)512可能在执行。此外,可能有多个主用消耗装置(A-CON),例如A-CON-1515和A-CON-N 517,在AMB 505中执行。然而,在SMB 507中没有备用消耗装置。A-PRO 510可与S-PRO 512以及A-CON通信,而每一A-CON可与A-PRO 510通信。举例来说,A-CON-1515可与A-PRO 510通信。S-PRO 512可与A-PRO 510通信。
可认为A-PRO 510是主用信息源,因为其产生供主用信息消耗装置,例如A-CON,消耗的信息。可认为S-PRO 512是备份信息源,因为其既定为在A-PRO 510出故障的情况下A-PRO 510的代替物。
图5a还说明AMB 505与SMB 507之间的用以使信息同步的传输序列。在A-PRO 510发现已存在信息改变时,A-PRO 510向S-PRO 512发送更新(展示为事件1“UPDATE”),而可开始信息同步。根据一实施例,信息改变可包含一条新信息、对一条现有信息的修改、对一条现有信息的删除,或其组合。
S-PRO 512在成功地接收到更新之后可即刻在S-PRO 512进一步处理了更新之后将对更新的确认发送回A-PRO 510(展示为事件2“ACK”)。处理更新可包含检查更新、解码更新、存储来自所解码更新的信息,等等。A-PRO510还可在从S-PRO 512接收到确认之后将得自信息改变的更新-d发送到A-CON,例如A-CON-1 515和A-CON-N 517(展示为事件3-1“UPDATE-D”和3-N“UPDATE-D”)。根据一实施例,得自信息改变的更新-d可在一种情况下含有信息改变,且在另一种情况下含有由信息改变产生的信息。根据另一实施例,A-PRO 510可同时地或依次地将更新-d发送到A-CON。
对于每一更新(或离散信息单元),存在用以指示S-PRO 512中的更新状态的旗标。更新的一个状态可为“从A-PRO接收”,其指示S-PRO 512从A-PRO 510接收到更新。在S-PRO 512从A-PRO 510接收到并处理了更新之后,设定用于更新的状态“从A-PRO接收”的旗标。更新的另一状态可为“存储在CON中”,其指示A-CON  接收到并存储了得自更新中所包含的信息改变的更新-d。
在从A-PRO 510接收到更新-d并处理了所述更新-d之后,每一A-CON可将对来自A-PRO 510的更新-d的确认发送回A-PRO 510(展示为事件4-1“ACK”和4-N“ACK”)。在从所有其A-CON接收到确认之后,A-PRO 510可将更新提交发送到S-PRO 512(展示为事件5“COMMIT”)。根据一实施例,更新提交可为向S-PRO 512的指示,其指示所有A-CON  接收到并存储了得自更新中所包含的信息改变的更新-d。S-PRO 512可随后在其接收到并处理了更新提交之后将提交确认发送到A-PRO 510,其包含设定用于更新的状态“存储于CON中”的旗标(展示为事件6“COM-ACK”)。
图5b说明信息同步中的A-PRO操作550的流程图。A-PRO操作550可指示A-PRO,例如A-PRO 510中发生的操作,如在A-PRO检测到信息改变时A-PRO使信息与S-PRO和A-CON同步。图5b中所展示的A-PRO操作550可为A-PRO的角度下的图5a中所展示的事件的汇总,且未展示确认。
A-PRO操作550可开始于A-PRO检测信息改变,且由于所检测到的信息改变而更新S-PRO(方框555)。除了更新S-PRO之外,A-PRO还可更新A-CON(方框557)。在更新了S-PRO和A-CON之后,A-PRO可向S-PRO提交信息改变(方框559)。A-PRO操作550可随后终止。
图5c说明用新组件交换出出故障的组件并使新组件服务的操作575的流程图。操作575可指示当路由器检测到出故障的组件且使用组件交换以用新组件代替出故障的组件时路由器的控制件,例如控制件163中发生的操作。
操作575可开始于路由器检测故障(方框580)。如先前所论述,可使用多种技术执行检测故障的发生,且在本文中将不进行论述。在检测到出故障的组件之后,可用新组件交换出出故障的组件(方框582)。如先前所论述,可以不同粒度进行组件交换且所交换出的组件可取决于组件交换的粒度。举例来说,如果A-PRO出故障,则可用S-PRO代替出故障的A-PRO,或用SMB代替含有出故障的A-PRO的整个板,即AMB。
为了论述目的,考虑若干示范性情况:1)检测到AMB 505已出故障,于是SMB 507可代替AMB 505。然而,由于SMB 507不包含S-CON,所以ABM505中的A-CON仍在使用。2)检测到A-PRO 510已出故障,于是A-PRO 510可被S-PRO 512代替,其中S-PRO 512变为A-PRO。
在已用新组件交换出故障的组件(方框582)之后,A-PRO(原始A-PRO或新A-PRO)可将存储于A-PRO的存储器、高速缓冲存储器、表格等中的具有状态“从A-PRO接收”的所有更新发送到A-CON(方框584)。由于具有状态“从A-PRO接收”的数据量通常较小,所以可非常快速地执行将所述数据发送到A-CON。
虽然未图示,但为了让操作575尽可能快地完成,可能需要使用例如图5a和5b中所示的技术的A-PRO 510、S-PRO 512和A-CON的信息同步。
图6a说明路由器600的一部分。路由器600的AMB 605和SMB 607在图6a中突出显示。图6a中展示从出故障的组件进行恢复(具体来说,展示路由器600中的转发表管理(FTM)和多个线卡(LC))以及用于AMB 605与SMB 607之间的数据同步的技术。
在AMB 605中,可能有主用FTM(A-FTM)610在执行,而在SMB 607中,备用FTM(S-FTM)612可能在执行。此外,可能有多个主用LC(A-LC),例如A-LC-1 615和A-LC-N 617。然而,没有备用LC。A-FTM 610可与S-FTM 612以及A-LC通信,而每一A-LC可与A-FTM 610通信。举例来说,A-LC-1 615可与A-FTM 610通信。S-FTM 612可与A-FTM 610通信。
可认为A-FTM 610是主用信息源,因为其产生供主用信息消耗装置,例如A-LC,消耗的信息(例如,路由)。可认为S-FTM 612是备份信息源,因为其既定为在A-FTM 610出故障的情况下A-FTM 610的代替物。
图6a还说明AMB 605与SMB 607之间的用以使信息(例如,路由)同步的传输序列。在A-FTM 610发现已存在路由改变时,A-FTM 610向S-FTM 612发送路由(展示为事件1“ROUTE”),而可开始路由同步。根据一实施例,路由改变可包含新路由、对现有路由的修改、对现有路由的删除,或其组合。
S-FTM 612在成功地接收到路由之后可即刻在S-FTM 612进一步处理了路由之后将对路由的确认发送回A-FTM 610(展示为事件2“ACK”)。处理路由可包含检查路由、解码路由、存储来自所解码路由的信息,等等。在从S-FTM 612接收到确认之后,A-FTM 610还可将路由发送到A-LC,例如A-LC-1615和A-LC-N 617(展示为事件3-1“ROUTE”和3-N“ROUTE”)。根据另一实施例,A-FTM 610可同时地或依次地将路由发送到A-LC。
对于每一路由(或离散信息单元),存在用以指示S-FTM 612中的路由状态的旗标。路由的一个状态可为“从A-FTM接收”,其指示S-FTM 612从A-FTM 610接收到路由。在S-FTM 612从A-FTM 610接收到并处理了路由之后,设定用于路由的状态“从A-FTM接收”的旗标。路由的另一状态可为“存储于LC中”,其指示A-LC已接收到并存储了路由。
在从A-FTM 610接收到路由并处理了所述路由之后,每一A-LC可将对来自A-FTM 610的路由的确认发送回A-FTM 610(展示为事件4-1“ACK”和4-N“ACK”)。在从所有其A-LC接收到确认之后,AFTM 610可将路由提交发送到S-FTM 612(展示为事件5“COMMIT”)。根据一实施例,路由提交可为向S-FTM 612的指示,其指示A-LC已接收到并存储了路由。S-FTM 612可随后在其接收到并处理了路由提交之后将提交确认发送到A-FTM 610,其包含设定状态“存储于LC中”的旗标(展示为事件6“COM-ACK”)。
图6b说明路由同步中的A-FTM操作650的流程图。A-FTM操作650可指示A-FTM,例如A-FTM 610中发生的操作,如在A-FTM检测到路由改变时A-FTM使路由与S-FTM和A-LC同步。图6b中所展示的A-FTM操作650可为A-FTM的角度下的图6a中所展示的事件的汇总,且未展示确认。
A-FTM操作650可开始于A-FTM检测路由改变,且由于所检测到的路由改变而更新S-FTM(方框655)。除了更新S-FTM之外,A-FTM还可更新A-LC(方框657)。在更新了S-FTM和A-LC之后,A-FTM可向S-FTM提交路由改变(方框659)。A-FTM操作650可随后终止。
图6c说明用新组件交换出出故障的组件并使新组件服务的操作675的流程图。操作675可指示当路由器检测到出故障的组件且使用组件交换以用新组件代替出故障的组件时路由器的控制件,例如控制件163中发生的操作。
操作675可开始于路由器检测故障(方框680)。如先前所论述,可使用多种技术执行检测故障的发生,且在本文中将不进行论述。在检测到出故障的组件之后,可用新组件交换出出故障的组件(方框682)。如先前所论述,可以不同粒度进行组件交换且所交换出的组件可取决于组件交换的粒度。举例来说,如果A-FTM出故障,则可用S-FTM代替出故障的A-FTM,或用SMB代替含有出故障的A-FTM的整个板,即AMB。
为了论述目的,考虑若干示范性情况:1)检测到AMB 605已出故障,于是SMB 607可代替AMB 605。2)检测到A-FTM 610已出故障,于是A-FTM610可被S-FTM 612代替,其中S-FTM 612变为A-FTM。
在已用新组件交换出故障的组件(方框682)之后,A-FTM(原始A-FTM或新A-FTM)可将存储于A-FTM的存储器、高速缓冲存储器、表格等中的具有状态“从A-FTM接收”的所有路由发送到A-LC(方框684)。由于具有状态“从A-FTM接收”的路由的数目通常较小,所以可非常快速地执行将所述路由发送到A-LC。
一旦同步完成(方框686),路由器便可重新开始正常操作且操作675可随后终止。
虽然未图示,但为了让操作675尽可能快地完成,可能需要使用例如图6a和6b中所示的技术的A-FTM 610、S-FTM 612和A-LC的信息同步。
虽然已详细描述了本发明及其优点,但应理解,在不偏离由所附权利要求书界定的本发明的精神和范围的情况下,可在本文中作出各种改变、替换和更改。
另外,本申请案的范围无意限于说明书中所描述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施例。所属领域的技术人员将容易从本发明的揭示内容了解,可根据本发明利用执行与本文中所描述的对应实施例实质上相同功能或实现实质上相同结果的目前存在或以后待开发的过程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求书意在在范围内包含此类过程、机器、制造、物质组成、手段、方法或步骤。

Claims (19)

1.一种用于使来自主用信息源的信息同步的方法,所述方法包括:
检测信息中的改变;
将关于所述所改变的信息的第一更新发送到备份信息源;
将第二更新发送到一个或一个以上主用信息消耗装置中的每一者,其中所述第二更新得自所述所改变的信息;以及
向所述备份信息源提交所述所改变的信息;
其中,所述将第二更新发送到一个或一个以上主用信息消耗装置中的每一者之后还包括:从所述一个或一个以上主用信息消耗装置接收第二确认,其中来自所述一个或一个以上主用信息消耗装置中的每一者的所述第二确认指示所述第二更新存储于一个或一个以上备份信息消耗装置中的每一者中。
2.根据权利要求1所述的方法,其进一步包括在将所述第一更新发送到所述备份信息源之后从所述备份信息源接收第一确认,其中所述第一确认指示所述备份信息源接收到并存储了所述第一更新。
3.根据权利要求2所述的方法,其中在所述备份信息源接收到并处理了来自所述主用信息源的所述第一更新之后发送所述第一确认。
4.根据权利要求1所述的方法,其中在所述主用信息消耗装置从备份信息源接收到第三确认之后,由主用信息消耗装置将所述第二确认发送到所述主用信息源,其中所述第三确认指示所述备份信息消耗装置已存储得自所述所改变的信息的所述更新。
5.根据权利要求4所述的方法,其中所述备份信息消耗装置已存储得自所述所改变的信息的所述更新包括:所述备份信息消耗装置检查所述更新;解码所述更新;以及将来自所述所解码更新的信息存储于所述备份信息消耗装置中。
6.根据权利要求1所述的方法,其中仅在所述主用信息源从所述备份信息源接收到第一确认且从所述一个或一个以上主用信息消耗装置中的每一者接收到第二确认之后,才发生提交所述所改变的信息。
7.根据权利要求1所述的方法,其中检测信息中的改变包括:检测新信息、检测现有信息中的改变、检测对现有信息的删除,或其组合。
8.根据权利要求1所述的方法,其中将第二更新发送到一个或一个以上主用信息消耗装置包括:同时将所述第二更新发送到所述一个或一个以上主用信息消耗装置、依次将所述第二更新发送到所述一个或一个以上主用信息消耗装置,或其组合。
9.根据权利要求1所述的方法,其中从发送到所述备份信息源的所述第一更新中所包含的所述所改变的信息得到发送到所述一个或一个以上主用信息消耗装置中的每一者的第二更新。
10.根据权利要求9所述的方法,其中所述第二更新包含与所述第一更新中的信息等同的信息,或所述第二更新包含从所述第一更新中的所述信息产生的与所述第一更新中的信息不同的信息。
11.一种用于提供路由组件级高度可用性的方法,所述方法包括:
使来自主用信息源的信息同步;
检测出故障的路由组件;
用备份路由组件代替所述出故障的路由组件;以及
完成所述信息的同步;
其中所述使来自主用信息源的信息同步具体包括:
检测信息中的改变;
将关于所述所改变的信息的第一更新发送到备份信息源;
将第二更新发送到一个或一个以上主用信息消耗装置中的每一者,其中所述第二更新得自所述第一更新中所包含的所述所改变的信息;以及
向所述备份信息源提交所述所改变的信息;
其中,所述将第二更新发送到一个或一个以上主用信息消耗装置中的每一者之后还包括:从所述一个或一个以上主用信息消耗装置接收第二确认,其中来自所述一个或一个以上主用信息消耗装置中的每一者的所述第二确认指示所述第二更新存储于一个或一个以上备份信息消耗装置中的每一者中。
12.根据权利要求11所述的方法,其中代替所述出故障的路由组件包括:用含有所述备份路由组件的板代替含有所述出故障的路由组件的板。
13.根据权利要求11所述的方法,其中所述出故障的路由组件是一组件类型,其中存在与所述出故障的路由组件有相同的组件类型的多个路由组件,且其中代替所述出故障的路由组件包括用所述相同组件类型的多个备份路由组件代替所述相同组件类型的所述多个路由组件。
14.根据权利要求11所述的方法,其中所述出故障的路由组件是所述主用信息源,其中所述信息包括多个离散信息单元,其中每一离散信息单元包含指示所述离散信息单元的状态的相关联的旗标,其中完成所述信息的同步包括将多个更新发送到一个或一个以上主用信息消耗装置中的每一者,其中每一离散信息单元具有相关联的旗标,所述相关联的旗标指示所述离散信息单元未存储于备份信息消耗装置中,且其中从来自用于代替所述出故障的路由组件的备份信息源的所述多个离散信息单元得到所述多个更新。
15.根据权利要求14所述的方法,其中从来自备份信息源的所述多个离散信息单元得到的所述多个更新具有与所述多个离散信息单元中的信息等同的信息,或从来自所述备份信息源的所述多个离散信息单元得到的所述多个更新具有与所述多个离散信息单元中的信息不同的信息,且其中从具有相关联的旗标的每一离散信息单元产生所述多个更新,所述相关联的旗标指示所述离散信息单元未存储于所述备份信息消耗装置中。
16.一种路由器,其包括:
接收器,其将耦合到数据输入端口,所述接收器经配置以通过所述数据输入端口接收传入信息;
发射器,其将耦合到数据输出端口,所述发射器经配置以通过所述数据输出端口发射传出信息;
主用主板,其耦合到所述发射器和所述接收器,所述主用主板经配置以提供路由管理并执行路由协议以将传入信息路由到其既定接收方;
备用主板,其耦合到所述主用主板,所述备用主板经配置以在所述主用主板中出故障的情况下提供对所述主用主板的冗余;
控制器,其耦合到所述主用主板和所述备用主板,所述控制器经配置以检测所述主用主板中的故障,且在检测到故障时用备用组件交换出故障的组件;
其中,所述主用主板具体包括主用信息源及主用信息消耗装置,所述备用主板具体包括备份信息源和备份信息消耗装置;
其中,所述主用信息源具体用于:检测信息中的改变;
将关于所述所改变的信息的第一更新发送到备份信息源;
将第二更新发送到一个或一个以上主用信息消耗装置中的每一者,其中所述第二更新得自所述所改变的信息;以及
向所述备份信息源提交所述所改变的信息;
其中,所述将第二更新发送到一个或一个以上主用信息消耗装置中的每一者之后还包括:从所述一个或一个以上主用信息消耗装置接收第二确认,其中来自所述一个或一个以上主用信息消耗装置中的每一者的所述第二确认指示所述第二更新存储于一个或一个以上备份信息消耗装置中的每一者中。
17.根据权利要求16所述的路由器,其中所述控制器包括:
故障检测单元,所述故障检测单元经配置以检测所述主用主板中的故障;以及
组件交换单元,其耦合到所述故障检测单元,所述组件交换单元经配置以用所述备用主板中的备用组件交换所述主用主板中的出故障的组件。
18.根据权利要求17所述的路由器,其中所述主用主板中存在与所述出故障的组件有相同组件类型的多个组件,且其中所述组件交换单元用所述备用主板中的多个备用组件交换所述主用主板中的所述多个组件。
19.根据权利要求17所述的路由器,其中所述组件交换单元用所述备用主板交换所述主用主板。
CN201180002894.2A 2010-03-29 2011-03-29 用于通信系统路由组件级高度可用性的系统和方法 Active CN102754383B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US31845910P 2010-03-29 2010-03-29
US61/318,459 2010-03-29
US12/829,315 2010-07-01
US12/829,315 US8483049B2 (en) 2010-03-29 2010-07-01 System and method for communications system routing component level high availability
PCT/CN2011/072252 WO2011120423A1 (en) 2010-03-29 2011-03-29 System and method for communications system routing component level high availability

Publications (2)

Publication Number Publication Date
CN102754383A CN102754383A (zh) 2012-10-24
CN102754383B true CN102754383B (zh) 2014-11-05

Family

ID=44656381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180002894.2A Active CN102754383B (zh) 2010-03-29 2011-03-29 用于通信系统路由组件级高度可用性的系统和方法

Country Status (3)

Country Link
US (1) US8483049B2 (zh)
CN (1) CN102754383B (zh)
WO (1) WO2011120423A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538612A4 (en) * 2010-12-13 2013-01-02 Huawei Tech Co Ltd METHOD AND DEVICE FOR SERVICE MANAGEMENT
US9237066B2 (en) * 2012-11-16 2016-01-12 Dell Products, L.P. Packet switch modules for computer networks with efficient management of databases used in forwarding of network traffic
WO2016149807A1 (en) * 2015-03-20 2016-09-29 Royal Bank Of Canada System and methods for message redundancy
CN106798379B (zh) * 2016-12-23 2019-03-05 浙江萌宠日记信息科技股份有限公司 一种具有社交功能的智能珠宝
US11042430B2 (en) * 2017-02-21 2021-06-22 Futurewei Technologies, Inc. Elastic consistency high availability in multiple boards
US11689459B2 (en) * 2020-07-01 2023-06-27 Arista Networks, Inc. Custom routing information bases for network devices
US12001856B2 (en) 2022-06-14 2024-06-04 Cisco Technology, Inc. Configuration validation in a disaggregated network OS environment
WO2023244444A1 (en) * 2022-06-14 2023-12-21 Cisco Technology, Inc. Configuration validation in a disaggregated network os environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610898A (zh) * 2001-08-22 2005-04-27 诺基亚公司 实现ospf冗余的方法和系统
CN101110768A (zh) * 2007-06-20 2008-01-23 杭州华三通信技术有限公司 数据通信方法、系统、主控卡及线卡
CN101237409A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 Mpls vpn中实现快速重路由的方法及设备
CN101340369A (zh) * 2008-08-14 2009-01-07 杭州华三通信技术有限公司 实现虚连接支持优雅重启的方法和路由器
CN101425961A (zh) * 2007-10-31 2009-05-06 华为技术有限公司 实现链路状态数据库同步方法、路由器及线路板、主控板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487232B1 (en) * 2000-09-13 2009-02-03 Fortinet, Inc. Switch management system and method
US6853617B2 (en) * 2001-05-09 2005-02-08 Chiaro Networks, Ltd. System and method for TCP connection protection switching
US7406035B2 (en) * 2002-01-24 2008-07-29 Alcatel-Lucent Canada Inc. Method and apparatus for providing redundant protocol processes in a network element
US7292535B2 (en) * 2002-05-23 2007-11-06 Chiaro Networks Ltd Highly-available OSPF routing protocol
US7236453B2 (en) * 2002-06-27 2007-06-26 Jeremy Benjamin, Trustee High available method for border gateway protocol version 4
US7535827B2 (en) * 2003-10-09 2009-05-19 Alcatel Lucent High availability of resources in telecommunications network using synchronized redundancy mechanism
CN101132347A (zh) * 2006-08-24 2008-02-27 华为技术有限公司 一种实现tcp连接备份的系统及方法
CN100505692C (zh) 2006-09-19 2009-06-24 中国人民解放军国防科学技术大学 高性能路由器bgp路由协议分布并行实现方法
US9648147B2 (en) 2006-12-29 2017-05-09 Futurewei Technologies, Inc. System and method for TCP high availability
US8051326B2 (en) * 2006-12-29 2011-11-01 Futurewei Technologies, Inc. System and method for completeness of TCP data in TCP HA
JP2009303092A (ja) 2008-06-17 2009-12-24 Nec Corp ネットワーク装置および回線切替方法
US8082391B2 (en) * 2008-09-08 2011-12-20 International Business Machines Corporation Component discovery in multi-blade server chassis
US8154992B2 (en) * 2009-08-11 2012-04-10 Google Inc. System and method for graceful restart

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610898A (zh) * 2001-08-22 2005-04-27 诺基亚公司 实现ospf冗余的方法和系统
CN101110768A (zh) * 2007-06-20 2008-01-23 杭州华三通信技术有限公司 数据通信方法、系统、主控卡及线卡
CN101425961A (zh) * 2007-10-31 2009-05-06 华为技术有限公司 实现链路状态数据库同步方法、路由器及线路板、主控板
CN101237409A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 Mpls vpn中实现快速重路由的方法及设备
CN101340369A (zh) * 2008-08-14 2009-01-07 杭州华三通信技术有限公司 实现虚连接支持优雅重启的方法和路由器

Also Published As

Publication number Publication date
US8483049B2 (en) 2013-07-09
WO2011120423A1 (en) 2011-10-06
US20110235503A1 (en) 2011-09-29
CN102754383A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
CN102754383B (zh) 用于通信系统路由组件级高度可用性的系统和方法
AU2004306913B2 (en) Redundant routing capabilities for a network node cluster
US6983294B2 (en) Redundancy systems and methods in communications systems
US7292535B2 (en) Highly-available OSPF routing protocol
JP4711411B2 (ja) SoftRouterプロトコルのフェイルオーバー
US7804770B2 (en) Method and apparatus for performing a graceful restart in a NSF-capable router without enhancing link state routing protocols
US7720061B1 (en) Distributed solution for managing periodic communications in a multi-chassis routing system
JP4796184B2 (ja) エッジノード冗長システム
US7490161B2 (en) Method and system for implementing OSPF redundancy
US9077617B1 (en) Kernel-based TCP-layer assist for fast recovery by backup control unit of a device
US7549078B2 (en) Redundancy in routing devices
CN103535016A (zh) 从活跃tcp应用到备用tcp应用的无中断切换
US20100054267A1 (en) Creating and Maintaining Traffic Engineered Database for Path Computation Element
CN103825826B (zh) 一种动态路由的实现方法和装置
WO2021027828A1 (zh) 一种链路状态信息的处理方法及装置
Raszuk et al. Distribution of diverse BGP paths
CN102325080B (zh) 一种ospf协议平滑重启方法和装置
WO2018036453A1 (zh) 一种sfc网络中同步拓扑信息的方法及路由网元
JP2015231091A (ja) 通信システム、ネットワーク装置及び通信制御方法
JP7273130B2 (ja) 通信方法および装置
CN113765783B (zh) 通信方法及装置
Menaceur et al. Fault Tolerance and Failure Recovery Techniques in Software-Defined Networking: A Comprehensive Approach
JP2012195627A (ja) 経路広報装置、経路広報方法および経路制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant