CN102739071A - Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling - Google Patents

Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling Download PDF

Info

Publication number
CN102739071A
CN102739071A CN2012102051140A CN201210205114A CN102739071A CN 102739071 A CN102739071 A CN 102739071A CN 2012102051140 A CN2012102051140 A CN 2012102051140A CN 201210205114 A CN201210205114 A CN 201210205114A CN 102739071 A CN102739071 A CN 102739071A
Authority
CN
China
Prior art keywords
voltage
phase
module
omega
brachium pontis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102051140A
Other languages
Chinese (zh)
Other versions
CN102739071B (en
Inventor
刘进军
杜思行
林继亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201210205114.0A priority Critical patent/CN102739071B/en
Publication of CN102739071A publication Critical patent/CN102739071A/en
Application granted granted Critical
Publication of CN102739071B publication Critical patent/CN102739071B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开一种基于环流解耦的模块化多电平变流器直流电容电压控制方法,其特征在于,利用模块化多电平变流器从电网吸收的有功电流控制总的直流母线电压,用环流中的直流成分使三相之间直流电压平衡,用环流中的解耦的基波成分控制每相上下两个桥臂直流母线的平衡,最后沿桥臂电流方向微调各个模块的输出电压实现桥臂内部各个模块之间直流电容电压的均衡。该控制方法能够很好地实现各相上下两个桥臂之间直流母线电压的均衡控制;再配合其他三个层次的电压控制环,各个模块的直流侧电压很好地实现了均衡并稳定在给定值;该方法正确、可靠,为工程应用提供了很好的参考价值。

The invention discloses a method for controlling DC capacitor voltage of a modular multilevel converter based on circulating current decoupling, which is characterized in that the active current absorbed by the modular multilevel converter from a power grid is used to control the total DC bus voltage, Use the DC component in the circulating current to balance the DC voltage between the three phases, use the decoupled fundamental wave component in the circulating current to control the balance of the DC bus bars of the upper and lower bridge arms of each phase, and finally fine-tune the output voltage of each module along the current direction of the bridge arm Realize the balance of the DC capacitor voltage among the various modules inside the bridge arm. This control method can well realize the balanced control of the DC bus voltage between the upper and lower bridge arms of each phase; coupled with the other three levels of voltage control loops, the DC side voltage of each module is well balanced and stabilized at Given value; this method is correct and reliable, and provides a good reference value for engineering applications.

Description

基于环流解耦的模块化多电平变流器直流电容电压控制方法DC Capacitor Voltage Control Method for Modular Multilevel Converter Based on Circulating Current Decoupling

技术领域 technical field

本发明涉及模块化多电平拓扑结构(MMC)中高压电能质量控制器以及高压直流输电(HVDC)等研究领域,特别涉及模块化多电平桥臂之间直流母线电压均衡控制。The invention relates to the research fields of a high voltage power quality controller in a modular multilevel topology (MMC) and a high voltage direct current transmission (HVDC), and in particular relates to a DC bus voltage balance control between modular multilevel bridge arms.

背景技术 Background technique

随着社会进步和工业发展,现代电力系统存在两大特点:输配电系统庞大,无功和非线性负载容量增加。首先,现代社会对电力的需求也越来越多,为了满足用户对电力日益增长的需求,电力系统变得越来越庞大,覆盖范围也越来越广阔。这给电力系统的稳定性带来挑战。同时,不同的电力系统往往需要互联在一起,以增强整个供电系统的可靠性,但是不同电力系统互联时存在不同步的问题。其次,现代电力系统的负载也有新的特点:电力电子装置具有优越的性能,已经被工农业依据消费产业大量采用。然而,电力电子装置作为非线性负载,会向电网注入无功和谐波,随着非线性负载容量的增大,其对配电系统的影响也越来越大,使系统存在不安全,不稳定隐患[1]。对中高压输配电系统进行无功和谐波的补偿,可以有效改善电力系统的稳定性[2][3]。不同供电系统之间通过高压直流输电系统(HVDC)互联,可以解决系统不同步问题,也可以阻止故障在系统之间蔓延,是改善系统稳定性与可靠性的可行方法。With social progress and industrial development, modern power systems have two major characteristics: large transmission and distribution systems, and increased reactive power and nonlinear load capacity. First of all, the demand for electricity in modern society is also increasing. In order to meet the growing demand of users for electricity, the power system has become larger and larger, and its coverage has become wider and wider. This brings challenges to the stability of the power system. At the same time, different power systems often need to be interconnected to enhance the reliability of the entire power supply system, but there are asynchronous problems when different power systems are interconnected. Secondly, the loads of modern power systems also have new features: power electronic devices have superior performance and have been widely adopted by industry and agriculture as well as consumer industries. However, as a nonlinear load, power electronic devices will inject reactive power and harmonics into the grid. With the increase of the nonlinear load capacity, its impact on the power distribution system is also increasing, making the system unsafe and unstable. Stability hidden dangers [1]. Reactive power and harmonic compensation for medium and high voltage transmission and distribution systems can effectively improve the stability of the power system [2] [3]. The interconnection of different power supply systems through the high-voltage direct current transmission system (HVDC) can solve the problem of system asynchrony and prevent faults from spreading between systems. It is a feasible method to improve system stability and reliability.

模块化多电平变流器(MMC)自从提出之后就得到学者的广泛的研究和工程师的强烈关注。模块化多电平变流器具有诸多优点:模块化设计、低开关频率、低功耗、高质量的频谱特性等[4]。这些优点给模块化多电平变流器的制造,安装,维护带来了巨大方便,也使得其不用网侧变压器直接挂入中高压电网。现在模块化多电平变流器已被应用于高压直流输电系统和中高压电能质量控制系统,成为改善输配电系稳定性与可靠性的有效方法[5]-[9]。Modular Multilevel Converter (MMC) has been extensively studied by scholars and strongly concerned by engineers since it was proposed. Modular multilevel converters have many advantages: modular design, low switching frequency, low power consumption, high-quality spectrum characteristics, etc. [4]. These advantages bring great convenience to the manufacture, installation and maintenance of the modular multilevel converter, and also make it directly connected to the medium and high voltage power grid without a grid-side transformer. Modular multilevel converters have been applied to HVDC power transmission systems and medium and high voltage power quality control systems, and have become an effective method to improve the stability and reliability of power transmission and distribution systems [5]-[9].

在高压直流输电、中高压静止无功发生器、中高压谐波补偿器以及中高压变频调速系统的应用中,很多个斩波单元串联在一起构成一个桥臂,六个桥臂通过连接电抗器接成双星形结构成为三相变流器。每个桥臂中的每个斩波单元的直流侧需要并入电解电容器,不用加独立的直流电压源。目前国内外专家对模块化多电平变流器进行了大量研究,提出了一些控制方法。In the application of HVDC power transmission, medium and high voltage static var generator, medium and high voltage harmonic compensator, and medium and high voltage variable frequency speed control system, many chopper units are connected in series to form a bridge arm, and the six bridge arms are connected by reactance The converters are connected into a double star structure to become a three-phase converter. The DC side of each chopper unit in each bridge arm needs to be incorporated into an electrolytic capacitor, without adding an independent DC voltage source. At present, experts at home and abroad have conducted a lot of research on modular multilevel converters and proposed some control methods.

然而,在实际应用中,每个斩波单元的损耗是不一样的,控制电路产的开关信号的延时也不同,再加上负载突变的动态过程中电流波形正负半周不对称,都会造成桥臂之间或者模块之间直流侧电压的不均衡。如果不加以实时纠正,有的模块直流侧电压越来越高,模块工作在超额状态,造成工作寿命变短甚至直接炸毁;有的模块直流侧电压越来越低,模块工作在欠额状态,不能发挥应有的功效。因此,各模块直流侧电容电压控制问题成为模块化多电平变量器应用的重点问题,也是难点问题[7]。However, in practical applications, the loss of each chopper unit is different, and the delay of the switching signal generated by the control circuit is also different. In addition, the positive and negative half-cycle asymmetry of the current waveform during the dynamic process of load mutation will cause The imbalance of the DC side voltage between bridge arms or between modules. If it is not corrected in real time, the voltage on the DC side of some modules will become higher and higher, and the module will work in an excess state, causing the working life to be shortened or even directly blown up; the voltage on the DC side of some modules will be lower and lower, and the module will work in an underrated state. , cannot perform as expected. Therefore, the problem of controlling the DC side capacitor voltage of each module has become a key issue in the application of modular multilevel variable transformers, and it is also a difficult issue [7].

针对模块化多电平变流器的直流母线电压控制问题,现在已有多种解决办法:如模块排线法,桥臂能量预估法,环流配置法,负序电流均衡法等[10]-[17]。这些方法都只是针对某一种具体应用提出的,不具有通用性和系统性,同时也都有自身的一些缺点和不足。尚未看到针对模块化多电平变流器的很好的控制策略。为此,还需要对模块化多电平变流器的直流侧电容电压控制问题进行系统的研究。For the DC bus voltage control problem of modular multilevel converters, there are many solutions: such as module wiring method, bridge arm energy estimation method, circulating current configuration method, negative sequence current balance method, etc. [10] -[17]. These methods are only proposed for a specific application, not universal and systematic, and have their own shortcomings and deficiencies. A good control strategy for modular multilevel converters has not been seen yet. For this reason, it is also necessary to conduct systematic research on the DC side capacitor voltage control problem of modular multilevel converters.

以下给出检索的相关文献The relevant literature retrieved is given below

[1]何湘宁,陈阿莲.多电平变换器的理论和应用技术.北京:机械工业出版社.2006[1] He Xiangning, Chen Alian. Theory and Application Technology of Multilevel Converter. Beijing: Mechanical Industry Press. 2006

[2]李永东,肖曦,高跃等.大容量多电平变换器——原理、控制、应用.北京:科学出版社.2005[2] Li Yongdong, Xiao Xi, Gao Yue, etc. Large-capacity multilevel converter - principle, control, application. Beijing: Science Press. 2005

[3]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2004.[3] Wang Zhaoan, Yang Jun, Liu Jinjun. Harmonic suppression and reactive power compensation [M]. Beijing: Machinery Industry Press, 2004.

[4]Hirofumi Akagi.“Classification,Terminology,and Application of the Modular MultilevelCascade Converter(MMCC),”IEEE Trans.Power Electron.,vol.26,no.11,pp.3119-31305,Jul.2011.[4] Hirofumi Akagi. "Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)," IEEE Trans. Power Electron., vol.26, no.11, pp.3119-31305, Jul.2011.

[5]Saeedifard,M.,Iravani,R.“Dynamic Performance of a Modular Multileve Back-to-BackHVDC System,”IEEE Trans.Power Delivery.,vol.25,no.4,pp.2903-2912,Jul.2010.[5] Saeedifard, M., Iravani, R. "Dynamic Performance of a Modular Multileve Back-to-BackHVDC System," IEEE Trans. Power Delivery., vol.25, no.4, pp.2903-2912, Jul. 2010.

[6]Hirofumi Akagi.“New Trends in Medium-Voltage Power Converters and MotorDrives,”Industrial Electronics(ISIE),2011 IEEE International Symposium.pp.5-14,2011.[6] Hirofumi Akagi. "New Trends in Medium-Voltage Power Converters and MotorDrives," Industrial Electronics (ISIE), 2011 IEEE International Symposium.pp.5-14, 2011.

[7]H.Mohammadi P.,M.Tavakoli Bina.“A Transformerless Medium-Voltage STATCOMTopology Based on Extended Modular Multilevel Converters,”IEEE Trans.Power Electron.,vol.26,no.5,pp.1534–1545,Jul.2011.[7] H.Mohammadi P., M.Tavakoli Bina. "A Transformerless Medium-Voltage STATCOMTopology Based on Extended Modular Multilevel Converters," IEEE Trans.Power Electron.,vol.26,no.5,pp.1534–1545, Jul. 2011.

[8]Xiaofeng Yang,Jianghong Li,Wenbao Fang,et al.“Research on Modular Multilevel ConverterBased STATCOM,”Industrial Electronics and Applications(ICIEA),2011 6th IEEE Conference,pp.2569-2574.2011.[8] Xiaofeng Yang, Jianghong Li, Wenbao Fang, et al. "Research on Modular Multilevel Converter Based STATCOM," Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference, pp.2569-2574.2011.

[9]B.Gemmell,J.Dorn,D.Retzmann,and D.Soerangr,“Prospects of multilevel VSCtechnologies for power transmission,”in Proc.Rec.IEEETDCE,Chicago,IL,2008,pp.1–16.[9] B. Gemmell, J. Dorn, D. Retzmann, and D. Soerangr, “Prospects of multilevel VSC technologies for power transmission,” in Proc. Rec. IEEE TDCE, Chicago, IL, 2008, pp.1–16.

[10]Qing rui Tu,Zheng Xu.“Impact of Sampling Frequency on Harmonic Distortion for ModularMultilevel Converter,”IEEE Trans.Power Delivery.,vol.26,no.1,pp.298–306,Ju1.2011.[10] Qing rui Tu, Zheng Xu. "Impact of Sampling Frequency on Harmonic Distortion for ModularMultilevel Converter," IEEE Trans.Power Delivery.,vol.26,no.1,pp.298–306,Ju1.2011.

[11]Chun Gao,Jianguo Jiang,Xingwu Yang,“A Novel Topology and Control Strategy ofModular Multilevel Converter(MMC),”Electrical and Control Engineering(ICECE),2011International Conference,pp.967-971,sept.2011.[11] Chun Gao, Jianguo Jiang, Xingwu Yang, "A Novel Topology and Control Strategy of Modular Multilevel Converter (MMC)," Electrical and Control Engineering (ICECE), 2011International Conference, pp.967-971, sept.2011.

[12]D.Soto-Sanchez,T.C.Gree.“Control of a modular multilevel converter-based HVDCtransmission system,”Power Electronics and Application(EPE 2011),Proceedings of the2011-14th European Conference,pp.1-10.Aug./Sept.2011.[12]D.Soto-Sanchez, T.C.Gree. "Control of a modular multilevel converter-based HVDC transmission system," Power Electronics and Application (EPE 2011), Proceedings of the2011-14th European Conference, pp.1-10.Aug. /Sept.2011.

[13]Makoto Hagiwara,Ryo Maeda,Hirofumi Akagi.“Control and Analysis of the ModularMultilevel Cascade Converter Based on Double-Star Chopper-Cells(MMCC-DSCC),”IEEETrans.Power Electron.,vol.26,no.6,pp.1649–1658,Ju1.2011.[13] Makoto Hagiwara, Ryo Maeda, Hirofumi Akagi. "Control and Analysis of the ModularMultilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC)," IEEETrans.Power Electron., vol.26, no.6, pp.1649–1658, Ju1.2011.

[14]Lanhua Zhang,Guangzhu Wang.“Voltage Balancing Control of a Novel Modular MultilevelConverter,”Electric Utility Deregulation and Restructuring and Power Technologies(DRPT),2011 4th International Conference,pp.109-114,Conf.2011.[14] Lanhua Zhang, Guangzhou Wang. "Voltage Balancing Control of a Novel Modular Multilevel Converter," Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th International Conference, pp.109-114, Conf.2011.

[15]Makoto Hagiwara,Hirofumi Akagi.“Control and Experiment of Pulsewidth-ModulatedModular Multilevel Converters,”IEEE Trans.Power Electron.,vol.24,no.7,pp.1737–1746,Jul.2009.[15] Makoto Hagiwara, Hirofumi Akagi. "Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters," IEEE Trans. Power Electron., vol.24, no.7, pp.1737–1746, Jul.2009.

[16]赵昕,赵成勇,李广凯.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,第31卷,第21期,48-55,2011.[16] Zhao Xin, Zhao Chengyong, Li Guangkai. Modular multilevel converter capacitor voltage balance control using carrier phase shift technology [J]. Chinese Journal of Electrical Engineering, Vol. 31, No. 21, 48-55, 2011 .

[17]郭捷,江道灼,周月宾.交直流侧电流分别可控的模块化多电平换流器控制方法.电力系统自动化,第35卷,第7期,42-47,2011.[17] Guo Jie, Jiang Daozhao, Zhou Yuebin. Control method of modular multilevel converter with controllable AC and DC side currents. Automation of Electric Power Systems, Volume 35, Issue 7, 42-47, 2011.

发明内容 Contents of the invention

本发明的目的在于提出一种基于环流解耦的模块化多电平变流器直流电容电压控制方法。具体地说就是利用模块化多电平变流器从电网吸收的有功电流控制总的直流母线电压,用环流中的直流成分使三相之间直流电压平衡,用环流中的解耦的基波成分控制每相上下两个桥臂直流母线的平衡,最后沿桥臂电流方向微调各个模块的输出电压实现桥臂内部各个模块之间直流电容电压的均衡。本发明的重点在环流解耦部控制部分。The purpose of the present invention is to propose a method for controlling the DC capacitor voltage of a modular multilevel converter based on circulating current decoupling. Specifically, it is to use the active current absorbed by the modular multilevel converter from the grid to control the total DC bus voltage, use the DC component in the circulating current to balance the DC voltage between the three phases, and use the decoupled fundamental wave in the circulating current The components control the balance of the DC bus bars of the upper and lower bridge arms of each phase, and finally fine-tune the output voltage of each module along the current direction of the bridge arm to achieve the balance of the DC capacitor voltage between the modules inside the bridge arm. The key point of the present invention is the control part of the circulation decoupling part.

为了达到上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种基于环流解耦的模块化多电平变流器直流电容电压控制方法,利用模块化多电平变流器从电网吸收的有功电流控制总的直流母线电压,用环流中的直流成分使三相之间直流电压平衡,用环流中的解耦的基波成分控制每相上下两个桥臂直流母线的平衡,最后沿桥臂电流方向微调各个模块的输出电压实现桥臂内部各个模块之间直流电容电压的均衡。A DC capacitor voltage control method for modular multilevel converters based on circulating current decoupling. The active current absorbed by the modular multilevel converters from the power grid is used to control the total DC bus voltage, and the DC component in the circulating current is used to make the The DC voltage balance between the three phases is controlled by the decoupled fundamental wave component in the circulating current to control the balance of the DC bus bars of the upper and lower bridge arms of each phase, and finally the output voltage of each module is fine-tuned along the current direction of the bridge arm to realize the connection between each module inside the bridge arm. Balance the DC capacitor voltage between them.

为了达到上述目的,本发明还可以采用以下技术方案:In order to achieve the above object, the present invention can also adopt the following technical solutions:

一种基于环流解耦的模块化多电平变流器直流电容电压控制方法,包括以下步骤:A method for controlling DC capacitor voltage of a modular multilevel converter based on circulating current decoupling, comprising the following steps:

步骤1,三相总的直流母线电压控制Step 1, three-phase total DC bus voltage control

步骤1.1,检测模块化多电平变流器三相所有斩波单元直流侧电压vapi、vani、vbpi、vbni、vcpi、vcni;其中i=1,2…N,N为自然数;求出A相上桥臂直流侧电压和用此方法依次求出A相下桥臂及B、C两相各桥臂的总直流侧电压 v c , na = Σ i = 1 N v ani , v c , pb = Σ i = 1 N v bpi , v c , nb = Σ i = 1 N v bni , v c , pc = Σ i = 1 N v cpi , v c , nc = Σ i = 1 N v cni , 求出各相上下两个桥臂的总直流侧电压vph,a=vc,pa+vc,na,vph,b=vc,pb+vc,nb,vph,c=vc,pc+vc,nc及三相平均电压最后求出各桥臂的模块平均直流侧电压 V cel , pa ‾ = v c , pa / N , V cel , na ‾ = v c , na / N , V cel , pb ‾ = v c , pb / N , V cel , nb ‾ = v c , nb / N , V cel , pc ‾ = v c , pc / N , V cel , nc ‾ = v c , nc / N . Step 1.1, detect the DC side voltages v api , vani , v bpi , v bni , v cpi , v cni of all three-phase chopper units of the modular multilevel converter; where i=1,2...N, where N is Natural number; calculate the DC side voltage and Use this method to sequentially calculate the total DC side voltage of the lower bridge arm of phase A and the bridge arms of the two phases B and C v c , na = Σ i = 1 N v ani , v c , pb = Σ i = 1 N v bpi , v c , nb = Σ i = 1 N v bni , v c , pc = Σ i = 1 N v cpi , v c , nc = Σ i = 1 N v cni , Find the total DC side voltage v ph, a =v c, pa +v c, na , v ph, b = v c, pb +v c, nb , v ph, c = v of the upper and lower two bridge arms of each phase c, pc +v c, nc and three-phase average voltage Finally, calculate the average DC side voltage of each bridge arm module V cell , pa ‾ = v c , pa / N , V cell , na ‾ = v c , na / N , V cell , pb ‾ = v c , pb / N , V cell , nb ‾ = v c , nb / N , V cell , pc ‾ = v c , pc / N , V cell , nc ‾ = v c , nc / N .

步骤1.2,将三相直流母线电压平均值与直流侧电压给定值送入单路减法器进行运算,运算结果送入单路比例积分调节器进行调整,其输出值作为模块化多电平变流器与交流电网交换的有功电流分量作为附加量注入到基于dq解耦控制的电流内环d轴上来控制整个模块化多电平变流器从电网吸收的有功功率。Step 1.2, the average value of the three-phase DC bus voltage and DC side voltage given value Send it to the single-way subtractor for calculation, and the calculation result is sent to the single-way proportional-integral regulator for adjustment, and its output value is used as the active current component exchanged between the modular multi-level converter and the AC grid As an additional amount injected into the d-axis of the current inner loop based on dq decoupling control to control the active power absorbed by the whole modular multilevel converter from the grid.

步骤2,合成环流中直流分量的指令Step 2, synthesize the instruction of the DC component in the circulating current

步骤2.1,利用步骤1.1检测量及vph,a,vph,b,vph,c做差,送入三个单路PI调节器生成

Figure BDA00001792644900052
Step 2.1, using the amount detected in step 1.1 And v ph, a , v ph, b , v ph, c do the difference, and send it to three single-channel PI regulators to generate
Figure BDA00001792644900052

步骤2.2,上步运算生成的作为环流中直流分量的指令。Step 2.2, generated by the previous operation As a command for the DC component in the circulating current.

步骤3,合成环流中交流分量的指令Step 3, synthesize the instruction of the AC component in the circulation

步骤3.1,检测三相电网电压vs,a,vs,b,vs,cStep 3.1, detecting three-phase grid voltage v s, a , v s,b , v s, c ;

步骤3.2,将三相电网电压进行三相静止坐标系到两相旋转坐标系的变换运算,将变换后d轴的数值送入单路低通滤波器进行滤波,滤波器的输出记为Vpd;然后将检测到的B、C两相电网电压交换位置,再进行三相静止坐标系到两相旋转坐标系的变换运算,运算后d轴和q轴数值分别送入两个单路低通滤波器进行滤波,滤波之后d轴和q轴的数值分别记为Vnd和Vnq;本步骤中的变换矩阵为:In step 3.2, the three-phase grid voltage is transformed from the three-phase stationary coordinate system to the two-phase rotating coordinate system, and the value of the transformed d-axis is sent to a single-channel low-pass filter for filtering, and the output of the filter is recorded as V pd ; Then exchange the detected B and C two-phase grid voltages, and then carry out the conversion operation from the three-phase stationary coordinate system to the two-phase rotating coordinate system. The filter performs filtering, and the numerical values of the d-axis and the q-axis are respectively denoted as V nd and V nq after filtering; the transformation matrix in this step is:

TT abcabc -- dqdq == 22 33 sinsin (( ωtωt )) sinsin (( ωtωt -- 22 ππ // 33 )) sinsin (( ωtωt ++ 22 ππ // 33 )) coscos (( ωtωt )) coscos (( ωtωt -- 22 ππ // 33 )) coscos (( ωtωt ++ 22 ππ // 33 ))

步骤3.3,将步骤3.2生成的Vpd,Vnd和Vnq代人下列关系式,生成各相网侧电压的感性和容性参考方向:In step 3.3, substitute the V pd , V nd and V nq generated in step 3.2 into the following relational formula to generate the inductive and capacitive reference directions of the grid side voltage of each phase:

vs,a,1=Vpd cosωt+Vnd cosωt+Vnq sinωtv s,a,1 =V pd cosωt+V nd cosωt+V nq sinωt

vs,a,-1=-Vpd cosωt-Vnd cosωt-Vnq sinωtv s,a,-1 =-V pd cosωt-V nd cosωt-V nq sinωt

vv sthe s ,, bb ,, 11 == 33 22 VV pdpd sinsin ωtωt -- 11 22 VV pdpd coscos ωtωt -- 33 ++ 11 22 VV ndnd coscos ωtωt -- 33 ++ 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, bb ,, -- 11 == -- 33 22 VV pdpd sinsin ωtωt ++ 11 22 VV pdpd coscos ωtωt ++ 33 ++ 11 22 VV ndnd coscos ωtωt ++ 33 ++ 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, cc ,, 11 == -- 33 22 VV pdpd sinsin ωtωt -- 11 22 VV pdpd coscos ωtωt ++ 33 -- 11 22 VV ndnd coscos ωtωt ++ 33 -- 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, cc ,, -- 11 == 33 22 VV pdpd sinsin ωtωt ++ 11 22 VV pdpd coscos ωtωt -- 33 -- 11 22 VV ndnd coscos ωtωt -- 33 -- 11 22 VV nqnq sinsin ωtωt

步骤3.4,将步骤3.3生成的vs,b,-1和vs,c,1代人下列关系式-vs,a=A(a)·vs,b,-1+B(a)·vs,c,1根据等式左右两边sinωt和cosωt的系数分别相等,求取系数A(a)和B(a);类似地,依据-vs,b=A(b)·vs,c,-1+B(b)·vs,a,1求取A(b),B(b),依据-vs,c=A(c)·vs,a,-1+B(c)·vs,b,1求取A(c),B(c);In step 3.4, the v s,b,-1 and v s,c,1 generation generated in step 3.3 are given the following relationship -v s,a =A(a) v s,b,-1 +B(a) · v s, c, 1 According to the coefficients of sinωt and cosωt on the left and right sides of the equation are equal, obtain the coefficients A(a) and B(a); similarly, according to -v s, b = A(b) v s , c,-1 +B(b) v s, a, 1 to obtain A(b), B(b), based on -v s,c = A(c) v s, a, -1 +B (c) v s, b, 1 to obtain A(c), B(c);

步骤3.5,将步骤1.1的数值vc,pa和vc,na,vc,pb和vc,nb,vc,pc和vc,nc分别送入三个单路减法器,减法器的输出再送入三个单路PI调节器,三个PI调节器的输出值分别定义为:ca,cb和ccIn step 3.5, the values v c, pa and v c, na , v c, pb and v c, nb , v c, pc and v c, nc of step 1.1 are sent to three single-way subtractors respectively, and the The output is sent to three single-channel PI regulators, and the output values of the three PI regulators are defined as: c a , c b and c c ;

步骤3.6,将步骤3.3,3.4,3.5生成的变量代人下列关系式:In step 3.6, substitute the variables generated in steps 3.3, 3.4, and 3.5 into the following relational formula:

ii acac ,, aa ** == cc aa ·&Center Dot; vv sthe s ,, aa ++ cc bb ·&Center Dot; BB (( bb )) ·&Center Dot; vv sthe s ,, aa ,, 11 ++ cc cc ·&Center Dot; AA (( cc )) ·&Center Dot; vv sthe s ,, aa ,, -- 11

ii acac ,, bb ** == cc aa ·&Center Dot; AA (( aa )) ·&Center Dot; vv sthe s ,, bb ,, -- 11 ++ cc bb ·&Center Dot; vv sthe s ,, bb ++ cc cc ·&Center Dot; BB (( cc )) ·&Center Dot; vv sthe s ,, bb ,, 11

ii acac ,, cc ** == cc aa ·&Center Dot; BB (( aa )) ·&Center Dot; vv sthe s ,, cc ,, 11 ++ cc bb ·&Center Dot; AA (( bb )) ·&Center Dot; vv sthe s ,, cc ,, -- 11 ++ cc cc ·&Center Dot; vv sthe s ,, cc

得到三相解耦的交流环流指令。Obtain the AC circulation command of three-phase decoupling.

步骤4,桥臂内部各个斩波单元间直流母线电压的均衡控制。Step 4, balance control of the DC bus voltage among the various chopper units inside the bridge arm.

步骤4.1,检测六个桥臂的实际电流ip,a,in,a,ip,b,in,b,ip,c,in,c,将A相上桥臂斩波模块的平均直流侧电压和A相上桥臂第一个模块的直流侧电压vap1送入单路减法器,单路减法器的输出送入比例调节器,调节器的输出值与上桥臂的电流ip,a相乘,得到A相上桥臂第一个模块交流电压的微调量

Figure BDA00001792644900065
同理,将A相下桥臂斩波模块的平均直流侧电压
Figure BDA00001792644900066
和A相下桥臂第一个模块的直流侧电压van1送入单路减法器,单路减法器的输出送入比例调节器,调节器的输出值与下桥臂电流的反相值-in,a相乘,得到A相下桥臂第一个模块交流电压的微调量
Figure BDA00001792644900067
沿用同样的思路,得到B、C相上下桥臂第一个模块的交流电压微调量
Figure BDA00001792644900068
Step 4.1, detect the actual current i p,a of the six bridge arms, i n,a , i p,b , i n,b , i p,c , in ,c , and switch the phase A upper bridge arm chopper module The average DC link voltage of and the DC side voltage v ap1 of the first module of the upper bridge arm of phase A are sent to the single-way subtractor, and the output of the single-way subtractor is sent to the proportional regulator, and the output value of the regulator is related to the current i p,a of the upper bridge arm Multiplied together to get the fine-tuning amount of the AC voltage of the first module of the upper bridge arm of phase A
Figure BDA00001792644900065
Similarly, the average DC side voltage of the lower bridge arm chopper module of phase A
Figure BDA00001792644900066
And the DC side voltage v an1 of the first module of the lower bridge arm of phase A is sent to the single-way subtractor, the output of the single-way subtractor is sent to the proportional regulator, and the output value of the regulator is the inverse value of the lower bridge arm current - Multiply in and a to get the fine-tuning value of the AC voltage of the first module of the lower bridge arm of phase A
Figure BDA00001792644900067
Following the same idea, get the AC voltage fine-tuning of the first module of the upper and lower bridge arms of the B and C phases
Figure BDA00001792644900068

步骤4.2,分别求出A相上桥臂第二到第N个模块微调电压指令

Figure BDA00001792644900069
A相下桥臂第二到第N个模块微调电压指令
Figure BDA000017926449000610
B相上桥臂第二到第N个模块微调电压指令B相下桥臂第二到第N个模块微调电压指令
Figure BDA000017926449000612
C相上桥臂第二到第N个模块微调电压指令
Figure BDA000017926449000613
C相下桥臂第二到第N个模块微调电压指令
Figure BDA00001792644900071
Step 4.2, respectively calculate the fine-tuning voltage commands of the second to Nth modules of the upper bridge arm of phase A
Figure BDA00001792644900069
Fine-tuning voltage command for the second to Nth modules of the lower bridge arm of phase A
Figure BDA000017926449000610
Fine-tuning voltage command for the second to Nth modules of the upper bridge arm of phase B Fine-tuning voltage command for the second to Nth modules of the lower bridge arm of phase B
Figure BDA000017926449000612
Fine-tuning voltage command for the second to Nth modules of the C-phase upper bridge arm
Figure BDA000017926449000613
Fine-tune the voltage command of the second to Nth modules of the C-phase lower bridge arm
Figure BDA00001792644900071

步骤5,斩波模块交流电压PWM调制波指令生成Step 5, the chopper module AC voltage PWM modulation wave instruction generation

步骤5.1,模块化多电平变流器输出电流的电流环控制系统对指令电流和输出电流进行闭环跟踪控制,其输出经过dq反变换之后得到三相输出指令电压PWM调制波

Figure BDA00001792644900072
模块化多电平变流器环流电流环控制系统把步骤2.2和3.5生成的直流环流指令和交流环流指令加和作为总的环流指令,并对总的环流指令电流和实际环流电流进行闭环跟踪控制,得到三相控制环流的指令电压PWM调制波
Figure BDA00001792644900074
Figure BDA00001792644900075
Step 5.1, the current loop control system of the output current of the modular multilevel converter performs closed-loop tracking control on the command current and the output current, and its output is subjected to dq inverse transformation to obtain a three-phase output command voltage PWM modulation wave
Figure BDA00001792644900072
and The circulating current loop control system of the modular multilevel converter takes the sum of the DC circulating current command and the AC circulating current command generated in steps 2.2 and 3.5 as the total circulating current command, and performs closed-loop tracking control on the total circulating current command current and the actual circulating current , to obtain the command voltage PWM modulation wave of the three-phase control circulation
Figure BDA00001792644900074
and
Figure BDA00001792644900075

步骤5.2,把A相上桥臂第一个H桥模块PWM调制波的微调指令

Figure BDA00001792644900076
与步骤5.1生成的
Figure BDA00001792644900077
按关系式
Figure BDA00001792644900079
运算,得到A相上桥臂第一个模块的PWM调制波;把A相下桥臂第一个H桥模块PWM调制波的微调指令
Figure BDA000017926449000710
与步骤5.1生成的
Figure BDA000017926449000711
Figure BDA000017926449000712
按关系式
Figure BDA000017926449000713
运算,得到A相下桥臂第一个模块的PWM调制波;以此类推,得到A相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449000715
B相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449000717
C相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449000718
Step 5.2, fine-tune the PWM modulation wave of the first H-bridge module of the upper bridge arm of phase A
Figure BDA00001792644900076
generated with step 5.1
Figure BDA00001792644900077
and By relation
Figure BDA00001792644900079
Calculate the PWM modulation wave of the first module of the upper bridge arm of the A phase; fine-tune the PWM modulation wave of the first H bridge module of the lower bridge arm of the A phase
Figure BDA000017926449000710
generated with step 5.1
Figure BDA000017926449000711
and
Figure BDA000017926449000712
By relation
Figure BDA000017926449000713
Operation, get the PWM modulation wave of the first module of the lower bridge arm of phase A; and so on, get the final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase A and
Figure BDA000017926449000715
The final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase B and
Figure BDA000017926449000717
The final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase C
Figure BDA000017926449000718
and

步骤5.3,用每相每个模块的调制波与依次移相的三角载波相比较,生成各个模块的开关信号。In step 5.3, the modulation wave of each module of each phase is compared with the phase-shifted triangular carrier wave in sequence to generate switching signals of each module.

本发明特征在于上述步骤中的四个控制环,其中步骤1为第一个控制环,目的在于控制整个模块化多电平变流器从电网吸收有功大小,以抵消整个变流器的功率损耗。步骤2通过自动调节生成模块化多电平变流器所需要的直流环流,来实现三相间直流母线电压的平衡。步骤3目的在于生成相互解耦的交流环流指令,重新分配每相中上下桥臂之间的有功功率,使得各相上下两个桥臂之间直流电压的均衡。步骤4目的在于微调每个桥臂中各模块的指令电压,重新配置各个模块吸收的有功功率,使得该模块实际吸收的有功功率刚好可以抵消这个模块自身的损耗,使得每个模块直流侧的实际电压等于额定值。The present invention is characterized by four control loops in the above steps, wherein step 1 is the first control loop, the purpose is to control the amount of active power absorbed by the entire modular multilevel converter from the grid, so as to offset the power loss of the entire converter . Step 2 achieves the balance of the DC bus voltage between the three phases by automatically adjusting the DC circulating current required to generate the modular multilevel converter. The purpose of step 3 is to generate mutually decoupled AC circulation commands, redistribute the active power between the upper and lower bridge arms of each phase, and balance the DC voltage between the upper and lower bridge arms of each phase. The purpose of step 4 is to fine-tune the command voltage of each module in each bridge arm, reconfigure the active power absorbed by each module, so that the actual active power absorbed by the module can just offset the loss of the module itself, so that the actual DC side of each module The voltage is equal to the rated value.

相对于现有技术,本发明具有以下有益效果:本发明中给出基于环流解耦的模块化多电平变流器上下桥臂间均衡控制方法,以及各个模块间均衡控制方法。为了验证控制方法的可行性,发明人在实验室中搭建了容量为5kVA,每个桥臂由两个斩波模块串联的小型实验样机。从实验波形中可以看出该控制方法能够很好地实现各相上下两个桥臂之间直流母线电压的均衡控制。再配合其他三个层次的电压控制环,各个模块的直流侧电压很好地实现了均衡并稳定在给定值。该控制策略在各种工况下甚至电网故障状态下都具有较好地表现。实验结果都证明了三相之间及相间模块的均衡控制,该方法正确、可靠,为工程应用提供了很好的参考价值。Compared with the prior art, the present invention has the following beneficial effects: the present invention provides a balanced control method between upper and lower bridge arms of a modular multilevel converter based on circulating current decoupling, and a balanced control method among various modules. In order to verify the feasibility of the control method, the inventor built a small experimental prototype with a capacity of 5kVA and two chopper modules connected in series for each bridge arm in the laboratory. It can be seen from the experimental waveform that this control method can well realize the balanced control of the DC bus voltage between the upper and lower bridge arms of each phase. Cooperating with the other three levels of voltage control loops, the DC side voltage of each module is well balanced and stabilized at a given value. The control strategy has a good performance under various working conditions and even under the fault state of the power grid. The experimental results have proved the balanced control between the three phases and the phase-to-phase modules. This method is correct and reliable, and provides a good reference value for engineering applications.

附图说明 Description of drawings

图1为模块化多电平变流器主电路结构图;Figure 1 is a structural diagram of the main circuit of a modular multilevel converter;

图2为模块化多电平变流器直流侧电容电压控制系统框图;图2(a)为总直流母线电压控制;图2(b)为三相之间均衡控制,k=a,b,c;图2(c)为每相上下两个桥臂之间直流母线电压控制,其中k-1=c,a,b;k=a,b,c;k+1=b,c,a;图2(d)为每个桥臂内部各模块之间直流母线电压控制,其中k=a,b,c;j=1,2…N。Figure 2 is a block diagram of the DC side capacitor voltage control system of a modular multilevel converter; Figure 2(a) is the total DC bus voltage control; Figure 2(b) is the balance control between the three phases, k=a,b, c; Figure 2(c) shows the DC bus voltage control between the upper and lower bridge arms of each phase, where k-1=c,a,b;k=a,b,c;k+1=b,c,a ; Figure 2(d) shows the DC bus voltage control between modules inside each bridge arm, where k=a,b,c;j=1,2...N.

图3为模块化多电平变流器电流控制系统框图;图3(a)为基于dq的输出电流控制;图3(b)为基于比例调节器的环流控制,k=a,b,c;各模块总的交流侧输出电压指令为: v p , kj * = E 2 N - v k * N - v z , k * 2 N + Δ v p , kj * ; v n , kj * = E 2 N - v k * N - v z , k * 2 N + Δ v n , kj * . Figure 3 is the block diagram of the current control system of the modular multilevel converter; Figure 3(a) is the output current control based on dq; Figure 3(b) is the circulating current control based on the proportional regulator, k=a,b,c ;The total AC side output voltage command of each module is: v p , kj * = E. 2 N - v k * N - v z , k * 2 N + Δ v p , kj * ; v no , kj * = E. 2 N - v k * N - v z , k * 2 N + Δ v no , kj * .

图4为PWM调制效果图。四个通道的波形依次为,CH1:A相上桥臂总的交流侧电压;CH2:上桥臂电流;CH3:下桥臂电流;CH4:总输出电流。Figure 4 is a PWM modulation effect diagram. The waveforms of the four channels are, CH1: total AC side voltage of the upper arm of phase A; CH2: upper arm current; CH3: lower arm current; CH4: total output current.

图5为总直流侧电压控制的实验验证图。四个通道的波形依次为,CH1:A相电网电压;CH2:A相输出电流;CH3:A相上桥臂总输出电压;CH4:A相上桥臂第一个模块直流侧电压。Figure 5 is the experimental verification diagram of the total DC side voltage control. The waveforms of the four channels are as follows: CH1: grid voltage of phase A; CH2: output current of phase A; CH3: total output voltage of the upper bridge arm of phase A; CH4: DC side voltage of the first module of the upper bridge arm of phase A.

图6为三相均衡控制的实验验证图。四个通道的波形依次为,CH1:A相电网电压;CH2:A相上桥臂第一个模块直流侧电压;CH3:B相上桥臂第一个模块直流侧电压;CH4:C相上桥臂第一个模块直流侧电压。Figure 6 is the experimental verification diagram of the three-phase balanced control. The waveforms of the four channels are as follows: CH1: grid voltage of phase A; CH2: DC side voltage of the first module of the upper bridge arm of phase A; CH3: DC side voltage of the first module of the upper bridge arm of phase B; CH4: upper phase C The DC side voltage of the first module of the bridge arm.

图7为每相内部上下两个桥臂之间均衡控制的实验验证图。四个通道的波形依次为,CH1:A相电网电压;CH2:A相输出电流;CH3:A相上桥臂第一个模块直流侧电压;CH4:A相下桥臂第一个模块直流侧电压。Figure 7 is an experimental verification diagram of the balance control between the upper and lower bridge arms inside each phase. The waveforms of the four channels are as follows: CH1: Phase A grid voltage; CH2: Phase A output current; CH3: DC side voltage of the first module of the upper bridge arm of Phase A; CH4: DC side of the first module of the lower bridge arm of Phase A Voltage.

图8为桥臂内部各模块之间均衡控制的实验验证图。四个通道的波形依次为,CH1:A相电网电压;CH2:A相输出电流;CH3:A相上桥臂第一个模块直流侧电压;CH4:A相上桥臂第二个模块直流侧电压。Figure 8 is an experimental verification diagram of the balance control among the modules inside the bridge arm. The waveforms of the four channels are as follows: CH1: Phase A grid voltage; CH2: Phase A output current; CH3: DC side voltage of the first module of the upper bridge arm of Phase A; CH4: DC side of the second module of the upper bridge arm of Phase A Voltage.

图9为模块化多电平变流器补偿对称无功负载的实验验证图。四个通道的波形依次为,CH1:A相电网电压;CH2:A相网侧电流;CH3:A相输出电流;CH4:A相上桥臂第一个模块直流侧电压。Fig. 9 is an experimental verification diagram of a modular multilevel converter compensating a symmetrical reactive load. The waveforms of the four channels are as follows: CH1: grid voltage of phase A; CH2: grid side current of phase A; CH3: output current of phase A; CH4: DC side voltage of the first module of the upper bridge arm of phase A.

图10为模块化多电平变流器补偿不对称非线性负载的实验验证图。图10(a)为三相不对称电网电压;图10(b)为三相非线性负载电流;图10(c)为三相输出电流;图10(d)为电网电压和直流侧电容电压。Fig. 10 is an experimental verification diagram of a modular multilevel converter compensating an asymmetric nonlinear load. Figure 10(a) is the three-phase asymmetric grid voltage; Figure 10(b) is the three-phase nonlinear load current; Figure 10(c) is the three-phase output current; Figure 10(d) is the grid voltage and DC side capacitor voltage .

具体实施方式 Detailed ways

参照图1,三相供电系统和三相负载之间连接模块化多电平变流器。混合多电平变流器的主电路结构由六个桥臂分别和六个连接电抗器串联,然后构成双星形连接。每个桥臂有两个斩波模块串联组成,模块直流侧并联有电解电容器,开关器件采用IGBT或者GTO等大功率全控器件。连接电抗器参数的选择主要取决于H桥模块的开关频率。Referring to Fig. 1, a modular multilevel converter is connected between the three-phase power supply system and the three-phase load. The main circuit structure of the hybrid multilevel converter consists of six bridge arms connected in series with six connected reactors respectively, and then forming a double star connection. Each bridge arm is composed of two chopper modules connected in series, the DC side of the module is connected in parallel with an electrolytic capacitor, and the switching device adopts a high-power full-control device such as IGBT or GTO. The selection of the parameters of the connected reactor mainly depends on the switching frequency of the H-bridge module.

每个桥臂中串联模块数没有上限,取值决定于供电系统电压等级。为了叙述方便,本发明中,以两个模块串联为例进行详细说明。电网三相电压记为us,即:usa、usb、usc;电源三相电流记为is,即:isa、isb、isc;串联斩波模块12个单元直流侧电压分别记为vap1、vap2、van1、van2、vbp1、vbp2、vbn1、vbn2、vcp1、vcp2、vcn1、vcn2;串联H桥多电平并网逆变器输出的三相补偿电流记为ic,即:ica、icb、icc;三相负载电流记为iL,即:ika、ilb、ilcThere is no upper limit to the number of modules connected in series in each bridge arm, and the value depends on the voltage level of the power supply system. For the convenience of description, in the present invention, two modules are connected in series as an example for detailed description. The three-phase voltage of the power grid is recorded as u s , namely: u sa , usb , us sc ; the three-phase current of the power supply is recorded as is s , namely: isa , isb , and i sc ; the DC side voltage of 12 units of the chopper module in series Recorded as v ap1 , v ap2 , v an1 , v an2 , v bp1 , v bp2 , v bn1 , v bn2 , v cp1 , v cp2 , v cn1 , v cn2 ; H-bridge multi-level grid-connected inverter in series The output three-phase compensation current is recorded as i c , namely: i ca , i cb , i cc ; the three-phase load current is recorded as i L , namely: i ka , i lb , i lc .

参照图2,本发明中的模块化多电平变流器直流母线电压控制方法,包括四个控制环,其中步骤1为第一个控制环,即总的AC/DC能量交换,步骤2为第二个控制环,步骤3为第三个控制环,步骤4为第四个控制环,具体步骤如下:Referring to Fig. 2, the DC bus voltage control method of the modular multilevel converter in the present invention includes four control loops, wherein step 1 is the first control loop, that is, the total AC/DC energy exchange, and step 2 is The second control loop, step 3 is the third control loop, step 4 is the fourth control loop, the specific steps are as follows:

步骤1,三相总的直流母线电压控制Step 1, three-phase total DC bus voltage control

步骤1.1,检测模块化多电平变流器三相所有斩波单元直流侧电压vapi、vani、vbpi、vbni、vcpi、vcni;其中i=1,2…N,N为自然数;求出A相上桥臂直流侧电压和

Figure BDA00001792644900101
用此方法依次求出A相下桥臂及B、C两相各桥臂的总直流侧电压 v c , na = Σ i = 1 N v ani , v c , pb = Σ i = 1 N v bpi , v c , nb = Σ i = 1 N v bni , v c , pc = Σ i = 1 N v cpi , v c , nc = Σ i = 1 N v cni , 求出各相上下两个桥臂的总直流侧电压vph,a=vc,pa+vc,na,vph,b=vc,pb+vc,nb,vph,c=vc,pc+vc,nc及三相平均电压
Figure BDA00001792644900107
最后求出各桥臂的模块平均直流侧电压 V cel , pa ‾ = v c , pa / N , V cel , na ‾ = v c , na / N , V cel , pb ‾ = v c , pb / N , V cel , nb ‾ = v c , nb / N , V cel , pc ‾ = v c , pc / N , V cel , nc ‾ = v c , nc / N . Step 1.1, detect the DC side voltages v api , vani , v bpi , v bni , v cpi , v cni of all three-phase chopper units of the modular multilevel converter; where i=1,2...N, where N is Natural number; calculate the DC side voltage and
Figure BDA00001792644900101
Use this method to sequentially calculate the total DC side voltage of the lower bridge arm of phase A and the bridge arms of the two phases B and C v c , na = Σ i = 1 N v ani , v c , pb = Σ i = 1 N v bpi , v c , nb = Σ i = 1 N v bni , v c , pc = Σ i = 1 N v cpi , v c , nc = Σ i = 1 N v cni , Find the total DC side voltage v ph, a =v c, pa +v c, na , v ph, b = v c, pb +v c, nb , v ph, c = v of the upper and lower two bridge arms of each phase c, pc +v c, nc and three-phase average voltage
Figure BDA00001792644900107
Finally, calculate the average DC side voltage of each bridge arm module V cell , pa ‾ = v c , pa / N , V cell , na ‾ = v c , na / N , V cell , pb ‾ = v c , pb / N , V cell , nb ‾ = v c , nb / N , V cell , pc ‾ = v c , pc / N , V cell , nc ‾ = v c , nc / N .

步骤1.2,将三相直流母线电压平均值

Figure BDA000017926449001014
与直流侧电压给定值
Figure BDA000017926449001015
送入单路减法器进行运算,运算结果送入单路比例积分调节器进行调整,其输出值作为模块化多电平变流器与交流电网交换的有功电流分量作为附加量注入到基于dq解耦控制的电流内环d轴上来控制整个模块化多电平变流器从电网吸收的有功功率。Step 1.2, the average value of the three-phase DC bus voltage
Figure BDA000017926449001014
and DC side voltage given value
Figure BDA000017926449001015
Send it to the single-way subtractor for calculation, and the calculation result is sent to the single-way proportional-integral regulator for adjustment, and its output value is used as the active current component exchanged between the modular multi-level converter and the AC grid As an additional amount injected into the d-axis of the current inner loop based on dq decoupling control to control the active power absorbed by the whole modular multilevel converter from the grid.

步骤2,合成环流中直流分量的指令Step 2, synthesize the instruction of the DC component in the circulating current

步骤2.1,利用步骤1.1检测量

Figure BDA00001792644900111
分别与vph,a,vph,b,vph,c做差,送入三个单路PI调节器分别生成
Figure BDA00001792644900112
Step 2.1, using the amount detected in step 1.1
Figure BDA00001792644900111
Make difference with v ph, a , v ph, b , v ph, c respectively, and send them to three single-channel PI regulators to generate
Figure BDA00001792644900112

步骤2.2,上步运算生成的

Figure BDA00001792644900113
作为环流中直流分量的指令。Step 2.2, generated by the previous operation
Figure BDA00001792644900113
As a command for the DC component in the circulating current.

步骤3,合成环流中交流分量的指令Step 3, synthesize the instruction of the AC component in the circulation

步骤3.1,检测三相电网电压vs,a,vs,b,vs,cStep 3.1, detecting three-phase grid voltages v s,a , v s,b , v s,c .

步骤3.2,将三相电网电压进行三相静止坐标系到两相旋转坐标系的变换运算,将变换后d轴的数值送入单路低通滤波器进行滤波,滤波器的输出记为Vpd;然后将检测到的B、C两相电网电压交换位置,再进行三相静止坐标系到两相旋转坐标系的变换运算,运算后d轴和q轴数值分别送入两个单路低通滤波器进行滤波,滤波之后d轴和q轴的数值分别记为Vnd和Vnq。本步骤中的变换矩阵为:In step 3.2, the three-phase grid voltage is transformed from the three-phase stationary coordinate system to the two-phase rotating coordinate system, and the value of the transformed d-axis is sent to a single-channel low-pass filter for filtering, and the output of the filter is recorded as V pd ; Then exchange the detected B and C two-phase grid voltages, and then carry out the transformation operation from the three-phase stationary coordinate system to the two-phase rotating coordinate system. The filter performs filtering, and the values of the d-axis and the q-axis after filtering are denoted as V nd and V nq respectively. The transformation matrix in this step is:

TT abcabc -- dqdq == 22 33 sinsin (( ωtωt )) sinsin (( ωtωt -- 22 ππ // 33 )) sinsin (( ωtωt ++ 22 ππ // 33 )) coscos (( ωtωt )) coscos (( ωtωt -- 22 ππ // 33 )) coscos (( ωtωt ++ 22 ππ // 33 ))

步骤3.3,将步骤3.2生成的Vpd,Vnd和Vnq代人下列关系式,生成各相网侧电压的感性和容性参考方向:In step 3.3, substitute the V pd , V nd and V nq generated in step 3.2 into the following relational formula to generate the inductive and capacitive reference directions of the grid side voltage of each phase:

vs,a,1=Vpd cosωt+Vnd cosωt+Vnq sinωtv s,a,1 =V pd cosωt+V nd cosωt+V nq sinωt

vs,a,-1=-Vpd cosωt-Vnd cosωt-Vnq sinωtv s,a,-1 =-V pd cosωt-V nd cosωt-V nq sinωt

vv sthe s ,, bb ,, 11 == 33 22 VV pdpd sinsin ωtωt -- 11 22 VV pdpd coscos ωtωt -- 33 ++ 11 22 VV ndnd coscos ωtωt -- 33 ++ 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, bb ,, -- 11 == -- 33 22 VV pdpd sinsin ωtωt ++ 11 22 VV pdpd coscos ωtωt ++ 33 ++ 11 22 VV ndnd coscos ωtωt ++ 33 ++ 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, cc ,, 11 == -- 33 22 VV pdpd sinsin ωtωt -- 11 22 VV pdpd coscos ωtωt ++ 33 -- 11 22 VV ndnd coscos ωtωt ++ 33 -- 11 22 VV nqnq sinsin ωtωt

vv sthe s ,, cc ,, -- 11 == 33 22 VV pdpd sinsin ωtωt ++ 11 22 VV pdpd coscos ωtωt -- 33 -- 11 22 VV ndnd coscos ωtωt -- 33 -- 11 22 VV nqnq sinsin ωtωt

步骤3.4,将步骤3.3生成的vs,b,-1和vs,c,1代人下列关系式Step 3.4, the generation of v s,b,-1 and v s,c,1 generated in step 3.3 is the following relationship

-vs,a=A(a)·vs,b,-1+B(a)·vs,c,1根据等式左右两边sinωt和cosωt的系数分别相等,求取系数A(a)和B(a);类似地,依据-vs,b=A(b)·vs,c,-1+B(b)·vs,a,1求取A(b),B(b),依据-vs,c=A(c)·vs,a,-1+B(c)·vs,b,1求取A(c),B(c);-v s, a =A(a) v s,b,-1 +B(a) v s,c,1 The coefficients of sinωt and cosωt on the left and right sides of the equation are respectively equal, and the coefficient A(a) is obtained and B(a); similarly , A(b) , B(b ), calculate A(c) , B(c) according to -v s, c = A(c) v s , a, -1 +B(c) v s, b, 1;

步骤3.5,将步骤1.1的数值vc,pa和vc,na,vc,pb和vc,nb,vc,pc和vc,nc分别送入三个单路减法器,减法器的输出再送入三个单路PI调节器,三个PI调节器的输出值分别定义为:ca,cb和ccIn step 3.5, the values v c, pa and v c, na , v c, pb and v c, nb , v c, pc and v c, nc of step 1.1 are sent to three single-way subtractors respectively, and the The output is sent to three single-channel PI regulators, and the output values of the three PI regulators are defined as: c a , c b and c c .

步骤3.6,将步骤3.3,3.4,3.5生成的变量代人下列关系式:In step 3.6, substitute the variables generated in steps 3.3, 3.4, and 3.5 into the following relational formula:

ii acac ,, aa ** == cc aa ·· vv sthe s ,, aa ++ cc bb ·· BB (( bb )) ·· vv sthe s ,, aa ,, 11 ++ cc cc ·· AA (( cc )) ·· vv sthe s ,, aa ,, -- 11

ii acac ,, bb ** == cc aa ·· AA (( aa )) ·&Center Dot; vv sthe s ,, bb ,, -- 11 ++ cc bb ·· vv sthe s ,, bb ++ cc cc ·· BB (( cc )) ·· vv sthe s ,, bb ,, 11

ii acac ,, cc ** == cc aa ·· BB (( aa )) ·· vv sthe s ,, cc ,, 11 ++ cc bb ·· AA (( bb )) ·&Center Dot; vv sthe s ,, cc ,, -- 11 ++ cc cc ·&Center Dot; vv sthe s ,, cc

得到三相解耦的交流环流指令。Obtain the AC circulation command of three-phase decoupling.

步骤4,桥臂内部各个斩波单元间直流母线电压的均衡控制。Step 4, balance control of the DC bus voltage among the various chopper units inside the bridge arm.

步骤4.1,检测六个桥臂的实际电流ip,a,in,a,ip,b,in,b,ip,c,in,c,将A相上桥臂斩波模块的平均直流侧电压

Figure BDA00001792644900124
和A相上桥臂第一个模块的直流侧电压vap1送入单路减法器,单路减法器的输出送入比例调节器,比例调节器的输出值与上桥臂的电流ip,a相乘,得到A相上桥臂第一个模块交流电压的微调量
Figure BDA00001792644900125
同理,将A相下桥臂斩波模块的平均直流侧电压
Figure BDA00001792644900126
和A相下桥臂第一个模块的直流侧电压van1送入单路减法器,单路减法器的输出送入比例调节器,比例调节器的输出值与下桥臂电流的反相值-in,a相乘,得到A相下桥臂第一个模块交流电压的微调量沿用同样的思路,得到B、C相上下桥臂第一个模块的交流电压微调量
Figure BDA00001792644900128
Step 4.1, detect the actual current i p,a of the six bridge arms, i n,a , i p,b , i n,b , i p,c , in ,c , and switch the phase A upper bridge arm chopper module The average DC link voltage of
Figure BDA00001792644900124
and the DC side voltage v ap1 of the first module of the upper bridge arm of phase A are sent to the single-way subtractor, and the output of the single-way subtractor is sent to the proportional regulator, and the output value of the proportional regulator is related to the current i p of the upper bridge arm, Multiply by a to get the fine-tuning amount of the AC voltage of the first module of the upper bridge arm of phase A
Figure BDA00001792644900125
Similarly, the average DC side voltage of the lower bridge arm chopper module of phase A
Figure BDA00001792644900126
And the DC side voltage v an1 of the first module of the lower bridge arm of phase A is sent to the single-way subtractor, and the output of the single-way subtractor is sent to the proportional regulator, and the output value of the proportional regulator is the inverse value of the lower bridge arm current -i n, multiplied by a to get the fine-tuning value of the AC voltage of the first module of the lower bridge arm of phase A Following the same idea, get the AC voltage fine-tuning of the first module of the upper and lower bridge arms of the B and C phases
Figure BDA00001792644900128

步骤4.2,分别求出A相上桥臂第二到第N个模块微调电压指令

Figure BDA00001792644900129
A相下桥臂第二到第N个模块微调电压指令
Figure BDA000017926449001210
B相上桥臂第二到第N个模块微调电压指令B相下桥臂第二到第N个模块微调电压指令
Figure BDA000017926449001212
C相上桥臂第二到第N个模块微调电压指令
Figure BDA00001792644900131
C相下桥臂第二到第N个模块微调电压指令
Figure BDA00001792644900132
Step 4.2, respectively calculate the fine-tuning voltage commands of the second to Nth modules of the upper bridge arm of phase A
Figure BDA00001792644900129
Fine-tuning voltage command for the second to Nth modules of the lower bridge arm of phase A
Figure BDA000017926449001210
Fine-tuning voltage command for the second to Nth modules of the upper bridge arm of phase B Fine-tuning voltage command for the second to Nth modules of the lower bridge arm of phase B
Figure BDA000017926449001212
Fine-tuning voltage command for the second to Nth modules of the C-phase upper bridge arm
Figure BDA00001792644900131
Fine-tune the voltage command of the second to Nth modules of the C-phase lower bridge arm
Figure BDA00001792644900132

步骤5,斩波模块交流电压PWM调制波指令生成。Step 5, the chopper module generates an AC voltage PWM modulation wave command.

步骤5.1,模块化多电平变流器输出电流的电流环控制系统对指令电流和输出电流进行闭环跟踪控制,其输出经过dq反变换之后得到三相输出指令电压PWM调制波

Figure BDA00001792644900134
模块化多电平变流器环流电流环控制系统把步骤2.2和3.5生成的直流环流指令和交流环流指令加和作为总的环流指令,并对总的环流指令电流和实际环流电流进行闭环跟踪控制,得到三相控制环流的指令电压PWM调制波
Figure BDA00001792644900135
Figure BDA00001792644900136
Step 5.1, the current loop control system of the output current of the modular multilevel converter performs closed-loop tracking control on the command current and the output current, and its output is subjected to dq inverse transformation to obtain a three-phase output command voltage PWM modulation wave and
Figure BDA00001792644900134
The circulating current loop control system of the modular multilevel converter takes the sum of the DC circulating current command and the AC circulating current command generated in steps 2.2 and 3.5 as the total circulating current command, and performs closed-loop tracking control on the total circulating current command current and the actual circulating current , to obtain the command voltage PWM modulation wave of the three-phase control circulation
Figure BDA00001792644900135
and
Figure BDA00001792644900136

步骤5.2,把A相上桥臂第一个H桥模块PWM调制波的微调指令

Figure BDA00001792644900137
与步骤5.1生成的
Figure BDA00001792644900138
Figure BDA00001792644900139
按关系式
Figure BDA000017926449001310
运算,得到A相上桥臂第一个模块的PWM调制波;把A相下桥臂第一个H桥模块PWM调制波的微调指令与步骤5.1生成的
Figure BDA000017926449001313
按关系式
Figure BDA000017926449001314
运算,得到A相下桥臂第一个模块的PWM调制波。以此类推,得到A相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449001315
B相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449001317
Figure BDA000017926449001318
C相上下桥臂中剩余模块的最终PWM调制波
Figure BDA000017926449001319
Figure BDA000017926449001320
Step 5.2, fine-tune the PWM modulation wave of the first H-bridge module of the upper bridge arm of phase A
Figure BDA00001792644900137
generated with step 5.1
Figure BDA00001792644900138
and
Figure BDA00001792644900139
By relation
Figure BDA000017926449001310
Calculate the PWM modulation wave of the first module of the upper bridge arm of the A phase; fine-tune the PWM modulation wave of the first H bridge module of the lower bridge arm of the A phase generated with step 5.1 and
Figure BDA000017926449001313
By relation
Figure BDA000017926449001314
Calculate and obtain the PWM modulation wave of the first module of the lower bridge arm of phase A. By analogy, the final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase A is obtained
Figure BDA000017926449001315
and The final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase B
Figure BDA000017926449001317
and
Figure BDA000017926449001318
The final PWM modulation wave of the remaining modules in the upper and lower bridge arms of phase C
Figure BDA000017926449001319
and
Figure BDA000017926449001320

步骤5.3,用每相每个模块的调制波与依次移相的三角载波相比较,生成各个模块的开关信号。In step 5.3, the modulation wave of each module of each phase is compared with the phase-shifted triangular carrier wave in sequence to generate switching signals of each module.

步骤1为第一个控制环,目的在于控制整个模块化多电平变流器从电网吸收有功,以抵消整个并网逆变器产生的损耗。步骤2通过计算来合成环流中的直流分量指令,来调节三相之间直流母线电压的平衡。步骤3通过计算合成相互解耦的环流中的交流分量指令,实现各相上下桥臂之间直流母线电压的平衡。步骤4通过微调桥臂内部各个模块的输出电压指令,重新分配各个模块吸收的有功功率,使得该模块实际吸收的有功功率刚好可以抵消这个模块自身的损耗,从而使每个模块在额定的指令电压值下稳定运行。步骤5合成各个模块最终的输出电压指令,用于PWM调制。Step 1 is the first control loop, the purpose is to control the entire modular multilevel converter to absorb active power from the grid to offset the loss generated by the entire grid-connected inverter. Step 2 synthesizes the DC component command in the circulating current through calculation to adjust the balance of the DC bus voltage among the three phases. Step 3 realizes the DC bus voltage balance between the upper and lower bridge arms of each phase by calculating and synthesizing the AC component commands in the mutually decoupled circulating currents. Step 4. By fine-tuning the output voltage command of each module inside the bridge arm, redistribute the active power absorbed by each module, so that the actual active power absorbed by the module can just offset the loss of the module itself, so that each module is at the rated command voltage stable operation at the value. Step 5 synthesizes the final output voltage commands of each module for PWM modulation.

为了验证控制方法的可行性,发明人在实验室中搭建了容量为5kVA,每个桥臂由两个斩波模块串联的小型实验样机。图4、5、6、7、8、9、10给出了采用本发明中控制方法的实验波形,分别为PWM调制效果,总直流侧电压,三相之间均衡控制,每相内部上下两个桥臂之间直流母线电压均衡控制,每个桥臂内部各模块之间直流母线电压均衡控制,补偿三相对称负载时的补偿效果,在电网故障情况下补偿三相非线性负载的补偿效果。从实验波形中可以看出该控制方法能够很好地实现各相上下两个桥臂之间直流母线电压的均衡控制。再配合其他三个层次的电压控制环,各个模块的直流侧电压很好地实现了均衡并稳定在给定值。该控制策略在各种工况下甚至电网故障状态下都具有较好地表现。In order to verify the feasibility of the control method, the inventor built a small experimental prototype with a capacity of 5kVA and two chopper modules connected in series for each bridge arm in the laboratory. Fig. 4, 5, 6, 7, 8, 9, 10 have provided and adopted the experimental wave form of control method in the present invention, are PWM modulation effect respectively, total direct-current side voltage, balanced control between three phases, each phase interior two up and down DC bus voltage balance control between bridge arms, DC bus voltage balance control between modules inside each bridge arm, compensation effect when compensating three-phase symmetrical loads, and compensation effect when compensating three-phase nonlinear loads in the case of grid failure . It can be seen from the experimental waveform that this control method can well realize the balanced control of the DC bus voltage between the upper and lower bridge arms of each phase. Cooperating with the other three levels of voltage control loops, the DC side voltage of each module is well balanced and stabilized at a given value. The control strategy has a good performance under various working conditions and even under the fault state of the power grid.

Claims (6)

1. modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero; It is characterized in that; The total DC bus-bar voltage of active current control that utilizes the modular multilevel current transformer to absorb from electrical network; Make dc-voltage balance between the three-phase with the flip-flop in the circulation; With the balance of two brachium pontis dc buss about the every phase of first-harmonic Composition Control of the decoupling zero in the circulation, realize the equilibrium of dc capacitor voltage between inner each module of brachium pontis at last along the output voltage of each module of brachium pontis sense of current fine setting.
2. the modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero is characterized in that, may further comprise the steps:
Step 1, the DC bus-bar voltage control that three-phase is total
Step 1.1, all copped wave unit dc voltage v of many level current transformers of detection moduleization three-phase Api, v Ani, v Bpi, v Bni, v Cpi, v CniI=1 wherein, 2 ... N, N are natural number; Obtain A go up mutually the brachium pontis dc voltage with
Figure FDA00001792644800011
A descends brachium pontis and B, C two total dc voltage of each brachium pontis mutually mutually v c , Pb = Σ i = 1 N v Bpi , v c , Nb = Σ i = 1 N v Bni , v c , Pc = Σ i = 1 N v Cpi , v c , Nc = Σ i = 1 N v Cni , Obtain each phase total dc voltage v of two brachium pontis up and down Ph, a=v C, pa+ v C, na, v Ph, b=v C, pb+ v C, nb, v Ph, c=v C, pc+ v C, ncAnd three-phase average voltage
Figure FDA00001792644800017
Obtain the average dc voltage of module of each brachium pontis at last V Cel , Pa ‾ = v c , Pa / N , V Cel , Na ‾ = v c , Na / N , V Cel , Pb ‾ = v c , Pb / N , V Cel , Nb ‾ = v c , Nb / N , V Cel , Pc ‾ = v c , Pc / N , V Cel , Nc ‾ = v c , Nc / N ;
Step 1.2; Three-phase dc busbar voltage mean value
Figure FDA000017926448000114
and dc voltage set-point
Figure FDA000017926448000115
are sent into the single channel subtracter carry out computing; Operation result is sent into the single channel proportional and integral controller and is adjusted, and its output valve is injected into as additional amount as the active current component
Figure FDA000017926448000116
of modular multilevel current transformer and AC network exchange and controls the active power that whole modular multilevel current transformer absorbs from electrical network on the current inner loop d axle based on dq decoupling zero control.
3. a kind of modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero according to claim 2 is characterized in that said control method is further comprising the steps of:
Step 2, the instruction of DC component in the synthetic circulation
Step 2.1 is utilized step 1.1 detection limit
Figure FDA00001792644800021
Respectively with v Ph, a, v Ph, b, v Ph, cIt is poor to do, and sends into three single channel pi regulators and generates respectively
Figure FDA00001792644800022
Step 2.2, on go on foot
Figure FDA00001792644800023
that computing generates instruction as DC component in the circulation.
4. a kind of modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero according to claim 3 is characterized in that said control method is further comprising the steps of:
Step 3, the instruction of alternating current component in the synthetic circulation
Step 3.1 detects three phase network voltage v S, a, v S, b, v S, c
Step 3.2 is carried out the transform operation that the three phase static coordinate is tied to two cordic phase rotators system with three phase network voltage, the numerical value of d axle after the conversion is sent into the single channel low pass filter carry out filtering, and the output of filter is designated as V PdThen with detected B, C two phase line voltage switches; Carry out the three phase static coordinate again and be tied to the transform operation that two cordic phase rotators are; D axle and q axis values are sent into two single channel low pass filters respectively and are carried out filtering after the computing, and the numerical value of d axle and q axle is designated as V respectively after the filtering NdAnd V NqTransformation matrix in this step is:
T abc - dq = 2 3 sin ( ωt ) sin ( ωt - 2 π / 3 ) sin ( ωt + 2 π / 3 ) cos ( ωt ) cos ( ωt - 2 π / 3 ) cos ( ωt + 2 π / 3 )
Step 3.3 is with the V of step 3.2 generation Pd, V NdAnd V NqFor people's following relationship formula, generate the perception and the capacitive reference direction of each phase voltage on line side:
v s,a,1=V pd?cosωt+V nd?cosωt+V nq?sinωt
v s,a,-1=-V pd?cosωt-V nd?cosωt-V nq?sinωt
v s , b , 1 = 3 2 V pd sin ωt - 1 2 V pd cos ωt - 3 + 1 2 V nd cos ωt - 3 + 1 2 V nq sin ωt
v s , b , - 1 = - 3 2 V pd sin ωt + 1 2 V pd cos ωt + 3 + 1 2 V nd cos ωt + 3 + 1 2 V nq sin ωt
v s , c , 1 = - 3 2 V pd sin ωt - 1 2 V pd cos ωt + 3 - 1 2 V nd cos ωt + 3 - 1 2 V nq sin ωt
v s , c , - 1 = 3 2 V pd sin ωt + 1 2 V pd cos ωt - 3 - 1 2 V nd cos ωt - 3 - 1 2 V nq sin ωt
Step 3.4 is with the v of step 3.3 generation S, b ,-1And v S, c, 1For people's following relationship formula-v S, a=A (a) v S, b ,-1+ B (a) v S, c, 1Coefficient according to equality the right and left sin ω t and cos ω t equates respectively, asks for coefficient A (a) and B (a); Similarly, foundation-v S, b=A (b) v S, c ,-1+ B (b) v S, a, 1Ask for A (b), B (b), foundation-v S, c=A (c) v S, a ,-1+ B (c) v S, b, 1Ask for A (c), B (c);
Step 3.5 is with the numerical value v of step 1.1 C, paAnd v C, na, v C, pbAnd v C, nb, v C, pcAnd v C, ncSend into three single channel subtracters respectively, three single channel pi regulators are sent in the output of subtracter again, and the output valve of three pi regulators is defined as respectively: c a, c bAnd c c
Step 3.6, with step 3.3,3.4,3.5 variablees that generate are for people's following relationship formula:
i ac , a * = c a · v s , a + c b · B ( b ) · v s , a , 1 + c c · A ( c ) · v s , a , - 1
i ac , b * = c a · A ( a ) · v s , b , - 1 + c b · v s , b + c c · B ( c ) · v s , b , 1
i ac , c * = c a · B ( a ) · v s , c , 1 + c b · A ( b ) · v s , c , - 1 + c c · v s , c
Obtain the interchange circulation instruction of three-phase decoupling zero.
5. a kind of modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero according to claim 4 is characterized in that said control method is further comprising the steps of:
Step 4, the equilibrium control of DC bus-bar voltage between inner each copped wave unit of brachium pontis
Step 4.1, the actual current i of six brachium pontis of detection P, a, i N, a, i P, b, i N, b, i P, c, i N, c, A is gone up mutually the average dc voltage of brachium pontis copped wave module
Figure FDA00001792644800034
Go up the dc voltage v of first module of brachium pontis mutually with A Ap1Send into the single channel subtracter, proportional controller is sent in the output of single channel subtracter, the output valve of proportional controller and the current i of last brachium pontis P, aMultiply each other, obtain the amount trimmed that A goes up first module alternating voltage of brachium pontis mutually
Figure FDA00001792644800035
A is descended mutually the average dc voltage of brachium pontis copped wave module
Figure FDA00001792644800036
Descend the dc voltage v of first module of brachium pontis mutually with A An1Send into the single channel subtracter, proportional controller is sent in the output of single channel subtracter, the inverse value-i of the output valve of proportional controller and following brachium pontis electric current N, aMultiply each other, obtain the amount trimmed that A descends first module alternating voltage of brachium pontis mutually
Figure FDA00001792644800037
Along using the same method, obtain the alternating voltage amount trimmed of B, first module of C phase upper and lower bridge arm
Figure FDA00001792644800038
Step 4.2, obtain respectively A go up mutually brachium pontis second to N module trim voltage instruct A descend mutually brachium pontis second to N module trim voltage instruct
Figure FDA000017926448000310
B go up mutually brachium pontis second to N module trim voltage instruct
Figure FDA000017926448000311
B descend mutually brachium pontis second to N module trim voltage instruct
Figure FDA00001792644800041
C go up mutually brachium pontis second to N module trim voltage instruct C mutually the brachium pontis of Xiaing second to N Ge module trim voltage Zhi Linged
Figure FDA00001792644800043
6. a kind of modular multilevel current transformer dc capacitor voltage control method based on the circulation decoupling zero according to claim 5 is characterized in that said control method is further comprising the steps of:
Step 5, the instruction of copped wave module alternating voltage PWM modulating wave generates
Step 5.1; The current loop control system of modular multilevel current transformer output current carries out the closed loop tracking Control to instruction current and output current; Its output through the dc loop-current instruction that obtains three-phase output order voltage pwm modulating wave
Figure FDA00001792644800044
and
Figure FDA00001792644800045
modular multilevel current transformer loop current ring control system after the dq inverse transformation and generate step 2.2 and 3.5 with exchange circulation and instruct and add and instruct as total circulation; And total circulation instruction current and actual loop current carried out the closed loop tracking Control, obtain command voltage PWM modulating wave
Figure FDA00001792644800046
and
Figure FDA00001792644800047
of three-phase control circulation
Step 5.2; Go up A mutually the fine setting instruction of first H bridge module of brachium pontis PWM modulating wave and press relational expression
Figure FDA000017926448000411
computing, obtain the PWM modulating wave that A goes up first module of brachium pontis mutually with
Figure FDA00001792644800049
and
Figure FDA000017926448000410
that step 5.1 generates; Descend A mutually the fine setting instruction
Figure FDA000017926448000412
of first H bridge module of brachium pontis PWM modulating wave to press relational expression
Figure FDA000017926448000415
computing, obtain the PWM modulating wave that A descends first module of brachium pontis mutually with
Figure FDA000017926448000413
and that step 5.1 generates; By that analogy, the final PWM modulating wave that obtains in the A phase upper and lower bridge arm residue module and
Figure FDA000017926448000417
B mutually in the upper and lower bridge arm the final PWM modulating wave
Figure FDA000017926448000418
of residue module and
Figure FDA000017926448000419
C remain final PWM modulating wave
Figure FDA000017926448000420
and
Figure FDA000017926448000421
of module mutually in the upper and lower bridge arm
Step 5.3 is compared with the triangular carrier of phase shift successively with the modulating wave of every each module of phase, generates the switching signal of each module.
CN201210205114.0A 2012-06-20 2012-06-20 Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling Expired - Fee Related CN102739071B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210205114.0A CN102739071B (en) 2012-06-20 2012-06-20 Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210205114.0A CN102739071B (en) 2012-06-20 2012-06-20 Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling

Publications (2)

Publication Number Publication Date
CN102739071A true CN102739071A (en) 2012-10-17
CN102739071B CN102739071B (en) 2014-07-02

Family

ID=46994014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210205114.0A Expired - Fee Related CN102739071B (en) 2012-06-20 2012-06-20 Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling

Country Status (1)

Country Link
CN (1) CN102739071B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001519A (en) * 2012-12-01 2013-03-27 中国科学院电工研究所 Control method for low frequency operation of modular multilevel converter
CN103296912A (en) * 2013-05-17 2013-09-11 苏州市职业大学 Dual-compound chained multi-level inverter
CN103441512A (en) * 2013-08-13 2013-12-11 上海交通大学 Modular Multilevel Converter Based Reactive Power Compensation (MMC-STATCOM) Method
CN103532418A (en) * 2013-04-18 2014-01-22 中国矿业大学 SVG submodule capacitor pre-charging strategy based on MMC
CN103825478A (en) * 2014-02-26 2014-05-28 西安交通大学 Control method of modular multilevel converter based on power frequency fixed switching frequency
CN103973088A (en) * 2014-05-22 2014-08-06 中国南方电网有限责任公司电网技术研究中心 Peak-prediction-based method for balancing voltage between modularization multi-level current converter bridge arms
CN104022665A (en) * 2014-05-22 2014-09-03 清华大学 Bridge arm instantaneous current direct control method of modular multilevel converter
WO2015074529A1 (en) * 2013-11-19 2015-05-28 国家电网公司 Sub-module capacitor voltage balancing optimization method for modular multilevel converter
CN104836422A (en) * 2014-02-11 2015-08-12 韩国电气研究院 Driving device and method for a modular multilevel converter
CN104993510A (en) * 2015-08-06 2015-10-21 国家电网公司 Flexible DC power transmission system based on modularized multi-level converter
CN106533233A (en) * 2016-12-21 2017-03-22 清华大学 Modular multilevel converter optimization control method actively utilizing double frequency circulation
CN107910876A (en) * 2017-11-23 2018-04-13 广东电网有限责任公司电力科学研究院 A kind of outer shroud voltage control method and device based on chain type STATCOM
CN108432108A (en) * 2015-12-18 2018-08-21 Abb瑞士股份有限公司 Voltage Balancing in Modular Multilevel Converters with Delta Configuration
CN109152118A (en) * 2017-08-07 2019-01-04 湖南大学 Tundish electromagnetic induction heating system multi layer control method
CN112909985A (en) * 2021-02-01 2021-06-04 国网江苏省电力有限公司 Multi-terminal high-voltage direct-current power grid control method
CN113346778A (en) * 2021-05-19 2021-09-03 南京师范大学 Modular multilevel converter submodule observation method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860203A (en) * 2010-05-28 2010-10-13 浙江大学 Optimal Voltage Equalization Control Method for Modular Multilevel Converter Type DC Transmission System
CN101924487A (en) * 2010-08-06 2010-12-22 西安交通大学 Voltage control method of three-phase inverter in distributed generation system
CN101950960A (en) * 2010-09-19 2011-01-19 西安交通大学 Control method of DC bus voltage of cascading multi-level power quality conditioners

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860203A (en) * 2010-05-28 2010-10-13 浙江大学 Optimal Voltage Equalization Control Method for Modular Multilevel Converter Type DC Transmission System
CN101924487A (en) * 2010-08-06 2010-12-22 西安交通大学 Voltage control method of three-phase inverter in distributed generation system
CN101950960A (en) * 2010-09-19 2011-01-19 西安交通大学 Control method of DC bus voltage of cascading multi-level power quality conditioners

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001519A (en) * 2012-12-01 2013-03-27 中国科学院电工研究所 Control method for low frequency operation of modular multilevel converter
CN103001519B (en) * 2012-12-01 2014-11-26 中国科学院电工研究所 Method for controlling low-frequency operation of modular multilevel converter
CN103532418A (en) * 2013-04-18 2014-01-22 中国矿业大学 SVG submodule capacitor pre-charging strategy based on MMC
CN103296912A (en) * 2013-05-17 2013-09-11 苏州市职业大学 Dual-compound chained multi-level inverter
CN103441512B (en) * 2013-08-13 2016-08-17 上海交通大学 Modular Multilevel Converter Based Reactive Power Compensation (MMC-STATCOM) Method
CN103441512A (en) * 2013-08-13 2013-12-11 上海交通大学 Modular Multilevel Converter Based Reactive Power Compensation (MMC-STATCOM) Method
WO2015074529A1 (en) * 2013-11-19 2015-05-28 国家电网公司 Sub-module capacitor voltage balancing optimization method for modular multilevel converter
CN104836422B (en) * 2014-02-11 2017-08-25 韩国电气研究院 Driving device and method for a modular multilevel converter
CN104836422A (en) * 2014-02-11 2015-08-12 韩国电气研究院 Driving device and method for a modular multilevel converter
CN103825478A (en) * 2014-02-26 2014-05-28 西安交通大学 Control method of modular multilevel converter based on power frequency fixed switching frequency
CN103825478B (en) * 2014-02-26 2016-08-17 西安交通大学 Control method based on power frequency fixed switching frequency modular multi-level converter
CN104022665A (en) * 2014-05-22 2014-09-03 清华大学 Bridge arm instantaneous current direct control method of modular multilevel converter
CN103973088B (en) * 2014-05-22 2017-01-04 中国南方电网有限责任公司电网技术研究中心 Balance of voltage method between multi-level inverter bridge arm based on peak value prediction
CN104022665B (en) * 2014-05-22 2016-06-29 清华大学 A kind of brachium pontis transient current direct control method of modularization multi-level converter
CN103973088A (en) * 2014-05-22 2014-08-06 中国南方电网有限责任公司电网技术研究中心 Peak-prediction-based method for balancing voltage between modularization multi-level current converter bridge arms
CN104993510A (en) * 2015-08-06 2015-10-21 国家电网公司 Flexible DC power transmission system based on modularized multi-level converter
CN108432108A (en) * 2015-12-18 2018-08-21 Abb瑞士股份有限公司 Voltage Balancing in Modular Multilevel Converters with Delta Configuration
US10855199B2 (en) 2015-12-18 2020-12-01 Abb Power Grids Switzerland Ag Voltage balancing in a Modular Multilevel Converter having delta configuration
CN106533233A (en) * 2016-12-21 2017-03-22 清华大学 Modular multilevel converter optimization control method actively utilizing double frequency circulation
CN106533233B (en) * 2016-12-21 2018-10-19 清华大学 Modular multilevel converter optimization control method actively utilizing double frequency circulation
CN109152118A (en) * 2017-08-07 2019-01-04 湖南大学 Tundish electromagnetic induction heating system multi layer control method
CN109152118B (en) * 2017-08-07 2021-07-23 湖南大学 Multi-layer control method of electromagnetic induction heating system for tundish
CN107910876B (en) * 2017-11-23 2020-09-01 广东电网有限责任公司电力科学研究院 Outer loop voltage control method and device based on chain type STATCOM
CN107910876A (en) * 2017-11-23 2018-04-13 广东电网有限责任公司电力科学研究院 A kind of outer shroud voltage control method and device based on chain type STATCOM
CN112909985A (en) * 2021-02-01 2021-06-04 国网江苏省电力有限公司 Multi-terminal high-voltage direct-current power grid control method
CN112909985B (en) * 2021-02-01 2022-10-11 国网江苏省电力有限公司 Multi-terminal high-voltage direct-current power grid control method
CN113346778A (en) * 2021-05-19 2021-09-03 南京师范大学 Modular multilevel converter submodule observation method and device

Also Published As

Publication number Publication date
CN102739071B (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102739071B (en) Method for controlling direct current capacitor voltage of modular multi-level converter based on circulating current decoupling
Bhattacharya et al. Parallel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance
Pouresmaeil et al. Control scheme of three-level NPC inverter for integration of renewable energy resources into AC grid
CN102723734B (en) Voltage control method of Y-type connected direct-current bus of serially-connected H bridge multi-level grid-connected inverter
Li et al. A modular multilevel converter type solid state transformer with internal model control method
Wu et al. Key technologies of VSC-HVDC and its application on offshore wind farm in China
CN103427425B (en) Coordinated control device and method for MMC (modular multilevel converter) type unified power quality conditioner
Pouresmaeil et al. Multilevel converters control for renewable energy integration to the power grid
Bi et al. Modified deadbeat predictive current control method for single-phase AC–DC PFC converter in EV charging system
CN105720587B (en) A kind of alternate pressure equalizing control method of cascade connection type Y-connection STATCOM dc bus
Pouresmaeil et al. Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads
Lu et al. Flexible nonsinusoidal zero sequence voltage injection method to extend negative sequence current compensation range for star-connected CHB STATCOM
Challa et al. Modeling, controlling approaches, modulation schemes, and applications of modular multilevel converter
Barik et al. Investigations on split-source inverter based shunt active power filter integrated microgrid system for improvement of power quality issues
Xiao et al. A novel multistation cooperative negative sequence current compensation method for high-speed railway
Tong et al. Flexible substation and its control for AC and DC hybrid power distribution
Fu et al. A comparative study of control schemes for VSCHVDC transmission system
Zhu et al. VSC control strategy for HVDC compensating harmonic components
Wang et al. Modern flexible AC transmission system (FACTS) devices
Li et al. Adaptive harmonic power flow algorithm for hybrid AC/DC transmission systems
CN114336660A (en) A UPQC Direct Current Predictive Control Method Based on Power Angle
Kasari et al. A modified control approach for Voltage Source Converter to regulate voltage and power flow in Distribution Network
CN110912130A (en) Circuit structure and harmonic compensation method of a dual AC bus grid-connected converter
Reddy et al. Hybrid renewable energy sources based four leg inverter for power quality improvement
Zhao et al. Operation of series and shunt converters with 48-pulse series connected three-level NPC converter for UPFC

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

Termination date: 20190620

CF01 Termination of patent right due to non-payment of annual fee