CN102753995A - 用于就地烃处理的反射计实时远程感测 - Google Patents
用于就地烃处理的反射计实时远程感测 Download PDFInfo
- Publication number
- CN102753995A CN102753995A CN2010800105022A CN201080010502A CN102753995A CN 102753995 A CN102753995 A CN 102753995A CN 2010800105022 A CN2010800105022 A CN 2010800105022A CN 201080010502 A CN201080010502 A CN 201080010502A CN 102753995 A CN102753995 A CN 102753995A
- Authority
- CN
- China
- Prior art keywords
- transmission line
- open
- wire transmission
- domain reflectometer
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 16
- 238000012545 processing Methods 0.000 title description 6
- 238000011065 in-situ storage Methods 0.000 title 1
- 238000002310 reflectometry Methods 0.000 title 1
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 238000000605 extraction Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000004020 conductor Substances 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000007599 discharging Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003027 oil sand Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011275 tar sand Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005662 electromechanics Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- -1 resinous shale Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/30—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
公开用于感测为了烃的提取而被加热的地下地质层组中的条件的方法和装置。与明线传输线(12、14)结合的时域反射计(10)被实时采用以确定地质层组中的阻抗不连续性。这些阻抗不连续性与地质层组中的物理条件对应。明线传输线可包含进入地下地质层组或其它导体中的管,包括对开管井套管。该方法可在地下电磁传播的低频窗中操作。
Description
技术领域
本发明涉及地下(subsurface)地质条件的实时感测。特别地,本发明涉及用于在烃的就地处理期间感测在地质层组中存在的物理条件的有利装置和方法。
背景技术
随着世界的标准原油储备耗尽并且因持续的油需求导致的油价上升,油生产商正尝试处理来自沥青矿石、油砂、沥青砂和重油沉积物的烃。常常在天然出现的砂和粘土的混合物中发现这些材料。由于沥青矿石、油砂、油页岩、沥青砂和重油的极高的粘度,因此,在提取标准原油时使用的钻孔(drilling)和精炼方法一般是不可用的。因此,从这些沉积物回收油需要加热以使烃与其它的地质材料分开并且使烃保持在它们会流动的温度下。虽然有时采用电气和射频加热,但是,一般使用蒸汽以提供该热量。加热和处理可在就地、或者在露天开采沉积物之后的另一位置进行。
在就地处理中,实时感测沉积物和/或井孔的条件是极其困难的。关于处理的阶段,例如,烃是否确实正在流动,常常存在不确定性。当低层组渗透性条件妨碍蒸汽的扩散并限制加热时,或者,当蒸汽和热由于层组断裂或者由于高渗透性材料而移动离开作为加热对象的区域时,在就地处理中的不成功的尝试中浪费宝贵的时间和热能。
一般使用电传输线从一个位置到另一位置输送射频(RF)能量。这些线包含例如分别为同轴电缆和明线类型的屏蔽和非屏蔽型。由于非屏蔽传输线对于周围开放,因此它们将电磁场转换到它们所浸入的介质中。因此,可能需要诸如可穿过穿透耗散介质的天线的低频电磁换能器。
当前使用常规的机电“测井(well logging)”以监视和记录地下条件。测井一般包含矿样的检查和沿井孔上下移动传感器。传感器被用于测量例如井周围的层组的电阻、声学性质、自然放射性和密度。但是,这些测量不产生层组中的条件的实时、总体图片。它们仅公开层组中的条件的静止和部分图片。
发明内容
本发明的至少一个实施例的方面涉及一种用于实时感测地下地质层组中的条件的方法,该方法包括以下的步骤:加热地下地质层组;通过使用与至少部分地位于地质层组中的明线传输线电连接的时域反射计将射频脉冲传送到地质层组中;接收反射的频率脉冲;和确定与反射的射频脉冲对应的阻抗。
本发明的至少一个实施例的另一方面涉及一种用于实时感测地下地质层组中的条件的装置,该装置包括:至少部分地位于为了烃的提取而被加热的地下地质层组中的明线传输线;和与明线传输线电连接的时域反射计。
本发明的至少一个实施例的另一方面涉及使用油井套管作为时域反射计的天线。
本发明的至少一个实施例的又一方面涉及在明线传输线上使用共模节流口,以将RF信号发送到地下地质层组而不是地面设备中。
本发明的至少一个实施例的又一方面涉及在明线传输线的端部处使用电阻性负载。
从该公开,本发明的其它方面将是明显的。
附图说明
图1示出蒸汽辅助重力排出处理中的本发明的实施例。
图2是反射系数与到反射位置的距离的曲线图。
图3示出在时域反射计上具有同轴连接的本发明的实施例。
图4示出使用用于单个井孔的对开管(split tube)作为明线传输线的本发明的实施例。
图5是通过由石油井套管形成的明线型传输线的传输损失的曲线图。
具体实施方式
现在将更完整地描述本公开的主题,并且,示出本发明的一个或更多个实施例。但是,本发明可以以许多不同形式被实施,并且不应被解释为限于这里阐述的实施例。而是,这些实施例是具有由权利要求的语言指示的完整范围的本发明的例子。
图1结合用于就地处理烃的蒸汽辅助重力排出(SAGD)系统示出本发明的实施例。在锅炉24中产生用于系统的蒸汽并且将其向着地面28下方注入层组30中。如果蒸汽充分地加热层组30,那么层组中的烃、凝结的蒸汽以及层组中的可能的其它液体将向下排出到排出提取管14。所述液体然后被抽吸到用于存储和/或进一步处理的提取罐26中。
时域反射计10与蒸汽注射管12和排出提取管14电连接。关于图3描述关于连接的其它细节。蒸汽注射管12和排出提取管14用作时域反射计10的天线,并且形成“明线”型的传输线。在提取处理期间,时域反射计10沿蒸汽注射管12传送短上升时间RF脉冲18。脉冲18在沿蒸汽注射管12行进时遇到的任何电气特性阻抗中断将导致反射脉冲20沿排出提取管14返回时域反射计。反射脉冲20的特性是由脉冲18遇到的阻抗中断的函数。阻抗中断进而是由脉冲18遇到的材料的物理性质的函数。
例如,如果脉冲18遇到水和液体烃界面16,那么反射脉冲20将表现例如由与这些材料的界面相关的特定阻抗中断导致的特性大小。这里,阻抗与具有阻抗Z1的烃和具有阻抗Z2的水之间的界面相关。这允许操作者通过观察反射脉冲20的特性来感测层组30的条件的存在。反射脉冲20到达时域反射计10所花费的时间是阻抗中断距时域反射计10的距离的函数。这允许操作者大致确定在层组30中界面16存在于哪个位置。传送的脉冲的频率越低,则可感测的距离越长。诸如夹在井管周围的铁酸盐块或环面(toroid)的共模节流口22防止脉冲18和20行进离开时域反射计10和层组30以进入诸如锅炉24和提取罐26的地面设备。
图2图解示出当脉冲18遇到水和烃界面16时的反射系数r随距离/位置的变化。X轴是时间和沿金属管的位置两者。Y轴是作为烃材料的电气(波)阻抗Z1和水的电气(波)阻抗Z2的函数的反射系数r。阻抗进而是材料(在本例子中为烃和水)的物理性质的函数。这些物理性质包含介电常数、渗透率和传导率。从公式上说,r一般被描述如下:r=(Z0-ZD)/(Z0+ZD),这里,r是反射系数,Z0是与传送介质相关的特性阻抗,ZD是与中断相关的特性阻抗。作为背景,空气中的电磁波的特性阻抗为120π或377欧姆,并且,仅电介质的介质的特性阻抗为120π/√εr,这里,εr是电介质的相对介电常数。从而,具有可忽略的传导率的淡水具有120π/√81=41欧姆的特性波阻抗。因此,例如,空气和水之间的反射系数为377-41/377+41=0.8。
一般地,只有等阻抗磁电介质材料,例如,具有等于它们的相对介电常数(εr)的磁介电常数(μr)的那些,没有反射边界性质。例如,由于双电介质-磁性材料的特性阻抗为120π(√μr/εr),因此,在μr=εr=10的介质和μr=εr=20的另一介质之间不存在反射,原因是它们均具有120π的特性阻抗。磁铁矿可以是块体非导电磁性-电介质材料,但是,它一般在μ和ε方面不匹配。(μr=εr)>1材料的天然出现极其受限或者根本不存在。因此,本发明可适于在许多地下介质中的感测。
由蒸汽注射管12和排出提取管14形成的明线传输线的特性阻抗,例如,浪涌阻抗,是介质的波阻抗和例如井管的传输线的结构的函数。明线公式Z=276(√μr/εr)log10(2D/d)描述传输线特性阻抗,这里,D是蒸汽注射管12和排出提取管14的中心到中心间隔,并且,d是导管的直径。实际上,由于可能只关心来自介质界面的反射,因此,可能不必获知或建立传输线特性阻抗。另外,不需要截面为圆形的井管,诸如平衡微带线(两个板或条带)、带状线等的大多数类型的非屏蔽TEM(横向电磁)型传输线适于本发明。
现在返回图3,时域反射计50与天线58和60电连接。由于与时域反射计50相邻的同轴连接52不平衡但由天线58和60形成的明线传输线平衡,因此,连接包含平衡-不平衡变换器54。与HewlettPackard(现在为Agilent)Corporation of Palo Alto,California的HP8510系列类似,时域反射计50优选为向量网络分析器。平衡-不平衡变换器54可包含阻抗变换比,使得时域反射计的典型的50欧姆阻抗被向下调整。井层组会在毫欧范围中对于时域反射计给出电阻性负载。
本实施例的操作与图1的SAGD实施例类似。由地面62下面的时域反射计50传送脉冲(未示出),并且,如果该脉冲遇到阻抗中断(未示出),那么反射脉冲(未示出)将返回时域反射计50,这将表现由特定的阻抗中断导致的特性。这允许操作者通过观察例如反射脉冲的特性大小来感测天线58和60周围的特定物理条件的存在。反射脉冲到达时域反射计50所花费的时间是阻抗中断距时域反射计50的距离的函数。这允许操作者大致确定该条件沿天线58和60存在于哪个位置,并且,d是天线58和60的直径。通过网络分析器校准面56处的连接的短路,实现时域反射计50的校准和调零。
可以以差别模式(在各导体中的相反电流的流动)或共同模式(在各导体中的同一方向的电流)操作蒸汽注射管12和排出提取管14的电气结构。但是,为了便于激励,优选差别模式。平衡-不平衡变换器54和图3连接用于通过抑制可能由于杂散电容出现的任何共同模式电流强制差别模式条件以对导体等供电。两个导管相互提供就绪的驱动中断。作为关于平衡-不平衡变换器的背景,识别文本“Building andUsing Baluns and Ununs”,Jerry Sevick,W2FMI,CQCommunications,Copyright 1992。术语平衡-不平衡变换器可以是词语平衡和不平衡的缩写,并因此被发音。
对于包含1000~10000英尺的范围的淡水的层组,VLF(3~30KHz)的频率范围处的操作可以是优先的,但本发明不限于此。事实上,假定存在足够的介质穿透力和足够的信号噪声比,本发明可以使用任何频率范围。例如,对于盐水,频率可以是ELF(3~30Hz)。可在地球地面附近存在1~4KHz的低噪声窗,原因是该区域高于Schuman共振的大多数谐振并低于地球电离层腔的~10KHz下截止。工作“VLF Radio Engineering”,Arthur D.Watt,1st Edition 1967,Pergamon Press的全部内容通过引用被识别。烃探矿人员可以理解,电噪声可包含地电。在美国,不分配9KHz下面的RF谱(NTIA TableOf Frequency Allocations,US Dept of Commerce,October 2003),使得该谱可能具有优点。地面下层组的感测时的分辨率或粒度可以是反射计带宽的函数,该反射计带宽进而是在地下电磁传播中可用的低频率窗的上端的函数。
图4是本发明的另一实施例,其中,包含部分108和110的降低对开管井套管用作天线。与图1和图3类似,时域反射计100与天线108和110电连接。由于与时域反射计100相邻的同轴连接102不平衡但由井套管108和110形成的明线传输线平衡,因此连接包含1∶1平衡-不平衡变换器104。并且,时域反射计100优选为诸如HP8510的向量网络分析器或具有用于时域测量的设置的等同的设备。
本实施例的操作与图1和图3的实施例类似。由地面112下面的时域反射计100传送脉冲(未示出),并且,如果该脉冲遇到阻抗中断(未示出),那么反射脉冲(未示出)将返回时域反射计100,这将表现由特定阻抗中断导致的特性。这允许操作者通过观察例如反射脉冲的大小感测天线108和110周围的特定物理条件的存在。反射脉冲到达时域反射计100所花费的时间是阻抗中断距时域反射计100的距离的函数。这允许操作者大致确定该条件沿井套管天线108和110存在于哪个位置。通过网络分析器校准面106处的连接的短路,实现时域反射计100的校准和调零。
在公开的实施例中的任一个中,可以在位于地质层组中的明线传输线的端部处放置电阻性负载,以增强本发明的能力。例如,可以使用50欧姆电阻器以连接位于地质层组中的蒸汽注射管12的端部和排出提取管14的端部,以消除管的端部处的固有反射并且增加时域反射计10的敏感性。可例如减少传输线的脉冲的多次转换,以使激振最小化。
图5示出1000英尺的由钢石油井套管形成的明线传输线的可能传送损失。假定的SAGD井/明线传输线具有中心到中心分开15英尺的6英尺外径的钢套管。曲线302用于具有传导率σ=5.0并且相对介电常数εr=81的纯海水的地面下介质。曲线304用于有时以油为典型的σ=0.1并且εr=13的均质地面下介质。曲线306用于有时以岩石为典型的σ=0.001并且εr=13的均质地面下介质。通过对于近场效果使用有限元方法和Summerfeld Norton算法进行数值电磁建模获得这些曲线。时域反射计10应具有足以容纳例如加倍的传送损失的往返传送损失的能力。
并且,可对于实时反射计远程感测使用3个或更多个井管。可以采用空间图像映射技术和各种变换以提供更高的粒度或分辨率。正交取向的附加井管可提供诸如三维像素的3维图片信息。可在本发明内包含图像处理器(未示出)以解释由时域反射计测量的散射参数以形成图像。
Claims (10)
1.一种用于实时感测地下地质层组中的条件的方法,包括以下的步骤:
(a)加热地下地质层组;
(b)通过使用与至少部分地位于地质层组中的明线传输线电连接的时域反射计将射频脉冲传送到地质层组中;
(c)接收反射的射频脉冲;和
(d)确定与反射的射频脉冲对应的阻抗。
2.一种用于实时感测地下地质层组中的条件的装置,包括:
明线传输线,该明线传输线至少部分地位于为了烃的提取而被加热的地下地质层组中;和
时域反射计,该时域反射计与明线传输线电连接。
3.根据任何前面的权利要求的发明,其中,时域反射计是向量网络分析器。
4.根据权利要求1或3的发明,还包括识别与阻抗对应的地下地质层组中的特定物理条件的附加步骤。
5.根据任何前面的权利要求的发明,其中,明线传输线包含平衡-不平衡变换器。
6.根据任何前面的权利要求的发明,其中,明线传输线包含蒸汽注射管。
7.根据任何前面的权利要求的发明,其中,明线传输线包含对开管井套管。
8.根据任何前面的权利要求的发明,其中,明线传输线包含跨着位于地质层组中的明线传输线的端部连接的电阻性负载。
9.根据任何前面的权利要求的发明,其中,时域反射计是向量网络分析器。
10.根据任何前面的权利要求的发明,其中,明线传输线或蒸汽排出提取管包含共模节流口。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/396,284 US8494775B2 (en) | 2009-03-02 | 2009-03-02 | Reflectometry real time remote sensing for in situ hydrocarbon processing |
US12/396,284 | 2009-03-02 | ||
PCT/US2010/025772 WO2010120408A1 (en) | 2009-03-02 | 2010-03-01 | Reflectometry real time remote sensing for in situ hydrocarbon processing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102753995A true CN102753995A (zh) | 2012-10-24 |
CN102753995B CN102753995B (zh) | 2014-12-03 |
Family
ID=42352385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080010502.2A Expired - Fee Related CN102753995B (zh) | 2009-03-02 | 2010-03-01 | 用于就地烃处理的反射计实时远程感测 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8494775B2 (zh) |
EP (1) | EP2404199A1 (zh) |
CN (1) | CN102753995B (zh) |
AU (1) | AU2010236988B2 (zh) |
CA (1) | CA2753603C (zh) |
RU (1) | RU2011136173A (zh) |
WO (1) | WO2010120408A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110160599A (zh) * | 2018-02-14 | 2019-08-23 | Vega格里沙贝两合公司 | 具有附着物检测器的物位雷达 |
CN110865246A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂扩散电场强度的多孔监测系统及方法 |
CN110865244A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 破碎带相交部位断裂扩散电场强度的单孔监测系统及方法 |
CN110865243A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂电场压电部位的检测系统及方法 |
CN110865242A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂电场强度的监测系统及方法 |
CN110865241A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂稳定性的评估系统及方法 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9034176B2 (en) | 2009-03-02 | 2015-05-19 | Harris Corporation | Radio frequency heating of petroleum ore by particle susceptors |
GB201017814D0 (en) * | 2010-10-21 | 2010-12-01 | Zenith Oilfield Technology Ltd | A cable and method |
GB201019567D0 (en) | 2010-11-19 | 2010-12-29 | Zenith Oilfield Technology Ltd | High temperature downhole gauge system |
US8932435B2 (en) | 2011-08-12 | 2015-01-13 | Harris Corporation | Hydrocarbon resource processing device including radio frequency applicator and related methods |
GB2495132B (en) | 2011-09-30 | 2016-06-15 | Zenith Oilfield Tech Ltd | Fluid determination in a well bore |
US8960285B2 (en) | 2011-11-01 | 2015-02-24 | Harris Corporation | Method of processing a hydrocarbon resource including supplying RF energy using an extended well portion |
GB2496863B (en) | 2011-11-22 | 2017-12-27 | Zenith Oilfield Tech Limited | Distributed two dimensional fluid sensor |
US8771481B2 (en) | 2012-01-13 | 2014-07-08 | Harris Corporation | Hydrocarbon resource processing apparatus including a load resonance tracking circuit and related methods |
US8858785B2 (en) | 2012-01-13 | 2014-10-14 | Harris Corporation | Hydrocarbon resource processing device including spirally wound electrical conductor and related methods |
US8840780B2 (en) | 2012-01-13 | 2014-09-23 | Harris Corporation | Hydrocarbon resource processing device including spirally wound electrical conductors and related methods |
US9157303B2 (en) | 2012-02-01 | 2015-10-13 | Harris Corporation | Hydrocarbon resource heating apparatus including upper and lower wellbore RF radiators and related methods |
GB201203205D0 (en) * | 2012-02-24 | 2012-04-11 | Mobrey Ltd | Improvements in or relating to interface detection |
US8960291B2 (en) | 2012-03-21 | 2015-02-24 | Harris Corporation | Method for forming a hydrocarbon resource RF radiator |
US8726986B2 (en) | 2012-04-19 | 2014-05-20 | Harris Corporation | Method of heating a hydrocarbon resource including lowering a settable frequency based upon impedance |
WO2014052715A1 (en) * | 2012-09-27 | 2014-04-03 | Magnetrol International, Incorporated | Time domain reflectometry based method for emulsion detection and profiling |
US9196411B2 (en) * | 2012-10-22 | 2015-11-24 | Harris Corporation | System including tunable choke for hydrocarbon resource heating and associated methods |
US9140099B2 (en) | 2012-11-13 | 2015-09-22 | Harris Corporation | Hydrocarbon resource heating device including superconductive material RF antenna and related methods |
US9798035B2 (en) | 2013-01-11 | 2017-10-24 | Halliburton Energy Services, Inc. | Time-lapse time-domain reflectometry for tubing and formation monitoring |
US9194221B2 (en) | 2013-02-13 | 2015-11-24 | Harris Corporation | Apparatus for heating hydrocarbons with RF antenna assembly having segmented dipole elements and related methods |
US9309757B2 (en) * | 2013-02-21 | 2016-04-12 | Harris Corporation | Radio frequency antenna assembly for hydrocarbon resource recovery including adjustable shorting plug and related methods |
GB2511739B (en) | 2013-03-11 | 2018-11-21 | Zenith Oilfield Tech Limited | Multi-component fluid determination in a well bore |
US9909987B1 (en) | 2014-07-30 | 2018-03-06 | Transcend Engineering and Technology, LLC | Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a material |
US9970969B1 (en) | 2014-08-26 | 2018-05-15 | Transcend Engineering and Technology, LLC | Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material |
US9963958B2 (en) | 2015-06-08 | 2018-05-08 | Harris Corporation | Hydrocarbon resource recovery apparatus including RF transmission line and associated methods |
WO2017205565A1 (en) | 2016-05-25 | 2017-11-30 | William Marsh Rice University | Methods and systems related to remote measuring and sensing |
CA3073881C (en) * | 2019-03-05 | 2022-07-19 | Husky Oil Operations Limited | Well production optimization using hyperspectral imaging |
CN109884140B (zh) * | 2019-03-28 | 2021-11-02 | 中国科学院上海硅酸盐研究所 | 一种材料高温介电性能测试系统 |
US10897239B1 (en) | 2019-09-06 | 2021-01-19 | International Business Machines Corporation | Granular variable impedance tuning |
WO2021086382A1 (en) * | 2019-10-31 | 2021-05-06 | Halliburton Energy Services, Inc. | Locating passive seismic events in a wellbore using distributed acoustic sensing |
US20220018986A1 (en) * | 2020-07-20 | 2022-01-20 | Saudi Arabian Oil Company | System and method for mapping and monitoring reservoirs by electromagnetic crosswell and optimizing production |
CN113030137B (zh) * | 2021-03-16 | 2023-01-20 | 北京环境特性研究所 | 基于温度探测的吸波材料高温反射率测量系统及方法 |
CN115704296B (zh) * | 2021-08-02 | 2024-07-26 | 中国石油天然气股份有限公司 | Sagd蒸汽腔动态监控方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US439606A (en) * | 1890-10-28 | Island | ||
US5136249A (en) * | 1988-06-20 | 1992-08-04 | Commonwealth Scientific & Industrial Research Organization | Probes for measurement of moisture content, solids contents, and electrical conductivity |
US5631562A (en) * | 1994-03-31 | 1997-05-20 | Western Atlas International, Inc. | Time domain electromagnetic well logging sensor including arcuate microwave strip lines |
US6067262A (en) * | 1998-12-11 | 2000-05-23 | Lsi Logic Corporation | Redundancy analysis for embedded memories with built-in self test and built-in self repair |
US20050274513A1 (en) * | 2004-06-15 | 2005-12-15 | Schultz Roger L | System and method for determining downhole conditions |
US20080143330A1 (en) * | 2006-12-18 | 2008-06-19 | Schlumberger Technology Corporation | Devices, systems and methods for assessing porous media properties |
Family Cites Families (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2371459A (en) | 1941-08-30 | 1945-03-13 | Mittelmann Eugen | Method of and means for heat-treating metal in strip form |
US2685930A (en) | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US3497005A (en) | 1967-03-02 | 1970-02-24 | Resources Research & Dev Corp | Sonic energy process |
FR1586066A (zh) | 1967-10-25 | 1970-02-06 | ||
US3991091A (en) | 1973-07-23 | 1976-11-09 | Sun Ventures, Inc. | Organo tin compound |
US3848671A (en) | 1973-10-24 | 1974-11-19 | Atlantic Richfield Co | Method of producing bitumen from a subterranean tar sand formation |
CA1062336A (en) | 1974-07-01 | 1979-09-11 | Robert K. Cross | Electromagnetic lithosphere telemetry system |
US3988036A (en) | 1975-03-10 | 1976-10-26 | Fisher Sidney T | Electric induction heating of underground ore deposits |
JPS51130404A (en) | 1975-05-08 | 1976-11-12 | Kureha Chem Ind Co Ltd | Method for preventing coalking of heavy oil |
US3954140A (en) | 1975-08-13 | 1976-05-04 | Hendrick Robert P | Recovery of hydrocarbons by in situ thermal extraction |
US4035282A (en) | 1975-08-20 | 1977-07-12 | Shell Canada Limited | Process for recovery of bitumen from a bituminous froth |
US4136014A (en) | 1975-08-28 | 1979-01-23 | Canadian Patents & Development Limited | Method and apparatus for separation of bitumen from tar sands |
US4196329A (en) | 1976-05-03 | 1980-04-01 | Raytheon Company | Situ processing of organic ore bodies |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4140179A (en) | 1977-01-03 | 1979-02-20 | Raytheon Company | In situ radio frequency selective heating process |
US4301865A (en) | 1977-01-03 | 1981-11-24 | Raytheon Company | In situ radio frequency selective heating process and system |
US4144935A (en) | 1977-08-29 | 1979-03-20 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4140180A (en) | 1977-08-29 | 1979-02-20 | Iit Research Institute | Method for in situ heat processing of hydrocarbonaceous formations |
US4146125A (en) | 1977-11-01 | 1979-03-27 | Petro-Canada Exploration Inc. | Bitumen-sodium hydroxide-water emulsion release agent for bituminous sands conveyor belt |
NL7806452A (nl) | 1978-06-14 | 1979-12-18 | Tno | Werkwijze voor de behandeling van aromatische polya- midevezels, die geschikt zijn voor gebruik in construc- tiematerialen en rubbers, alsmede aldus behandelde vezels en met deze vezels gewapende gevormde voort- brengsels. |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
FR2449187A1 (fr) * | 1979-02-16 | 1980-09-12 | Bourlier Claude | Dispositif passe-monnaie, notamment pour les banques, gares, grands magasins ou autres |
US4300219A (en) | 1979-04-26 | 1981-11-10 | Raytheon Company | Bowed elastomeric window |
US4410216A (en) | 1979-12-31 | 1983-10-18 | Heavy Oil Process, Inc. | Method for recovering high viscosity oils |
US4295880A (en) | 1980-04-29 | 1981-10-20 | Horner Jr John W | Apparatus and method for recovering organic and non-ferrous metal products from shale and ore bearing rock |
US4508168A (en) | 1980-06-30 | 1985-04-02 | Raytheon Company | RF Applicator for in situ heating |
US4396062A (en) * | 1980-10-06 | 1983-08-02 | University Of Utah Research Foundation | Apparatus and method for time-domain tracking of high-speed chemical reactions |
US4373581A (en) | 1981-01-19 | 1983-02-15 | Halliburton Company | Apparatus and method for radio frequency heating of hydrocarbonaceous earth formations including an impedance matching technique |
US4456065A (en) | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US4425227A (en) | 1981-10-05 | 1984-01-10 | Gnc Energy Corporation | Ambient froth flotation process for the recovery of bitumen from tar sand |
US4531468A (en) | 1982-01-05 | 1985-07-30 | Raytheon Company | Temperature/pressure compensation structure |
US4449585A (en) | 1982-01-29 | 1984-05-22 | Iit Research Institute | Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations |
US4485869A (en) | 1982-10-22 | 1984-12-04 | Iit Research Institute | Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ |
US4514305A (en) | 1982-12-01 | 1985-04-30 | Petro-Canada Exploration, Inc. | Azeotropic dehydration process for treating bituminous froth |
US4404123A (en) | 1982-12-15 | 1983-09-13 | Mobil Oil Corporation | Catalysts for para-ethyltoluene dehydrogenation |
US4524827A (en) | 1983-04-29 | 1985-06-25 | Iit Research Institute | Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations |
US4470459A (en) | 1983-05-09 | 1984-09-11 | Halliburton Company | Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations |
NZ208911A (en) | 1983-07-15 | 1988-04-29 | Broken Hill Pty Co Ltd | Liquid fuels containing cycloalkanes |
CA1211063A (en) | 1983-09-13 | 1986-09-09 | Robert D. De Calonne | Method of utilization and disposal of sludge from tar sands hot water extraction process |
US4703433A (en) * | 1984-01-09 | 1987-10-27 | Hewlett-Packard Company | Vector network analyzer with integral processor |
US5055180A (en) | 1984-04-20 | 1991-10-08 | Electromagnetic Energy Corporation | Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleansing storage vessels and pipelines |
US4620593A (en) | 1984-10-01 | 1986-11-04 | Haagensen Duane B | Oil recovery system and method |
US4583586A (en) | 1984-12-06 | 1986-04-22 | Ebara Corporation | Apparatus for cleaning heat exchanger tubes |
US4678034A (en) | 1985-08-05 | 1987-07-07 | Formation Damage Removal Corporation | Well heater |
US4622496A (en) | 1985-12-13 | 1986-11-11 | Energy Technologies Corp. | Energy efficient reactance ballast with electronic start circuit for the operation of fluorescent lamps of various wattages at standard levels of light output as well as at increased levels of light output |
US4892782A (en) | 1987-04-13 | 1990-01-09 | E. I. Dupont De Nemours And Company | Fibrous microwave susceptor packaging material |
US4817711A (en) | 1987-05-27 | 1989-04-04 | Jeambey Calhoun G | System for recovery of petroleum from petroleum impregnated media |
US4790375A (en) | 1987-11-23 | 1988-12-13 | Ors Development Corporation | Mineral well heating systems |
US4882984A (en) | 1988-10-07 | 1989-11-28 | Raytheon Company | Constant temperature fryer assembly |
FR2651580B1 (fr) | 1989-09-05 | 1991-12-13 | Aerospatiale | Dispositif de caracterisation dielectrique d'echantillons de materiau de surface plane ou non plane et application au controle non destructif de l'homogeneite dielectrique desdits echantillons. |
US5251700A (en) | 1990-02-05 | 1993-10-12 | Hrubetz Environmental Services, Inc. | Well casing providing directional flow of injection fluids |
CA2009782A1 (en) | 1990-02-12 | 1991-08-12 | Anoosh I. Kiamanesh | In-situ tuned microwave oil extraction process |
US5199488A (en) | 1990-03-09 | 1993-04-06 | Kai Technologies, Inc. | Electromagnetic method and apparatus for the treatment of radioactive material-containing volumes |
US5065819A (en) | 1990-03-09 | 1991-11-19 | Kai Technologies | Electromagnetic apparatus and method for in situ heating and recovery of organic and inorganic materials |
US6055213A (en) | 1990-07-09 | 2000-04-25 | Baker Hughes Incorporated | Subsurface well apparatus |
US5046559A (en) | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
US5370477A (en) | 1990-12-10 | 1994-12-06 | Enviropro, Inc. | In-situ decontamination with electromagnetic energy in a well array |
US5233306A (en) | 1991-02-13 | 1993-08-03 | The Board Of Regents Of The University Of Wisconsin System | Method and apparatus for measuring the permittivity of materials |
US5293936A (en) | 1992-02-18 | 1994-03-15 | Iit Research Institute | Optimum antenna-like exciters for heating earth media to recover thermally responsive constituents |
US5322984A (en) | 1992-04-03 | 1994-06-21 | James River Corporation Of Virginia | Antenna for microwave enhanced cooking |
US5506592A (en) | 1992-05-29 | 1996-04-09 | Texas Instruments Incorporated | Multi-octave, low profile, full instantaneous azimuthal field of view direction finding antenna |
US5236039A (en) | 1992-06-17 | 1993-08-17 | General Electric Company | Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale |
US5304767A (en) | 1992-11-13 | 1994-04-19 | Gas Research Institute | Low emission induction heating coil |
US5378879A (en) | 1993-04-20 | 1995-01-03 | Raychem Corporation | Induction heating of loaded materials |
US5315561A (en) | 1993-06-21 | 1994-05-24 | Raytheon Company | Radar system and components therefore for transmitting an electromagnetic signal underwater |
US5582854A (en) | 1993-07-05 | 1996-12-10 | Ajinomoto Co., Inc. | Cooking with the use of microwave |
AU681691B2 (en) | 1993-08-06 | 1997-09-04 | Minnesota Mining And Manufacturing Company | Chlorine-free multilayered film medical device assemblies |
US6421754B1 (en) | 1994-12-22 | 2002-07-16 | Texas Instruments Incorporated | System management mode circuits, systems and methods |
US5621844A (en) | 1995-03-01 | 1997-04-15 | Uentech Corporation | Electrical heating of mineral well deposits using downhole impedance transformation networks |
US5670798A (en) | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
US5746909A (en) | 1996-11-06 | 1998-05-05 | Witco Corp | Process for extracting tar from tarsand |
US5923299A (en) | 1996-12-19 | 1999-07-13 | Raytheon Company | High-power shaped-beam, ultra-wideband biconical antenna |
JPH10255250A (ja) | 1997-03-11 | 1998-09-25 | Fuji Photo Film Co Ltd | 磁気記録媒体およびその製造方法 |
US6063338A (en) | 1997-06-02 | 2000-05-16 | Aurora Biosciences Corporation | Low background multi-well plates and platforms for spectroscopic measurements |
US6229603B1 (en) | 1997-06-02 | 2001-05-08 | Aurora Biosciences Corporation | Low background multi-well plates with greater than 864 wells for spectroscopic measurements |
US5910287A (en) | 1997-06-03 | 1999-06-08 | Aurora Biosciences Corporation | Low background multi-well plates with greater than 864 wells for fluorescence measurements of biological and biochemical samples |
US6923273B2 (en) | 1997-10-27 | 2005-08-02 | Halliburton Energy Services, Inc. | Well system |
US6360819B1 (en) | 1998-02-24 | 2002-03-26 | Shell Oil Company | Electrical heater |
US6348679B1 (en) | 1998-03-17 | 2002-02-19 | Ameritherm, Inc. | RF active compositions for use in adhesion, bonding and coating |
JPH11296823A (ja) | 1998-04-09 | 1999-10-29 | Nec Corp | 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム |
US6097262A (en) * | 1998-04-27 | 2000-08-01 | Nortel Networks Corporation | Transmission line impedance matching apparatus |
JP3697106B2 (ja) | 1998-05-15 | 2005-09-21 | キヤノン株式会社 | 半導体基板の作製方法及び半導体薄膜の作製方法 |
US6614059B1 (en) | 1999-01-07 | 2003-09-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device with quantum well |
US6184427B1 (en) | 1999-03-19 | 2001-02-06 | Invitri, Inc. | Process and reactor for microwave cracking of plastic materials |
US6303021B2 (en) | 1999-04-23 | 2001-10-16 | Denim Engineering, Inc. | Apparatus and process for improved aromatic extraction from gasoline |
US6649888B2 (en) | 1999-09-23 | 2003-11-18 | Codaco, Inc. | Radio frequency (RF) heating system |
IT1311303B1 (it) | 1999-12-07 | 2002-03-12 | Donizetti Srl | Procedimento ed apparecchiatura per la trasformazione di rifiuti ecascami tramite correnti indotte. |
US6432365B1 (en) | 2000-04-14 | 2002-08-13 | Discovery Partners International, Inc. | System and method for dispensing solution to a multi-well container |
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
DE10032207C2 (de) | 2000-07-03 | 2002-10-31 | Univ Karlsruhe | Verfahren, Vorrichtung und Computerprogrammprodukt zur Bestimmung zumindest einer Eigenschaft einer Testemulsion und/oder Testsuspension sowie Verwendung der Vorrichtung |
US6967589B1 (en) | 2000-08-11 | 2005-11-22 | Oleumtech Corporation | Gas/oil well monitoring system |
US6603309B2 (en) | 2001-05-21 | 2003-08-05 | Baker Hughes Incorporated | Active signal conditioning circuitry for well logging and monitoring while drilling nuclear magnetic resonance spectrometers |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
US20040031731A1 (en) | 2002-07-12 | 2004-02-19 | Travis Honeycutt | Process for the microwave treatment of oil sands and shale oils |
CA2471048C (en) | 2002-09-19 | 2006-04-25 | Suncor Energy Inc. | Bituminous froth hydrocarbon cyclone |
SE0203411L (sv) | 2002-11-19 | 2004-04-06 | Tetra Laval Holdings & Finance | Sätt att överföra information från en anläggning för tillverkning av förpackningsmatrial till en fyllmaskin, sätt att förse ett förpackningsmaterial med information, samt förpackningsmaterial och användning därav 2805 |
US7046584B2 (en) | 2003-07-09 | 2006-05-16 | Precision Drilling Technology Services Group Inc. | Compensated ensemble crystal oscillator for use in a well borehole system |
US7079081B2 (en) | 2003-07-14 | 2006-07-18 | Harris Corporation | Slotted cylinder antenna |
US6950034B2 (en) * | 2003-08-29 | 2005-09-27 | Schlumberger Technology Corporation | Method and apparatus for performing diagnostics on a downhole communication system |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US6992630B2 (en) | 2003-10-28 | 2006-01-31 | Harris Corporation | Annular ring antenna |
US7091460B2 (en) | 2004-03-15 | 2006-08-15 | Dwight Eric Kinzer | In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating |
US7322416B2 (en) | 2004-05-03 | 2008-01-29 | Halliburton Energy Services, Inc. | Methods of servicing a well bore using self-activating downhole tool |
WO2006130158A2 (en) | 2004-07-20 | 2006-12-07 | Criswell David R | Power generating and distribution system and method |
US7205947B2 (en) | 2004-08-19 | 2007-04-17 | Harris Corporation | Litzendraht loop antenna and associated methods |
CA2590193C (en) * | 2004-12-09 | 2013-03-19 | David R. Smith | Method and apparatus to deliver energy in a well system |
WO2007002111A1 (en) | 2005-06-20 | 2007-01-04 | Ksn Energies, Llc | Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd) |
WO2007081493A2 (en) | 2005-12-14 | 2007-07-19 | Mobilestream Oil, Inc. | Microwave-based recovery of hydrocarbons and fossil fuels |
US8072220B2 (en) * | 2005-12-16 | 2011-12-06 | Raytheon Utd Inc. | Positioning, detection and communication system and method |
US7461693B2 (en) | 2005-12-20 | 2008-12-09 | Schlumberger Technology Corporation | Method for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids |
US8096349B2 (en) | 2005-12-20 | 2012-01-17 | Schlumberger Technology Corporation | Apparatus for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids |
AU2007207383A1 (en) | 2006-01-19 | 2007-07-26 | Pyrophase, Inc. | Radio frequency technology heater for unconventional resources |
US7484561B2 (en) | 2006-02-21 | 2009-02-03 | Pyrophase, Inc. | Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations |
US7623804B2 (en) | 2006-03-20 | 2009-11-24 | Kabushiki Kaisha Toshiba | Fixing device of image forming apparatus |
US7562708B2 (en) | 2006-05-10 | 2009-07-21 | Raytheon Company | Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids |
US20080028989A1 (en) | 2006-07-20 | 2008-02-07 | Scott Kevin Palm | Process for removing organic contaminants from non-metallic inorganic materials using dielectric heating |
US7677673B2 (en) | 2006-09-26 | 2010-03-16 | Hw Advanced Technologies, Inc. | Stimulation and recovery of heavy hydrocarbon fluids |
US7540324B2 (en) * | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
DE102007040606B3 (de) | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
DE102007008292B4 (de) | 2007-02-16 | 2009-08-13 | Siemens Ag | Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte |
DE102008022176A1 (de) | 2007-08-27 | 2009-11-12 | Siemens Aktiengesellschaft | Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl |
US20090242196A1 (en) | 2007-09-28 | 2009-10-01 | Hsueh-Yuan Pao | System and method for extraction of hydrocarbons by in-situ radio frequency heating of carbon bearing geological formations |
FR2925519A1 (fr) | 2007-12-20 | 2009-06-26 | Total France Sa | Dispositif de degradation/transformation des huiles lourdes et procede. |
CA2713584C (en) | 2008-03-17 | 2016-06-21 | Chevron Canada Limited | Recovery of bitumen from oil sands using sonication |
-
2009
- 2009-03-02 US US12/396,284 patent/US8494775B2/en active Active
-
2010
- 2010-03-01 AU AU2010236988A patent/AU2010236988B2/en not_active Ceased
- 2010-03-01 EP EP10707178A patent/EP2404199A1/en not_active Withdrawn
- 2010-03-01 WO PCT/US2010/025772 patent/WO2010120408A1/en active Application Filing
- 2010-03-01 CN CN201080010502.2A patent/CN102753995B/zh not_active Expired - Fee Related
- 2010-03-01 RU RU2011136173/28A patent/RU2011136173A/ru unknown
- 2010-03-01 CA CA2753603A patent/CA2753603C/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US439606A (en) * | 1890-10-28 | Island | ||
US5136249A (en) * | 1988-06-20 | 1992-08-04 | Commonwealth Scientific & Industrial Research Organization | Probes for measurement of moisture content, solids contents, and electrical conductivity |
US5631562A (en) * | 1994-03-31 | 1997-05-20 | Western Atlas International, Inc. | Time domain electromagnetic well logging sensor including arcuate microwave strip lines |
US6067262A (en) * | 1998-12-11 | 2000-05-23 | Lsi Logic Corporation | Redundancy analysis for embedded memories with built-in self test and built-in self repair |
US20050274513A1 (en) * | 2004-06-15 | 2005-12-15 | Schultz Roger L | System and method for determining downhole conditions |
US20080143330A1 (en) * | 2006-12-18 | 2008-06-19 | Schlumberger Technology Corporation | Devices, systems and methods for assessing porous media properties |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110160599A (zh) * | 2018-02-14 | 2019-08-23 | Vega格里沙贝两合公司 | 具有附着物检测器的物位雷达 |
CN110865246A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂扩散电场强度的多孔监测系统及方法 |
CN110865244A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 破碎带相交部位断裂扩散电场强度的单孔监测系统及方法 |
CN110865243A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂电场压电部位的检测系统及方法 |
CN110865242A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂电场强度的监测系统及方法 |
CN110865241A (zh) * | 2019-10-12 | 2020-03-06 | 陈国能 | 断裂稳定性的评估系统及方法 |
CN110865241B (zh) * | 2019-10-12 | 2021-08-17 | 陈国能 | 断裂稳定性的评估系统及方法 |
CN110865243B (zh) * | 2019-10-12 | 2021-09-21 | 陈国能 | 断裂电场压电部位的检测系统及方法 |
CN110865242B (zh) * | 2019-10-12 | 2021-11-09 | 陈国能 | 断裂电场强度的监测系统及方法 |
CN110865244B (zh) * | 2019-10-12 | 2022-01-11 | 陈国能 | 破碎带相交部位断裂扩散电场强度的单孔监测系统及方法 |
CN110865246B (zh) * | 2019-10-12 | 2022-02-11 | 陈国能 | 断裂扩散电场强度的多孔监测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2010236988A1 (en) | 2011-09-08 |
US20100223011A1 (en) | 2010-09-02 |
US8494775B2 (en) | 2013-07-23 |
CA2753603C (en) | 2014-01-14 |
AU2010236988B2 (en) | 2012-10-25 |
CA2753603A1 (en) | 2010-10-21 |
EP2404199A1 (en) | 2012-01-11 |
RU2011136173A (ru) | 2013-04-10 |
WO2010120408A1 (en) | 2010-10-21 |
CN102753995B (zh) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102753995B (zh) | 用于就地烃处理的反射计实时远程感测 | |
US20200378240A1 (en) | A Method For Unbiased Estimation Of Individual Metal Thickness Of A Plurality Of Casing Strings | |
US11520072B2 (en) | Electromagnetic pipe inspection in non-nested completions | |
US20200333500A1 (en) | Multi-Zone Processing Of Pipe Inspection Tools | |
US7960969B2 (en) | Electromagnetic imaging method and device | |
CN101358827B (zh) | 管道壁厚腐蚀检测、无损检测方法 | |
US8977500B2 (en) | Dielectric spectroscopy for downhole fluid analysis during formation testing | |
WO2020112091A1 (en) | Pipe thickness inversion using a fast forward model | |
NL1041822B1 (en) | Sensor system for downhole galvanic measurements. | |
US10309910B2 (en) | System and method to measure salinity of multi-phase fluids | |
US20200182830A1 (en) | Artifact Identification and Removal Method for Electromagnetic Pipe Inspection | |
MXPA01004145A (es) | Sistema electromagnetico emplazado permanentemente y metodo para la medicion de la resistividad de la formacion adyacente a las perforaciones en pozos y entre estas. | |
WO2020101652A1 (en) | Multi-tubular inversion with automatic cost functional optimization | |
US7714585B2 (en) | Multi-frequency cancellation of dielectric effect | |
WO2008070239A2 (en) | Increasing the resolution of electromagnetic tools for resistivity evaluations in near borehole zones | |
EP3054084A1 (en) | Auxiliary system for use in drilling | |
WO2018084862A1 (en) | Detection of pipe characteristics with a remote field eddy current | |
AU2019204540A1 (en) | Downhole communications using selectable frequency bands | |
US20190113439A1 (en) | Wireline Signal Noise Reduction | |
GB2601868A (en) | Identifying corrosion from electromagnetic corrosion measurements and high-resolution circumferential measurements | |
CN106687778A (zh) | 用于检测介质的方法和设备 | |
KR102551986B1 (ko) | 교류전류를 이용하여 지중공동 또는 배관 건전성을 탐지하기 위한 방법 및 시스템 | |
Isaacson | High-Frequency Electromagnetic Induction Sensing for Buried Utility Detection and Mapping | |
Kona et al. | Excitation of a long wire antenna-Antennas from 200 MHz to 1 Hz | |
RU121087U1 (ru) | Устройство индукционного каротажа скважин в процессе бурения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141203 Termination date: 20160301 |